
Evolutionary assembly patterns of prokaryotic
genomes

Maximilian O. Press,1 Christine Queitsch,1 and Elhanan Borenstein1,2,3
1Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA; 2Department of Computer Science
and Engineering, University ofWashington, Seattle,Washington 98195, USA; 3Santa Fe Institute, Santa Fe, NewMexico 87501, USA

Evolutionary innovation must occur in the context of some genomic background, which limits available evolutionary paths.

For example, protein evolution by sequence substitution is constrained by epistasis between residues. In prokaryotes, evo-

lutionary innovation frequently happens by macrogenomic events such as horizontal gene transfer (HGT). Previous work

has suggested that HGT can be influenced by ancestral genomic content, yet the extent of such gene-level constraints has not

yet been systematically characterized. Here, we evaluated the evolutionary impact of such constraints in prokaryotes, using

probabilistic ancestral reconstructions from 634 extant prokaryotic genomes and a novel framework for detecting evolu-

tionary constraints on HGT events. We identified 8228 directional dependencies between genes and demonstrated that

many such dependencies reflect known functional relationships, including for example, evolutionary dependencies of

the photosynthetic enzyme RuBisCO. Modeling all dependencies as a network, we adapted an approach from graph theory

to establish chronological precedence in the acquisition of different genomic functions. Specifically, we demonstrated that

specific functions tend to be gained sequentially, suggesting that evolution in prokaryotes is governed by functional assem-

bly patterns. Finally, we showed that these dependencies are universal rather than clade-specific and are often sufficient for

predicting whether or not a given ancestral genome will acquire specific genes. Combined, our results indicate that evolu-

tionary innovation via HGT is profoundly constrained by epistasis and historical contingency, similar to the evolution of

proteins and phenotypic characters, and suggest that the emergence of specific metabolic and pathological phenotypes in

prokaryotes can be predictable from current genomes.

[Supplemental material is available for this article.]

A fundamental question in evolutionary biology is how present
circumstances affect future adaptation and phenotypic change
(Gould and Lewontin 1979). Studies of specific proteins, for exam-
ple, indicate that epistasis between sequence residues limits acces-
sible evolutionary trajectories and thereby renders certain adaptive
paths more likely than others (Weinreich et al. 2006; Gong et al.
2013; de Visser and Krug 2014; Harms and Thornton 2014).
Similarly, both phenotypic characters (Ord and Summers 2015)
and specific genetic adaptations (Conte et al. 2012; Christin et
al. 2015) show strong evidence of parallel evolution rather than
convergent evolution. That is, a given adaptation is more likely
to repeat in closely related organisms than in distantly related
ones. This inverse relationship between the repeatability of evolu-
tion and taxonomic distance implies a strong effect of lineage-
specific contingency on evolution, also potentially mediated by
epistasis (Orr 2005).

Such observations suggest that genetic adaptation is often
highly constrained, and the present state of an evolving system
can impact future evolution. Yet, the aforementioned studies are
limited to small data sets and specific genetic pathways, and a
more principled understanding of the rules by which future evolu-
tionary trajectories are governed by the present state of the system
is still lacking. For example, it is not knownwhether such adaptive
constraints are a feature of genome-scale evolution or whether
they are limited to finer scales.Moreover, themechanisms that un-
derlie observed constraints are often completely unknown.
Addressing these questions is clearly valuable for obtaining a

more complete theory of evolutionary biology, but more pressing-
ly, is essential for tackling a variety of practical concerns, including
our ability to combat evolving infectious diseases or engineer com-
plex biological systems.

Here, we address this challenge by analyzing horizontal gene
transfer (HGT) in prokaryotes. HGT is an ideal system to systemati-
cally study genome-wide evolutionary constraints because it in-
volves gene-level innovation, occurs at very high rates relative to
sequence substitution (Nowell et al. 2014; Puigbò et al. 2014),
and is a principal source of evolutionary novelty in prokaryotes
(Gogarten et al. 2002; Jain et al. 2003; Lerat et al. 2005; Puigbò
et al. 2014). Clearly, many or most acquired genes are rapidly
lost due to fitness costs (van Passel et al. 2008; Baltrus 2013;
Soucy et al. 2015), indicating that genes retained in the long
term are likely to provide a selective advantage. Moreover, not all
genes are equally transferrable (Jain et al. 1999; Sorek et al. 2007;
Cohen et al. 2011), and not all species are equally receptive to
the same genes (Smillie et al. 2011; Soucy et al. 2015). However,
differences in HGT among species have been attributed not only
to ecology (Smillie et al. 2011) or to phylogenetic constraints
(Popa et al. 2011; Nowell et al. 2014), but also to interactions
with the host genome (Jain et al. 1999; Cohen et al. 2011; Popa
et al. 2011). Indeed, studies involving single genes or single species
support the influence of genome content on the acquisition and
retention of transferred genes (Pal et al. 2005; Sorek et al. 2007;
Iwasaki and Takagi 2009; Chen et al. 2011; Press et al. 2013;
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Johnson and Grossman 2014). For example, it has been demon-
strated that the presence of specific genes facilitates integration
of others into genetic networks (Chen et al. 2011), and genes are
more commonly gained in genomes already containingmetabolic
genes in the same pathway (Pal et al. 2005; Iwasaki and Takagi
2009). However, to date, a systematic, large-scale analysis of such
dependencies has not been presented. In this paper, we therefore
set out to characterize a comprehensive collection of genome-
wide HGT-based dependencies among prokaryotic genes, analyze
the obtained set of epistatic interactions, and identify patterns in
the evolution of prokaryotic genomes.

Results

PGCE inference

We first set out to detect pairs of genes for which the presence of
one gene in the genome promotes the gain of the other gene
(though not necessarily vice versa) (Fig. 1). Such “pairs of genes
with conjugated evolution” (PGCEs) represent putative epistatic
interactions at the gene level and may guide genome evolution.
To this end, we obtained a collection of 634 prokaryotic genomes
annotated by KEGG (Kanehisa et al. 2012) and linked through a
curated phylogeny (Dehal et al. 2010). For each of the 5801 genes
that varied in presence across these genomes, we reconstructed
the probability of this gene’s presence or absence on each branch
of the phylogenetic tree using a previously introduced method

(Cohen and Pupko 2010), as well as the probability that it was
gained or lost along these branches using a simple heuristic
(Methods).We confirmed that genes’ presence/absencewas robust
to the reconstruction method used (99.5% agreement between re-
construction methods used) (Methods). As expected (Mira et al.
2001), gene loss was more common than gene gain for most genes
(Supplemental Fig. S1; Supplemental Text). We additionally con-
firmed that inferred gains of several genes of interest were consis-
tent with gains inferred by an alternative HGT inference method
(Methods; Supplemental Text; Supplemental Table S1). From the
reconstructions, we estimated the frequency with which each
gene was gained in the presence of each other gene, and followed
previous studies (Maddison 1990; Cohen et al. 2012) in using para-
metric bootstrapping (Supplemental Fig. S2) to detect PGCEs—
gene pairs for which one gene is gained significantly more often
in the presence of the other (Supplemental Fig. S3; Supplemental
Text). In total, we identified 8415 PGCEs. We finally applied a
transitive reduction procedure to discard potentially spurious
PGCEs, resulting in a final network containing 8228 PGCEs con-
necting a total of 2260 genes (Supplemental Figs. S4, S5; Supple-
mental Text). A detailed description of the procedures used can
be found in Methods, and the final list of PGCEs is supplied as
Supplemental File S1.

PGCEs represent biologically relevant dependencies

Comparing this final set of PGCEs to known biological interac-
tions, we confirmed that the obtained PGCEs represent plausible
biological dependencies. For example, genes sharing the same
KEGG Pathway annotations were more likely to form a PGCE
(Fig. 2A), as were genes linked in an independently derived net-
work of bacterial metabolism (Fig. 2B; Levy and Borenstein
2013). Moreover, PGCEs often linked genes in functionally related
pathways (Supplemental Fig. S6; Supplemental Text).We similarly
identified specific examples in which PGCEs connected pairs
of genes with well-described functional relationships. One such
example is the PGCE connecting rbsL and rbsS (sometimes written
rbcL/rbcS), two genes that encode the large and small subunits of
the well-described photosynthetic enzyme ribulose-1-5-bisphos-
phate carboxylase-oxygenase (RuBisCO), respectively. The rbsL
subunit alone has carboxylation activity in some bacteria, but
the addition of rbsS increases enzymatic efficiency, consistent
with its PGCE dependency on rbsL (Fig. 3A; Andersson and
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Figure 1. Workflow for deriving the PGCE network. (A) A model phylog-
eny and a set of gene presence/absence patterns at the tips are used to
generate an ancestral reconstruction, from which gains are inferred.
Filled circles represent the presence of a gene (distinguished by color),
and empty circles represent absence of that gene. Inverted triangles repre-
sent points on the phylogeny where the gene of the indicated color is in-
ferred to be gained. (B) Based on inferred gain and loss rates, many
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pectation for evolutionary independence. Filled circles indicate presence of
the simulated gene, and empty circles indicate absence; inverted triangles
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bution derived from simulated gene evolution is used to identify depen-
dencies between real genes. (D) These dependencies are modeled as a
network. Filled circles indicate genes (nodes); arrows indicate dependen-
cies (edges).
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Figure 2. PGCEs are enriched for biologically meaningful interactions.
(A) The observed number of PGCE edges connecting genes in the same
pathway (dashed line), compared to the expected distribution obtained
from 1000 rewired networks with identical degree distributions. (B) The
observed number of PGCE edges that also appear in a bacteria-wide met-
abolic network, compared to the expected distribution.

Evolutionary assembly of prokaryotic genomes

Genome Research 827
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.200097.115/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.200097.115/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.200097.115/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.200097.115/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.200097.115/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.200097.115/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.200097.115/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.200097.115/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.200097.115/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.200097.115/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.200097.115/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.200097.115/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.200097.115/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.200097.115/-/DC1


Backlund 2008). Moreover, these genes are known to undergo sub-
stantial horizontal transfer (Delwiche and Palmer 1996).

Multiple additional genes were found to promote rbsS gain
(88 PGCEs in total) (Supplemental Table S2), many of which, as
expected, are associated with carbon metabolism. Other genes
in this set, however, unexpectedly implicated nitrogen acquisi-
tion, as well as other pathways (Supplemental Table S3), in pro-
moting rbsS gain. For example, all components of the Urt urea
transport complex had a PGCE link with rbsS, as shown by the
reconstructed phylogenetic history of urtA and rbsS (Fig. 3B).
This strict dependency could reflect nitrogen’s role as a rate-
limiting resource for primary production in phytoplankton and
other photosynthetic organisms (Eppley and Peterson 1979;
Sohm et al. 2011). In comparing the reconstructions from which
urtA-rbsS and rbsL-rbsS dependencies were inferred, we further ob-
served that rbsS is gained only in lineages in which both urtA and
rbsL were previously present. This indicates that although
both rbsL and urtA may be necessary for the acquisition of rbsS,
neither rbsL nor urtA are independently sufficient for the acquisi-
tion of rbsS. Other PGCEs may interact in similarly complex fash-
ions in controlling the acquisition of genes, and thus such
relationships may be gene-specific and involve a variety of biolog-
ical mechanisms that may be difficult to generalize. For further
analyses, we therefore focused on analyzing large-scale patterns
of PGCE connectivity and on exploring how the dependencies
between various genes structure the relationships between func-
tional pathways.

PGCE network analyses reveal evolutionary assembly patterns

The rbsS-associated PGCEs described above show how PGCEs
captured an assembly pattern involving multiple pathways.
Therefore, we next set out to infer global evolutionary assembly
patterns based on the complete set of PGCEs identified. Specifi-
cally, we used a network-based topological sorting approach
(Supplemental Text) to rank all genes in the PGCE network.
According to this procedure, genes without dependencies occupy
the first rank, genes in the second rank have PGCE dependencies
only on first rank genes, genes in the third rank have dependencies
only on first and second rank genes, and so on until all genes are
associated with some rank. In other words, the obtained ranking

represents general patterns in the order
by which genes are gained throughout
evolution, with the gain of higher-
ranked genes succeeding the presence
of the lower-ranked genes on which
they depend. Using this approach, we
found that genes could be fully classified
into five ranks (Fig. 4A). The first rank
was by far the largest at 1593 genes
(most genes do not have detectable de-
pendencies), the second rank had 498
genes, and successive ranks showed de-
clining membership until the last (fifth)
rank, with only five genes (Supplemental
Table S4).

To identify evolutionary assembly
patterns from these ranks, we examined
the set of genes in each rank and
identified overrepresented functional
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Figure 3. The phylogenetic history of rbsL, urtA, and rbsS. The presence of each gene in each branch in
the phylogenetic tree is illustrated with a colored circle, with the circle’s diameter scaled to denote the
probability of presence. (A) rbsL and rbsS evolutionary histories. (B) urtA and rbsS evolutionary histories.
The long branch leading to Archaea (bottommost clade) was reduced in size for graphical purposes.
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Figure 4. Topological sorting of the PGCE dependency network reveals
assembly patterns that govern the evolutionary process. (A) Binned de-
pendencies among the five ranks of genes in the topological sort (left to
right). Node size represents the number of genes in each ranks (using nat-
ural logarithm scale). Edge width represents the number of PGCEs be-
tween genes in different ranks (natural logarithm scale); all edges are
directed to the right. (B) The gain of genes from each rank in each branch
of the phylogenetic tree is illustrated (circles). The different colors repre-
sent different ranks. Circle sizes correspond to the proportion of gains
on a branch attributed to genes of that rank (e.g., a large red circle indi-
cates that most gains on a branch correspond to rank 1). The branch to
Archaea (bottommost clade) has been reduced in size for graphical purpos-
es. See also Supplemental Figure S7.
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categories (Table 1). These enriched functional categories indicate
that certain functional groups of genes consistently occupy specif-
ic positions in these evolutionary assembly patterns, whether in
controlling other genes’ gain or in being controlled by other genes.
For example, we found that the first rank was enriched for flagellar
and pillar genes involved in motility, in addition to Type II secre-
tion genes (many of which are homologous to or overlap with
genes encoding pillar proteins) and certain two-component genes.
The second rank was enriched for various metabolic processes,
whereas later ranks were enriched for Type III and Type IV secre-
tion systems and conjugation genes. This finding suggests that
habitat commitments are made early in evolution, mediated by
motility genes that could underlie the choice and establishment
of physical environments. This environmental choice is followed
by a metabolic commitment to exploiting the new habitat. Last,
genes for interaction with the biotic complement of these habitats
are gained, and replaced frequently in response to evolving chal-
lenges. Considering two distinct but highly homologous pilus as-
sembly pathways, one (fimbrial) was enriched in a low rank and
one (conjugal) was enriched in a high rank, suggesting that the
specific function of the gene rather than other sequence-level
gene properties drove the ranking (Supplemental Fig. S7A).We ad-
ditionally confirmed that the observed rank distribution for these
functions is not explained by variation in the frequency of gene
gain (Supplemental Fig. S7B). Furthermore, as expected, we ob-
served that the gains of genes appearing late in the sort were over-
represented in later branches of the tree compared to the gains of
lower-ranked genes (Fig. 4B; Supplemental Fig. S8), suggesting that
the chronology of gene acquisition reflects the overall assembly
patterns in gain order.

Evolution by HGT is predictable

The chronological ordering of ranks was relatively consistent
across the tree (Fig. 4B), indicating that PGCE dependencies
are universal across prokaryotes. Notably, this universality also
implies that gene acquisition is predictable from genome con-
tent. Put differently, if PGCEs are universal, then PGCEs inferred
in one clade of the tree are informative in making predictions
about gene acquisition in a different clade. Indeed, studies of
epistasis-mediated protein evolution indicate that the constric-
tion of possible mutational paths should lead to predictability
in evolution, if epistasis is sufficiently strong (Weinreich et al.
2006). To explore this hypothesis explicitly, we partitioned
the tree into training and test sets (Fig. 5A). As test sets, we se-
lected the Firmicutes phylum, and the Alphaproteobacteria/
Betaproteobacteria subphyla. Choosing whole clades as test
sets (rather than randomly sampling species from throughout
the tree) guarantees that true predictions are based on universal
PGCEs, rather than clade-specific PGCEs. For each test set, we
used a model phylogeny that excluded the test subtree as a
training set and inferred PGCEs based on this pruned tree
(Supplemental Table S5; Supplemental Fig. S9A). We then used
these inferred PGCEs to score the relative likelihood of the
gain of dependent genes on each branch in the test set, based
on the genome content of the branch’s ancestor (Fig. 5A; Sup-
plemental Table S5; Supplemental Text). We used a naïve
and simplistic score: the proportion of genes upon which
the gained gene depends that are present in the reconstructed
ancestor of each branch. In both test sets, we found that predic-
tion quality was surprisingly high (Fig. 5B; Supplemental Fig.
S9B,C), suggesting that PGCEs are taxonomically universal and
statistically robust in describing relationships between genes.
This predictability is consistent with the hypothesis that gene–
gene dependencies constrain the evolution of genomes by
HGT. More broadly, this analysis and our finding that PGCEs
can predictably determine future evolutionary gains provide
substantial evidence that the preponderance of parallel evolu-
tion over convergent evolution (Conte et al. 2012; Ord and
Summers 2015) may be the result of specific, identifiable genetic
dependencies entraining the evolutionary trajectory taken by
similar genomes.

Table 1. Functional groups are enriched in different ranks of the
topological sort

Annotation label P-valuea
Enrichment

ratiob

Rank 1 enrichments
Cell motility 1.94 × 10−7 1.40
Bacterial motility proteins 1.85 × 10−11 1.41
Type II secretion system 2.61 × 10−5 1.33
Two-component system 3.65 × 10−4 1.25
Flagellar system 1.01 × 10−9 1.43
Pilus system 2.11 × 10−4 1.38
Metabolismc 3.37 × 10−5 0.91
Xenobiotics biodegradation and
metabolismc

1.07 × 10−6 0.69

Carbohydrate metabolismc 1.20 × 10−4 0.84
Type IV secretion systemc 1.26 × 10−9 0.20

Rank 2 enrichments
Metabolism 1.47 × 10−4 1.23
Carbohydrate metabolism 3.08 × 10−6 1.58

Rank 4 enrichments
Pathogenicity 1.88 × 10−6 21.65
Conjugal transfer pilus assembly
protein

1.08 × 10−4 15.01

Type III protein secretion pathway
protein

1.88 × 10−6 21.65

ABC-2 type and other transporters 2.31 × 10−4 12.51
Type IV secretion system 1.30 × 10−3 8.04

aFrom a hypergeometric test. All annotations displayed are significant at
a 1% false discovery rate.
bThe ratio of the observed proportion of genes with this label in the indi-
cated rank to the expected proportion based on all genes in the
network.
cThese annotations are depleted (i.e., enrichment ratio significantly less
than one) in the first rank.
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Figure 5. PGCE dependencies lead to taxonomically robust predict-
ability of gene acquisition. (A)Workflow for predicting gene acquisition be-
tween clades of the tree. A training set is used to build a PGCE dependency
model, which is then used to predict on which specific branches genes are
likely to be gained (green circles), based on dependencies inferred from
the training set (red and blue circles). (B) Performance of PGCEs in predict-
ing gene acquisitions in two test sets (indicated clades of the prokaryotic
tree). Areas under each curve: Firmicutes, 0.73; Alpha/Beta-proteobacte-
ria, 0.68. The diagonal dotted line represents the performance of a purely
random prediction. See also Supplemental Figure S9.
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Discussion

Combined, our findings provide substantial evidence to suggest
that gene acquisitions in bacteria are governed by genome con-
tent through numerous gene-level dependencies. Our ability
to detect these underlying dependencies is clearly imperfect,
owing to various data and methodological limitations (Sup-
plemental Text; Supplemental Fig. S3). Therefore, in reality, the
complete dependency network is likely much denser than that
described above and includes numerous dependencies and con-
straints that our approach may not be able to detect. Consequent-
ly, our estimates should be considered as a lower bound on the
extent of gene–gene interactions, and accordingly, the predictabil-
ity of HGT.

Notably, even considering such caveats, our observations dra-
matically expand our knowledge of the constraints on HGT.
Previous studies of such constraints demonstrated that genes fre-
quently acquired by HGT tend to occupy peripheral positions in
biological networks, are often associated with specific cellular
functions, and are phylogenetically clustered (Jain et al. 1999;
Cohen et al. 2011). These observations suggested that properties
of transferred genes are also important determinants of HGT re-
gardless of recipient genome content (Jain et al. 1999; Cohen
et al. 2011; Gophna and Ofran 2011) and that the acquisition of
certain genes is clade-specific (Andam and Gogarten 2011; Popa
et al. 2011). In contrast, our analysis demonstrates the importance
of recipient genome content in influencing the propensity of a
new gene to be acquired. In fact, to some extent, properties previ-
ously reported as determining the general “acquirability” of genes
across all speciesmay reflect an average constraint across genomes.
By also considering variation in genomes acquiring genes, our
analysis focused on specific biological effects, whose strengths
may vary from genome to genome.

Importantly, our model that gene acquisition is affected by
recipient genome content is consistent with the observed enrich-
ment of HGT among close relatives, which presumably have sim-
ilar genome content (Gogarten et al. 2002; Andam and Gogarten
2011; Popa and Dagan 2011; Popa et al. 2011). This taxonomic
clustering of innovation by HGT is also in agreement with pre-
vious studies that demonstrated that phenotypic and genetic par-
allel evolution is more common than convergent evolution,
potentially due to the effects of historical contingency (Gould
and Lewontin 1979; Conte et al. 2012; Christin et al. 2015; Ord
and Summers 2015). However, in contrast to other studies, we pre-
sent direct evidence that the mechanism by which contingency
controls evolution is epistasis. Furthermore, the universality of
PGCEs shows that the constraints underlying the effect of contin-
gency operate outside the context of parallel evolution.

Put differently, since each phylum-level clade is subject to an
independent evolutionary trajectory, it is unlikely that the same
dependency patterns would repeat solely due to parallel evolution.
Moreover, our ability to predict where exactly along the tree gains
of a specific gene are likely to occur (Fig. 5B) suggests that PGCEs
successfully capture how variation in the genomic content (even
among closely related species) affects future gain events. Such
PGCE specificity therefore indicates that observed dependencies
are not a trivial byproduct of prevalent gene transfer events among
taxonomically closely related genomes (e.g., due to homologous
recombination constraints) (Popa et al. 2011). Nonetheless, the
relative contributions of each of these various processes governing
the assembly of prokaryotic genomes (and the evolution of com-
plex systems in general) clearly deserve future study.

Although our analysis revealed several intriguing patterns,
the precise interpretation of some of these patterns remains un-
clear. For instance, the observed correspondence of topological
ranks of genes to chronology suggests that evolutionary age is a po-
tential contributor to such ranking, especially considering that our
reconstructions likely lackmany genes that have not been retained
in any extant genomes. However, the biological plausibility and
statistical robustness of PGCEs demonstrated above strongly argue
that the observed evolutionary patterns are the result of con-
straint-inducing dependencies. Future work may therefore aim to
quantify the trade-off between functional and chronological deter-
minants in apparent evolutionary constraints.

Finally, we demonstrate the predictability of genomic evolu-
tion by horizontal transfer from current genomic content. As stat-
ed above, this finding also suggests that such dependencies are
fairly universal across the prokaryotic tree. Our approach was de-
signed specifically to understand the PGCE network’s significance
and universality, rather than predict gene acquisition. It is likely
that an approach specifically engineered for gene acquisition pre-
diction would substantially outperform our approach. The esti-
mates of predictability of genomic evolution presented here are
accordingly quite conservative.

The determinism and predictability of evolutionary patterns
therefore appear to be an outcome not only of intramolecular epis-
tasis in proteins or phylogenetic constraints, but also of genome-
wide interactions between genes. This suggests that the evolution
of medically, economically, and ecologically important traits
in prokaryotes depends on ancestral genome content and is
hence at least partly predictable, potentially informing research
in the epidemiology of infectious diseases, bioengineering, and
biotechnology.

Methods

All mathematical operations and statistical analyses were per-
formed in R 2.15.3 (R Core Team 2016). Probabilistic ancestral re-
constructions were obtained using the gainLoss program (Cohen
and Pupko 2010). Phylogenetic simulations and plots were per-
formedwith the APE library (Paradis et al. 2004). Network analyses
and algorithms were implemented using either the igraph (Csárdi
and Nepusz 2006) orNetworkX (https://networkx.lanl.gov/) librar-
ies, and visualized using Cytoscape v3.1.1 (Shannon et al. 2003).

Phylogenies

We used a precomputed phylogenetic tree (Dehal et al. 2010) as a
model of bacterial evolution. We mapped all extant organisms in
this tree to organisms in the KEGGdatabase by their NCBI genome
identifiers and pruned all tips that did not directly and uniquely
map to KEGG. This yielded a phylogenetic tree connecting 634
prokaryotic species. For analyses involving subtrees of this phylo-
genetic tree, we used iTOL (Letunic and Bork 2011) to extract
subtrees.

Inferring phylogenetic histories for genes

We used the gainLoss v1.266 software (Cohen and Pupko 2010), a
set of presence/absence patterns of orthologous genes from KEGG
(Kanehisa et al. 2012), and the phylogenetic tree described above
to infer (1) the probabilities of presence and absence of genes at in-
ternal nodes of the tree; (2) gain and loss rates of each gene; and (3)
tree branch lengths within a single model. Specifically, in running
gainLoss, we assumed a stationary evolutionary process, with gene
gain and loss rates for each genemodeled as amixture of three rates
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drawn from gamma distributions defined based on overall initial
presence/absence patterns. A complete list of parameters used for
gainLoss runs is given in the Supplemental Text and as Supplemen-
tal File S2. The gainLoss log file for the principal run on the full tree
is also included as Supplemental File S3. Based on thesemodels, we
obtained a probabilistic ancestral reconstruction based on stochas-
ticmapping for each of 5801 genes that were present in at least one
species and absent in at least one species and filtered out genes that
were found to be gained less than twice throughout the tree, yield-
ing 5031 genes, which we further analyzed.

Inferring gains and presence of genes on branches

To focus on gain events with strong support and where the gained
gene is retained (rather than gain events in which the gene is sub-
sequently lost along the same branch), we used a simple model
for computing the probability of different evolutionary gain/
loss scenarios based on gainLoss ancestral reconstructions rather
than directly using gainLoss gain inferences (Supplemental Text).
Specifically, we assumed that unobserved gains and losses are
not relevant, and evolutionary scenarios are defined by the states
at the ancestor and descendant nodes of each branch (regardless
of branch length). With these assumptions, we used the probabil-
ities of presence and absence of each of 5031 genes at each node
and tip on the tree to compute the probability of each branch un-
dergoing each scenario: (1) gain (absent in ancestor and present in
descendant); (2) presence (present in both ancestor and descen-
dant); and (3) loss (present in ancestor and absent in descendant)
(Supplemental Text). For a gene X on a branchwith ancestor A and
descendant B, we assume the following:

1. Pr(X present on branch) = Pr(X present in A ∩ X present in
B) = Pr(X present in A) × Pr(X present in B);

2. Pr(X gained on branch) = Pr(X absent in A ∩Xpresent in B)
= Pr(X absent in A) × Pr(X present in B); and

3. Pr(X lost on branch) = Pr(X present in A ∩ X absent in B) =
Pr(X present in A) × Pr(X absent in B).

Note again that these probability estimates are distinct from
those obtained by using the gainLoss continuous-time Markov
chain on the same ancestral reconstruction, which consider also
hypothetical gains that are not retained and are thus not relevant
to our analysis (Supplemental Text).

Robustness analysis of reconstruction method

We used a maximum-parsimony reconstruction as inferred by
gainLoss to benchmark the accuracy of the gainLoss reconstruction
by stochastic mapping. In this analysis, only internal node recon-
structions were considered, as tip reconstructions (for which
the states are known) are not informative about algorithm perfor-
mance. Since the maximum-parsimony reconstruction is binary
(presence/absence) and the stochastic mapping reconstruction is
probabilistic, for purposes of comparisonwe rounded the probabil-
ities of the stochastic mapping reconstruction to obtain a pres-
ence/absence reconstruction (i.e., a probability >0.5 denotes
presence and ≤0.5 denotes absence). We computed the agreement
between the two reconstructions as the percentage of internal
node reconstructions that agree on the state of the gene.

Comparison of analyzed gains to reconciliation-based

HGT inference

We compared gains inferred by our method for several genes cen-
tral to the PGCE network to gain events reported in a searchable
database of horizontally acquired genes inferred by a sequence-
based reconciliation method (Jeong et al. 2015). To this end, we

classified all branches supporting a gain event for each of these
genes with >50% probability by our method as “true” gains. We
next searched the reconciliation database (all queries performed
between January 15 and February 20, 2016) for each gene, identi-
fying orthologous genes across 2472 genomes that exhibit HGT ac-
cording to reconciliation (excluding events that occurred on
branches without descendants). We manually compared descen-
dants of the remaining events from ourmethod with the genomes
experiencing gene acquisition in the reconciliation data set to as-
sess overlap between these two methods (see Supplemental Text).

Quantifying PGCEs

We defined a “pair of genes with conjugated evolution” (PGCE) as
a gene pair (i, j) for which the presence of one gene i encourages
the gain of the other, j. Considering these genes as phylogenetic
characters, we therefore aim to detect pairs for which “gain” state
transitions for character j are enriched on branches where charac-
ter i remains in the “present” state. This problem is related to
previous methods for detecting coevolution or correlation be-
tween phylogenetic characters (Maddison 1990; Huelsenbeck
et al. 2003;Cohen et al. 2012).GivenN branches and k genes, there
are 2 N × k matrices, P and G, describing the probabilities, respec-
tively, of presence and gain of each gene along each branch (using
our model for estimating gains described above). The test statistic
for a dependency between each gene pair (i, j) is the expected num-
ber of brancheswhere the gain of gene j occurs, while conditioning
on the presence of gene i (cell Cij in a k × k matrix C). Counting
transitions of one character (gene j gain) given some state of anoth-
er character (gene i presence) yields a standard test statistic for test-
ing correlated evolution of binary characters on phylogenies
(Maddison 1990). To compute C across N branches, we sum the
conditional probabilities of the gain of gene j in the presence of
gene i across the tree, i.e., the products of the two N × k matrices,
P (presence) and G (gain), for each gene pair

Cij =
∑N

n=1

GnjPni.

Entries in C which are significantly larger than a null ex-
pectation of gains represent PGCEs between the row and column
genes of C.

Null distribution for PGCEs

For two independently evolving genes i and j, the counted gains of
j in the presence of i, Cij,will be distributed under the null hypoth-
esis (independent evolution) as some function of the prevalence of
i (the sum of Pi, the vector of probabilities of presence of i across
branches of the tree), the expected number of branches where j
is gained (the sum of Gj, the vector of probabilities of gains of j
across nodes of the tree), and the topology and branch lengths
of the tree (τ)

Cij � f (Pi,Gj, t).
We followed previous studies (Maddison 1990; Huelsenbeck

et al. 2003; Cohen et al. 2012) by approximating this null distribu-
tion via parametric bootstrapping. Specifically, we simulated the
evolution of 105 genes along the tree using the APE library func-
tion rTraitDisc() (Paradis et al. 2004). For the gain and loss rates
used in these simulations, we used gainLoss gain and loss rates es-
timated for the 5801 empirical genes. We fit gamma distributions
to these values bymaximum likelihood using the function fitdistr()
from the MASS library (Venables and Ripley 2002). For both gains
and losses, we increased the shape parameter of the gamma distri-
bution (by a factor of 3 for gains, 1.5 for losses) to ensure that
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simulated genes showed sufficiently large numbers of gains. This
was necessary because parametric bootstrapping with the rates in-
ferred by gainLoss resulted in left skewed distributions of gene
gains (cf. Supplemental Fig. S2A,C,E), which were likely to con-
found null models. For our null models to be applicable, the distri-
bution of simulated gene gains should be roughly similar to the
distribution of gains among empirical genes (see Supplemental
Fig. S2; Supplemental Text).

These simulated genes should evolve independently and thus
represent a null model for PGCEs. As above, we constructed matri-
ces representing the probabilities of presence and gain of these
105 genes across all of the branches of the phylogeny (Pnull and
Gnull). We then multiplied these matrices of simulated genes to
compute a 105 × 105 matrix Cnull of expected branch counts under
a model of independence. We excluded gene pairs with Cij≤ 1
from further analysis, as it may be difficult to distinguish between
no association and a lack of statistical power for such pairs
(Supplemental Fig. S3A), reducing overall power in computing
false discovery rates (Bourgon et al. 2010). As a null distribution
for each pair of genes i and jwith Cij > 1, we used the 1000 simulat-
ed genes with prevalence closest to gene i (rows of Cnull) and the
1000 simulated genes with a number of gains closest to gene j (col-
umns of Cnull). We used the 106 simulated observations in the re-
sulting submatrix of Cnull as a null distribution for Cij. Notably, Cij

includes noninteger count expectations, whereas Cnull represents
integer counts (because the true reconstruction is known).
Consequently, we floored values in Cij, such that all counts were
truncated at the decimal point. The comparison of Cij to this
null distribution yields an empirical P-value; we rejected the null
hypothesis of independence between genes i and j for theCij obser-
vation at a 1% false discovery rate (P < 7 × 10−6) (Benjamini and
Hochberg 1995).

Constructing a PGCE network

For each entry in Cij for which we observed a significant associa-
tion, we recorded an edge from gene i to gene j in a network of
PGCEs. To focus purely on direct interactions, we subjected this
network to a transitive reduction (Hsu 1975). This reduction re-
quires a directed acyclic graph (DAG). To identify the largest possi-
ble DAG in our PGCE network, we identified and removed the
minimal set of edges inducing cycles (Supplemental Text).We per-
formed a transitive reduction of the resulting DAG using Hsu’s al-
gorithm (Supplemental Text; Hsu 1975).

Mapping biological information to the network

We used network rewiring (as implemented in the rewire() func-
tion of the igraph library) (Csárdi and Nepusz 2006) to generate
null distributions of the PGCE network by randomly exchanging
edges between pairs of connected nodes, while excluding self-
edges. In each permutation, we performed 5N rewiring opera-
tions, where there are N edges in the network, to ensure suffi-
cient randomization. To estimate the relationship between the
PGCE network and biological information, we calculated the
number of edges shared between the PGCE network and a met-
abolic network of all bacterial metabolism obtained from KEGG
(Kanehisa et al. 2012; Levy and Borenstein 2013), and the num-
ber of edges shared between members of the same functional
pathway as defined by KEGG, in both the original and random-
ized networks.

To determine whether genes with certain functional annota-
tions were more likely to associate with one another in the PGCE
network, we examined the KEGG Pathway annotations of each
pair of genes in the network. We counted the number of edges

leading from each pathway to each other pathway and obtained
an empirical P-value for this count by comparing it to a null distri-
bution of the expected counts obtained by random rewiring as
above.

Topological sorting of PGCE networks

To identify global patterns in our PGCE network, we performed
topological sorting (Kahn 1962) with grouping. Topological
sorting finds an absolute ordering of nodes in a directed acyclic
graph (DAG), such that no node later in the ordering has
an edge directed toward a node earlier in the ordering.
Grouping the sort allows nodes to have the same rank in the or-
dering if precedence cannot be established between them, giving
a unique solution. For a description of the algorithm used, see
Supplemental Text.

Prediction of HGT events on branches

We used the PGCE network to predict the occurrence of specific
HGT events (gene acquisitions) on the tree in the following fash-
ion. We used two test/training set partitions, with the clades of
Firmicutes and the Alpha/Beta-proteobacteria as independent
test sets and the training sets as the rest of the tree without these
clades. To “train” PGCE networks, we performed ancestral recon-
struction of gene presence, PGCE inference, and network pro-
cessing just as for the entire tree. We only attempted to predict
genes with at least one PGCE dependency (“predictable” genes).
We then considered each branch in the test set independently, at-
tempting to predict whether each predictable gene was gained
on that branch based on the reconstructed genome at the ancestor
node. For each predictable gene-branch combination, our pre-
diction score was the proportion of the predictable gene’s PGCE
dependencies that are present in the ancestor. This is the dot prod-
uct of the gene presence/absence pattern of the ancestor node
(Ai across i potentially present genes) and a binary vector denoting
which genes in the PGCE network the predictable gene depends
on (Pi across i genes in potential PGCEs), scaled by Pi

score =
∑

AiPi∑
Pi

.

Note that this value ranges between 0 and 1 for each predicted
gene. As true gains, we used our reconstructed gene acquisition
events for each branch in the test set.We arbitrarily called any pre-
dictable gene-branch pair with a Pr(gain) > 0.5 as a gain, and any
predictable gene-branch pair with Pr(gain) ≤0.5 as no gain. We
filtered out any gene-branch pair in which the gene was known
to be present with Pr > 0.4, because in these cases, the gene is prob-
ably already present. We analyzed the accuracy of our prediction
scores using receiver operating characteristic (ROC) analysis and
by comparing scores of the gain branches to those of the no-gain
branches.

Data access

Parameter and log files for principal analyses are provided as
Supplemental Files S2 and S3. Data and code are provided as
Supplemental File S4.
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