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Abstract

Heightened impulsivity and cognitive biases are risk factors for gambling problems. However, 

little is known about precisely how these factors increase the risks of gambling-related harm in 

vulnerable individuals. Here, we modelled the behaviour of eighty-seven community-recruited 

regular, but not clinically problematic, gamblers during a binary-choice reinforcement-learning 

game, to characterise the relationships between impulsivity, cognitive biases, and the capacity to 

make optimal action selections and learn about action-values. Impulsive gamblers showed 

diminished use of an optimal (Bayesian-derived) probability estimate when selecting between 

candidate actions, and showed slower learning rates and enhanced non-linear probability 

weighting while learning action values. Critically, gamblers who believed that it is possible to 

predict winning outcomes (as 'predictive control') failed to use the game's reinforcement history to 

guide their action selections. Extensive evidence attests to the ease with which gamblers can 

erroneously perceive structure in the reinforcement history of games when there is none. Our 

findings demonstrate that the generic and specific risk factors of impulsivity and cognitive biases 

can interfere with the capacity of some gamblers to utilise structure when it is available in the 

reinforcement history of games, potentially increasing their risks of sustaining gambling-related 

harms.

Introduction

Recent research and policy developments have highlighted the need to understand better the 

factors that increase the risk of gambling-related harms, broadly conceived of in terms of 

excessive expenditure of money and time on gambling and its adverse effects upon family, 

social and occupational functioning(Blaszczynski, 2009; Markham, Young, & Doran, 2014). 
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One challenge is to elucidate the cognitive and emotional processes that translate these risk 

factors into actual harms.

Some risk factors for gambling-related harms are generic in that they are also appear to 

operate in related or co-occurring psychological difficulties. For example, trait impulsivity 

tends to be elevated in individuals who gamble frequently or who have problems controlling 

their gambling activities (Blaszczynski, Steel, & McConaghy, 1997; Steel, 1998). 

Impulsivity both complicates treatment delivery and diminishes the likelihood of good 

clinical outcomes in pathological gamblers (Adinoff et al., 2007; Goudriaan, Oosterlaan, De 

Beurs, & Van Den Brink, 2008). However, this is also the case in overlapping clinical 

populations such as those with alcohol or substance-related difficulties (Leeman & Potenza, 

2012) and certain mood-related illnesses that can present with or without gambling problems 

(Di Nicola et al., 2010).

By contrast, other risk factors for gambling problems seem more specific. Cognitive 

perspectives emphasize the role of erroneous beliefs and reasoning about gambling games in 

sustaining gambling participation and facilitating the development of gambling problems 

(Robert Ladouceur, Paquet, & Dube, 1996; Toneatto, 1999). These biases include mistaken 

thinking about random outcomes – most famously, in the 'Hot-Hand' and 'Gambler's Fallacy' 

(Ayton & Fischer, 2004; Burns & Corpus, 2004; Croson & Sundali, 2005), but also beliefs 

that it is possible to predict, or even influence, the chance outcomes of gambling games (R. 

Ladouceur & Sevigny, 2005; Oei, Lin, & Raylu, 2008). Here, we investigated the 

relationships between the generic risk factor of impulsivity and the specific risk factors 

around cognitive biases and the abilities of gamblers to select between, and learn about, 

actions and probabilistic rewards. Learning more about disruptions to these cognitive 

operations can help us understand why some gamblers continue to gamble in the face 

accumulating losses, increasing the likelihood of gambling-related harm.

Actions-selection refers to the computational challenge of using the best available 

information to determine behavioural choices (Frank, 2011). In a gambling context, this 

challenge might be met by the adoption of (sometimes) sub-optimal strategies of persisting 

with previous winning game choices (e.g. positive recency in 'Hot-hand' fallacy) or shifting 

from losing choices in a sequence (e.g. negative recency in the 'Gambler's Fallacy') (Ayton & 

Fischer, 2004; Burns & Corpus, 2004; Croson & Sundali, 2005). Evidence attests to peoples' 

difficulties with randomness (A. Tversky & Kahneman, 1974) and the relative ease with 

which individuals (including gamblers) can be induced to perceive structure in the 

reinforcement history of games when none is available (Ayton & Fischer, 2004; Croson & 

Sundali, 2005). We know less about how effectively gamblers can use structure when it is 

available to optimise behaviour in chance games.

To explore this issue, we asked regular gamblers to complete a reinforcement-learning game 

in which two actions generated probabilistic outcomes of varying value. At different times, 

one action was more likely than the other action to deliver winning outcomes; at other times, 

these contingencies reversed (Behrens, Woolrich, Walton, & Rushworth, 2007). Optimal 

action-selection over successive choices should involve the comparison of approximate 

expected values, reflected in both the best cumulative estimate of actions' probabilities of 
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reward – obtained through a Bayesian updating process – and the signalled values of the 

prospective outcomes. We tested whether variability in impulsivity and cognitive biases is 

associated with diminished use of these optimal information sources; but increased reliance 

upon decisional 'short-cuts' such as 'win-stay' strategies expressed in 'Hot Hand' phenomena 

(Ayton & Fischer, 2004).

Reinforcement-learning refers to the acquisition of knowledge about the stimuli or actions 

and their reward values (Cohen, 2008). Substantial computational and neurobiological 

research has demonstrated that reinforcement learning is mediated by dopaminergic 

modulation of cortico-limbic circuits known to show functional disturbances in samples of 

pathological gamblers (Glimcher, 2011; Reuter et al., 2005; Worhunsky, Malison, Rogers, & 

Potenza, 2014). In a simplified form, reinforcement-learning is captured by the Rescorla and 

Wagner (1972) Δ-rule in which the computed probability of an action producing a reward is 

updated on the basis of comparisons between the previous actual and expected outcomes: 

pi+1 = pi + α(ri – pi) where p is the estimated probability and r is the outcome (1, win; 0, no 

win). Positive differences augment the updated pi+1 while negative differences – say, when 

an expected winning outcome is not delivered – diminishes pi+1. The parameter α represents 

the learning rate; it captures the magnitude of adjustments made to the estimated 

probabilities, pi+1, following each outcome: larger values of α indicate larger adjustments 

(and rapid learning), smaller values indicate gradual adjustments (and slower learning). Trait 

impulsivity is associated with changes in D2 receptor expression in mesolimbic structures 

that support reinforcement-learning (Buckholtz et al., 2010; Dalley et al., 2007). We tested 

whether variability in trait impulsivity and the strength of regular gamblers' cognitive biases 

is associated with smaller or large learning rates, indicating that some gamblers might learn 

more quickly or slowly than other gamblers.

We included three further elements in our reinforcement-learning model. Descriptive 

accounts of decision-making under conditions of risk, such as Prospect Theory (Kahneman 

& Tversky, 1979; Amos Tversky & Kahneman, 1992), describe how the relationship 

between nominal value and psychological value (or 'utility') often shows a concave function 

such that people tend to underweight larger increases in value rewards (as gains) compared 

to smaller increases. Similarly, people tend to overweight low probabilities of rewards in 

their choices but underweight high probabilities (Amos Tversky & Kahneman, 1992). 

However, this probability weighting may be disturbed in pathological gamblers in ways that 

promote preferences for risk across the range of probabilities (Ligneul, Sescousse, Barbalat, 

Domenech, & Dreher, 2013). Erroneous cognitions about probability are also a feature of 

gambling problems in some affected individuals (Toneatto, Blitz-Miller, Calderwood, 

Dragonetti, & Tsanos, 1997). Here, we tested whether the subjective evaluation of gains and 

probability weighting reflect variability in impulsivity and gambling-related cognitive biases 

in regular gamblers, linking risk factors for gambling-related harms to non-normative 

decisional processes that might sustain unhealthy gambling behaviours.

Finally, our reinforcement-learning model allowed the subjective value of gains, scaled by 

their probability weighting, to be used by a decisional ('softmax') rule (O'Doherty et al., 

2004) to select probabilistically the action with the greater value. The rule incorporates a 

final parameter — the 'inverse temperature' — that captures the consistency with which the 
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optimal actions are chosen, allowing us to assess, in an exploratory manner, the degree to 

which impulsivity — often conceived as the tendency to act without forethought (Evenden, 

1999; Patton, Stanford, & Barratt, 1995) — and cognitive biases introduce an element of 

randomness in action-selection over and above changes in reward and probability weighting.

Methods

Participants

Ninety-two gamblers between 18-60 years of age with varying gambling involvement were 

recruited from the Oxford community using advertisements placed on a local website. All 

participants had gambled at least once in the past year; one gambler reported 4 problems and 

6 reported three problems, as measured by the National Opinion Research Center (NORC) 

DSM-IV gambling screen (Wickwire, Burke, Brown, Parker, & May, 2008). None reported 5 

or more problems with their gambling. Five gamblers were removed from the analysis 

because their parameter estimates on the probability-tracking task were greater than 3 SDs 

from the sample mean, leaving a final sample of 87 gamblers (see Table 1).

In the previous year, 11 (12.6%) had gambled daily, 40 (46.0%) gambled 1-3 times a week, 

12 (13.8%) gambled 1-3 times a month, and 24 (27.6%) gambled once to a few times a year. 

All gamblers were screened using a semi-structured interview to exclude any current DSM-

IV psychological disorders including substance misuse disorders and pathological gambling 

(First, Spitzer, Gibbon, & Williams, 2002). The mean number of past year gambling 

problems, as measured by the NORC Gambling DSM-IV Screening instrument (Wickwire et 

al., 2008) was low at 0.76 (ranging from 0 to 4). Therefore, our observations about the 

impacts of impulsivity and cognitive biases upon action-values reported below cannot be 

attributed to the non-specific deleterious effects upon learning, attention and executive 

function of severe pathological gambling (Goudriaan, Oosterlaan, de Beurs, & van den 

Brink, 2005).

Demographic and psychometric measurements

Demographical information, including age and years of formal education, were collected. 

Participants also reported their past year gambling losses (scored 1, no losses; 2, less than 

£100; 3, between £100 to £500; 4, more than £500), and past year gambling frequency (1, 

once a year or less; 2, few times a year; 3, one to three times a month; 4, one to three times a 

week; 5, daily). Participants completed psychometric assessments of affective (Positive and 

Negative Affective Scales; Watson, Clark, & Tellegen, 1988) traits and loss-chasing 

behaviour (the Chasing Questionnaire; O'Connor & Dickerson, 2003) traits

Our gamblers also completed psychometrically-validated questionnaires to measure trait 

impulsivity and gambling-related cognitive biases (Patton et al., 1995; Raylu & Oei, 2004), 

before playing a simple binary-choice reinforcement-learning game for small monetary 

prizes (Behrens et al., 2007). In this experiment, we focused specifically upon impulsivity, 

as measured by the 'non-planning' subscale of the Barratt's Impulsivity Scale (BIS-11) 

(Patton et al., 1995). Non-planning impulsivity is characterized by a tendency to orient to the 

immediate results of actions rather than longer-term consequences. We reasoned that this 
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expression of impulsivity is the most likely to impact on the way that gamblers select 

between, and learn about, actions with uncertain outcomes (Goudriaan et al., 2008). Our 

community sample of gamblers reported just slightly lower total BIS-scores (M = 59.26, SD 
= 9.61) relative to normative samples of (non-problem) gamblers described in the literature 

(e.g., M = 62.14, SD = 10.05; t(144) = 1.74, p = .09, d = 0.29)(Patton et al., 1995), but 

significantly lower than samples of pathological gamblers (M = 76.11, SD = 11.72; t(115) = 

7.92, p < .0001, d = 1.42) (Loxton, Nguyen, Casey, & Dawe, 2008) and general psychiatric 

patients (M = 71.37, SD = 12.61; t(169) = 7.08, p< .001, d = 1.09) (Patton et al., 1995).

Finally, cognitive biases were measured using the Gambling-Related Cognitions Scale 

(GRCS) (Raylu & Oei, 2004). The GRCS has 5 subscales to capture: 'illusions of control' – 

the belief that prayer, lucky objects or rituals can enhance the likelihood of winning; 

'interpretive biases' – the belief that past wins are due to personal ability whilst past losses 

are due to circumstance; 'gambling expectancies' – the belief that pleasure can be derived 

from gambling participation; 'predictive control' – the belief one has the skill to forecast 

wins; and finally, 'inability to stop gambling' – the belief that the desire to gamble is so 

strong that one will never be able to stop the habit. In comparative terms, the GRCS scores 

of our sample of gamblers (M = 57.90, SD = 19.70) were somewhat higher than that 

reported in an Australian general community sample (M = 35.28, SD = 16.81; t(705) = 

11.49, p < .001, d = 0.87); but marginally lower than a sample of problem gamblers (M = 

64.17, SD = 22.31; t(156) = 1.87, p = .06, d = 0.30) (Raylu & Oei, 2004).

Analysis of the psychometric data gathered from our sample demonstrated good internal 

reliability: all Cronbach's α > .82; whilst all subscales had at least moderate internal 

reliability: Cronbach's α > .65.

Probability-tracking game

Our probabilistic-learning task took the form of a two-armed bandit reinforcement-learning 

game that has previously been used successfully to identify the neural substrates of optimal 

estimations of probability while foraging in volatile reinforcement environments (see Fig. 

1A; A full description of the task is available elsewhere; Behrens et al., 2007). Our 

participants were asked to choose between 2 actions ('blue' or 'green') to win 'points' prizes 

that were subsequently cashed out in monetary prizes. Sometimes, one action was more 

likely to win prizes than the alternative; at other times, the game offered a volatile 

reinforcement environment in which the reinforced and unreinforced actions swapped 

unpredictably.

Participants were told that one colour was more likely to be rewarded than the other but that 

this might vary over time. The probabilities of reward associated with each colour were not 

displayed so participants were required to estimate the likelihood of reward based on prior 

outcomes; i.e. this was choice under conditions of 'ambiguity' (Baron & Frisch, 1994). The 

number of points associated with each option was displayed within each coloured box 

(varying independently between 0 and 100), but participants were told that the probabilities 

of rewards were linked to the colours of the boxes and not the reward magnitudes.
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If participants selected the rewarded colour, they won the points displayed in the box; 

however, if they selected the non-rewarded colour, they did not score any points and points 

were not deducted from their game total. A red bar at the bottom of the screen represented 

the cumulative sum of winnings over the course of the game. To increase participants' 

motivation, £10 was awarded if the red bar at the bottom of the display reached the silver 

mark and £15 if it crossed the gold mark. Unknown to the participants, blue was 

programmed to produce rewards 75% of the time over the course of the first 120 trials 

(stable condition). In subsequent 30-40 trial blocks, the winning colour alternated between 

blue and green, with the winning colour now rewarded 80% of the remaining trials (Behrens 

et al., 2007).

Statistical analysis

Participant-level analyses—We fit two models to participants' choice behaviour. First, 

individual decision parameters from the action-selection model were obtained by regressing 

(through a simple logistic General Linear Model) the selection of green option onto features 

of each choice across the sequence of trials (see below). Second, and separate to this, we fit 

a simple reinforcement-learning model to each participants' choices. Individual decision 

parameters for the reinforcement-learning model were obtained by direct numerical 

integration. The action-selection and reinforcement-learning models are described below:-

Action-selection model

Participants' choices (of the arbitrarily chosen option green) were regressed against: (i) a 

constant term; (ii) the optimally tracked probability of reward for the colour green (described 

in detail below); (iii) the value of reward on the green option for the current choice; (iv) 

winning on the green option with the preceding choice (coded as 1), winning on the blue 

option with the preceding choice (coded as -1) or losing on the previous choice (coded as 0); 

(v) the value of the reward on green on the previous choice if chosen and won (coded as 

positively), the value of the reward on blue on the previous choice if chosen and won (coded 

negatively) or losing on the previous trial (coded as 0); (vi) losing on the green option with 

the preceding choice (coded as a 1), losing on the blue option with the preceding choice 

(coded as a -1) or winning on the previous choice (coded as 0); and, finally, (vii) the value of 

the reward on the green option on the previous choice if chosen and lost (coded positively), 

the value of the reward on blue on the previous choice if chosen and lost (coded negatively), 

or losing on the previous choice (coded as 0).

Regressors were demeaned in 2 stages. To make regressors (iv) orthogonal to (v), and (vi) 

orthogonal to (vii), we centred regressors (v) and (vii) separately for each participant. Then, 

to reduce between-participant noise, regressors (ii) to (vii) were subsequently centred again 

for each participant.

Parameter (ii) is the optimal probability estimate that players would make if they tracked the 

fluctuating probability of reward across the game in order to use expected value to determine 

their choices. Using the forward (Markovian) model described in Behrens el al. (2007), we 

assumed that players following an optimal strategy do not take into account the whole 

reinforcement history at every play; rather, they update their prediction estimates using 
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information from the preceding choice outcome (i.e. as a simple Bayesian learner). These 

prediction estimates are made by holding, in mind, the representations of rewards probability 

ri, the variance of these reward probabilities vi (i.e. estimating volatility), and the variance of 

this volatility k (i.e., estimating local changes in volatility). In Markovian terms, vi controls 

the weight that decision outcome i+1 has on ri; whilst k controls the weight that decision 

outcome i+1 has on vi. The changeability of r and v from choice i to choice i+1 are 

probabilistic and are represented by Beta and Gaussian distributions respectively. (See 

Behrens et al. (2007) for the full algebraic description.) Therefore, in order to estimate the 

probability distribution at ri+1 from the joint probability distribution of the 3 parameters ri+1, 

vi+1 and k, a numerical integration (marginalising) is done over vi+1 and k. The optimal 

probability estimate at any point of the game (i.e., parameter (ii) of our action-selection 

model above) is then described by the mean value of the marginal probability distribution at 

ri+1.

Reinforcement-learning model

We fitted a reinforcement learning model to each participant’s choices. The model contains 

four parameters: the learning rate, α; the probability distortion factor, γ; the reward 

magnitude weighting factor, η; and the softmax inverse 'temperature', β. Value for γ< 1 

result in the typical Prospect Theory curvature with overweighting and underweighting of 

low and high probabilities (Amos Tversky & Kahneman, 1992). Values for η < 1 result the 

typical flattening of the utility curve, indicative of underweighting of higher magnitudes 

(Amos Tversky & Kahneman, 1992). Low values for β mean that even at very small 

differences between the option values, the model is highly likely to select the better option.

On each trial, the model updates the estimated probability of the chosen option according to 

a simple delta rule (Rescorla & Wagner, 1972):

where p is the estimated probability, r is the outcome (1, win; 0, no win). Only one outcome 

(green or blue) has to be tracked since p(Green) = 1 - p(Blue). From these estimates of 

reward probability, the subjectively distorted probabilities w were calculated as (Lattimore, 

Baker, & Witte, 1992):

Objective reward magnitudes were transformed into subjective magnitudes (A. Tversky & 

Kahneman, 1991), v:

where xi is the objective reward magnitude on option i. Subjective expected values were then 

calculated as
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The model’s probability of selecting the option chosen by the subject on any given trial was 

then given by a softmax rule (O'Doherty et al., 2004):

where c and u denote the chosen and un-chosen option, respectively.

The parameters that provided the best fit of each participants' behaviour were estimated 

using a custom-implemented procedure in MATLAB. The parameter space was set up as a 

three-dimensional grid in log space with 30 points in each dimension. The joint posterior 

distribution of the unknown model parameters was specified as the product of choice 

probabilities over trials under each possible parameter combination in the grid. The marginal 

posterior distributions on each parameter were obtained by marginalizing (numerical 

integration) over the three dimensions of the grid. Optimal parameters were then taken as the 

distribution means of those marginal posterior distributions. (Note: comparison of a simple 

action-selection model assuming only an optimal Bayesian learner and one free parameter 

for inverse temperature provided a poorer fit to the sample data than an alternative 

reinforcement-learning model with 4 free parameters for (i) learning rate; (ii) magnitude 

distortion; (iii) probability distortion; and (iv) inverse temperature (see Table S3) (BIC= 

293.64 vs BIC= 324.23), t(86) = 5.91, p< .001, r = .71.)

Group-level analyses—One-sample t-tests were performed on the obtained regression 

coefficients (Bs) from the single participant action selection GLMs to determine the 

significance of regression slopes across the population. These actions-selection parameters 

were entered into a Multivariate Analysis of Covariance (MANOVA) as dependent variables 

(DV), with participants' individual scores from the psychometric assessment as independent 

variables (IV), and controlling for differences in demography (i.e., age, sex, and years of 

education), gambling (i.e., past year gambling problems and the tendency to 'chase' winning 

outcomes, losing outcomes or near-misses), and affect (i.e., positive state affect). We 

included the latter covariates to show that any relationships between model parameters and 

psychometric scores were not confounded by gross differences in demographics, gambling 

severity, or affect. Follow-up univariate Analyses of Covariance (ANCOVAs) were 

performed to explore their associations between each of the action-selection parameters 

against the significant predictors from the above MANCOVA. These included scores for the 

'non-planning' impulsivity sub-scale of the BIS-11 (Patton et al., 1995) and scores for the 

'predictive control' sub-scale of the GRCS (Raylu & Oei, 2004); these being the 

psychometric subscale scores that showed consistent relationships with model parameters 

across the sample.

Next, reinforcement-learning decision parameters were normalised by a (natural) log 

transformation and entered into a MANCOVA as response variables with non-planning 

impulsivity and GRCS scores as predictor variables. Again, individual differences in 
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demography, gambling, and affect were added as covariates. Follow-up univariate 

ANCOVAs were performed on the significant predictors from the above MANCOVA to 

explore their association with each of the reinforcement-learning decision parameters.

Results

Action-selection model

In order to model how gamblers selected between actions associated with uncertain 

outcomes, we fitted an action-selection model to each gambler’s choices (see Methods and 

Supplementary Materials for full details). At the single participant-level, each gambler's 

choice (of the colour 'green') was regressed against: (i) the optimally estimated probability of 

that option (as modelled by an ideal Bayesian learner (Behrens et al., 2007)); (ii) the 

magnitude of reward associated with that option; (iii-iv) the winning or winning magnitude 

of the preceding choice (i.e., 'win-stay' or 'win-big-stay' strategies); and, finally, (v-vi) the 

losing or losing magnitude on the preceding choice (i.e. 'lose-shift' or 'lose-big-shift' 

strategies).

Consistent with a previous report using this probabilistic-learning task in a student sample 

(Behrens et al., 2007), our gamblers used both the optimally-tracked probabilities of reward, 

(t(86) = 9.23, p < .001, d = 0.99), and their magnitudes when deciding between actions, 

(t(86) = 12.23, p < .001, d = 1.31; see Fig. 1B and Table S1). In addition, however, our 

gamblers tended to persist with a selection if it had been successful on the preceding choice , 

instantiating enhanced 'win-stay' behaviour; t(86) = 11.88, p < .001, d = 1.27), except when 

the prize won was large (instantiating diminished 'win-big-stay' behaviour; t(86) = -4.40, p 
< .001, d = 0.47). Gamblers also tended to stick with a selection if it had been unsuccessful 

on the preceding choice (illustrating decreased 'lose-shift' behaviour; t(86) = 2.33, p < .05, d 
= 0.25), but tended to switch responses if the loss was large (illustrating 'lose-big-shift' 

behaviour; t(86)= -1.78, p= .08, d = 0.19).

At the group level, we found that higher levels of impulsivity (β = -.34, p < .01) and stronger 

gambling-related cognitive biases (β = -.35, p < .01) both tended to go along with lower final 

scores on the game, suggesting that these features hampered effective action-selection (see 

Table S2). Additionally, gamblers' impulsivity scores (V = 0.19, F(6, 73) = 2.93, p = .01, η2 

= .19), their gambling-related cognitive biases (V = 0.15, F(6, 73) = 2.29, p < .05, η2 = .16), 

and their age (V = 0.27, F(6, 73) = 4.52, p < .001, η2 = .27) were all significant predictors of 

how much gamblers used different action-selection parameters. Impulsive gamblers (F(1,78) 

=14.73, p < .001, η2 = .16; see Fig. 2A), as well as older gamblers (F(1,78) =8.66, p < .01, 

η2 = .10), exhibited diminished use of the optimal (Bayesian) probability estimates when 

selecting actions. Rather, impulsive gamblers tended to persist with the same choices that 

had delivered larger rewards on preceding choices (i.e. increased 'win-big-stay' behaviour; 

F(1,78) =3.02, p = .09, η2 = .04).

Gambling-related cognitive biases also appear to impede the use of optimal probability 

estimates in action-selection. Gamblers who reported strong cognitive distortions about 

gambling exhibited diminished use of optimal probability estimates when deciding between 

the two response options in our game (F(1,78) =4.80, p < .05, η2 = .06). Instead, gamblers 
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with stronger cognitive biases tended to shift from options that they previously won 

(decreased 'win-stay' behaviour; F(1,78) =3.93, p = .05, η2 = .05), and a tendency to shift 

from options that they previously lost (increased 'lose-shift' behaviour; F(1,78) = 6.67, p < .

05, η2 = .08).

Further analysis, regressing the optimal probability estimates against the predictive control 

subscale of the GRCS (as the belief that it is possible, within the context of commercial 

gambling games, to identify winning opportunities) (Raylu & Oei, 2004), indicated the 

failure to use the optimal (Bayesian) tracked probability of reward when making choices was 

particularly clear in those gamblers who endorsed cognitions associated with 'predictive 

control' (β = -.21, p < .05; see Fig. 2B and Table 2).

Reinforcement-learning model

At the participant-level, our second model included four parameters: (i) the learning rate to 

indicate how much each outcome was used to update the estimated reward probabilities (i.e. 

the rapidity of adjusting action values); (ii) the subjective distortion of probabilities to 

demonstrate overweighting and underweighting of low and high probabilities (Amos 

Tversky & Kahneman, 1992); (iii) the underweighting of increasing magnitudes to describe 

a concave utility curve (Amos Tversky & Kahneman, 1992); and, finally, (iv) the 

consistency vs randomness (i.e., stochasticity) of gamblers' choices as quantified by the 

'softmax' inverse 'temperature' (see Supplementary Materials for full details) (O'Doherty et 

al., 2004).

Entering the parameters of the reinforcement learning model into an MANCOVA revealed 

significant effects of impulsivity (V = 0.14, F(4,75) = 3.09, p < .05, η2 = .14), but not 

cognitive biases (V = 0.04, F(4,75) = 0.82, p > .05). Gamblers who reported heightened non-

planning impulsivity exhibited smaller learning rates compared to gamblers with lowered 

impulsivity (F(1,78) = 4.15, p < .05, η2 = .05; see Fig. 3A). They also tended to overweight 

low probable outcomes and underweight high probable outcomes (F(1,78) = 4.87, p< .05, η2 

= .06; see Fig. 3B). Conversely, high impulsive gamblers did not under- or overweight larger 

value outcomes compared to low impulsive gamblers (see Fig. S1A and S1B); neither was 

there was any indication that impulsivity was associated with enhanced randomness in our 

gamblers' choices across the probability-tracking game (see Fig. S2A and S2B). Finally, in 

contrast to the clear associations between impulsivity and model parameters, there was no 

consistent evidence that gambling-related cognitive biases were associated with gamblers' 

learning rates, probability or reward magnitude weighting, or consistency or randomness of 

participants' choices (Fig. S1C and S2C).

Discussion

These data illustrate that one generic risk factor for gambling-related harm — namely, 

heightened (non-planning) impulsivity — and one specific risk factor — namely, predictive 

control — are associated with disruptions to action-selection and action-value learning 

mechanisms in a sample of regular gamblers. Extensive evidence attests to the ease with 

which regular gamblers can mistakenly perceive structure in the reinforcement history of 

games when there is none (Burns & Corpus, 2004; Croson & Sundali, 2005). These findings 
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demonstrate that regular gamblers can find it difficult to use reinforcement structures to 

optimise their action selections or learn accurate action-value relationships in chance-based 

games.

The present effects were observed in a relatively large sample of gamblers who did not 

evidence of consistent gambling-related harms or satisfy the diagnostic criteria for DSM-IV 

(or V) problem or pathological gambling. The absence of problem gamblers from our 

sample mean that our findings cannot plausibly be attributed to the non-specific effects of 

gambling problems on risky decision-making per se (Goudriaan et al., 2005). Rather, our 

findings reflect the way that variability in generic and specific risk factors for gambling 

problems – specifically, heightened impulsivity and potent cognitive biases – operate to 

impair action-selection mechanisms and the acquisition of action-value associations.

Previous accounts of the way that impulsivity heightens the risk of addictive behaviours 

emphasize the tendency to act without forward planning as an expression of 'loss of control' 

over reward-seeking behaviours including heavy and broadened gambling participation , 

higher rates of comorbid alcohol and substance misuse (Petry, 2001a, 2001b), and poorer 

clinical outcomes . Such accounts are essentially descriptive, without any characterization of 

the mechanisms that mediate the link between impulsivity and gambling behaviours. Our 

data add to this picture by demonstrating that non-planning impulsivity in gamblers can be 

associated with diminished use of probability estimates that could be combined optimally 

with reward magnitudes to specify action (expected) values when selecting between 

candidate actions. This diminution in the use of probability estimates is accompanied by the 

use of 'short-cut' strategies such as persisting with action options that have produced large 

rewards previously (win-stay-large in Fig. 2), possibly reflecting 'Hot-Hand' behaviour 

(Ayton & Fischer, 2004; Burns & Corpus, 2004; Croson & Sundali, 2005). Finally, the 

additional finding that impulsive gamblers made smaller adjustments to action-values on the 

basis of their preceding outcomes (i.e. showed smaller learning rates) suggests that they are 

also vulnerable to believing, or at least behaving as if, the reward structures of chance-based 

games are more stable than they really are, possibly prolonging unhealthy gambling 

behaviours.

This interpretation complements the results of an earlier report that non-planning impulsivity 

(also scored with Barratt Impulsivity Scale (BIS-11)(Patton et al., 1995) is associated with 

increased uncertainty about the reinforcement structures available in a suite of slot machines 

(Paliwal, Petzschner, Schmitz, Tittgemeyer, & Stephan, 2014). In this experiment, Paliwal et 

al (2014) used Bayesian modelling to capture disrupted belief-updating as individuals 

completed a series of slot-machine games. Non-planning impulsivity was linked to increased 

uncertainty in the estimation of winning probabilities and game volatility, generating noisy 

(i.e. more random) choices. Other data have also linked heightened impulsivity with 

decision-related uncertainty (Averbeck et al., 2013). These observations and our own 

highlight the possibility that individuals with heightened non-planning impulsivity are not 

able to access, or choose not to access, updated probability estimates to help select optimal 

actions. On the other hand, unlike Paliwal et al (2014), we found no evidence that non-

planning impulsivity increased the noise in our participants' choices. Rather, impulsivity was 
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associated with increased win-stay behaviour following large winning outcomes suggesting 

that, in the face of uncertainty, impulsive gamblers default to heuristic strategies.

Our data also demonstrate enhanced probability weighting action-value learning in regular 

gamblers in the finding that impulsive gamblers further overweight low probable outcomes 

and underweight high probable outcomes as specified by descriptive accounts of choice 

under conditions of uncertainty; specifically 'Prospect Theory' (Kahneman & Tversky, 

2000). This exaggerated bias might facilitate the adoption of more risky betting strategies 

through the tendency to overestimate the chances of winning outcomes but underestimate 

the greater likelihood of losing outcomes; and may be linked to recent evidence that 

pathological gambling is associated with altered neural representations of discounted 

probability within meisolimbic circuits (Miedl, Peters, & Buchel, 2012). Recently, Ligneul 

et al (2012) measured the probability weighting of a sample of pathological gamblers 

compared to samples of healthy and non-gambling controls. In contrast to our findings of 

enhanced overweighting of low probabilities and underweighting of high probabilities in 

regular but non-problematic gamblers, these authors found a general shift towards greater 

risk in pathological gamblers. Possibly, their data and ours indicate that transitions from 

moderate risk of gambling-related harm (as seen in our sample) towards severe risk of (as 

seen in individuals with a diagnosis of pathological gambling) involve shifts from enhanced 

under- and over-weighting of low and high probabilities into global preferences for risk with 

increasing severity.

The relationships between non-planning impulsivity on the one hand and diminished use of 

optimal probability estimates, low learning rates and enhanced probability weighting on the 

other hand shows some psychological specificity. There was no indication that heightened 

impulsivity in our sample of regular gamblers was associated with changes in the use of 

reward magnitude itself as specified in the action-selection model or in the underweighting 

of reward magnitudes in terms of their utilities (Kahneman & Tversky, 2000) as specified in 

our reinforcement-learning model. Lorains et al (2014) have reported that underweighting of 

reward magnitude, and consistency of choice ('inverse temperature') are disturbed in 

individuals with diagnoses of DSM-IV pathological gambling (Lorains et al., 2014), while 

the signaling of subjective value of delayed rewards within mesolimbic reinforcement 

circuits may also be distorted under at least some conditions (Miedl, Buchel, & Peters, 

2014). Collectively, these data and our own suggest that some changes in action-value 

learning (e.g. discounting of reward magnitude/utilities and consistency of choice) emerge 

with increasing severity of gambling-related harm or gambling problems.

Complementing the impact of impulsivity upon the acquisition of action values, our data 

also indicate that gambling-related cognitive biases interfere with the use of estimated 

reward probabilities in action selection. Rather, cognitive biases promote the suboptimal 

strategy of placing more weight upon immediately preceding winning and losing outcomes 

to make further gambling decisions (i.e., decreased ‘win-stay’ and increased ‘lose-shift’ 

behaviours). In particular, we found that gamblers who endorsed items indicative of 

predictive control showed the lowest use of optimal probability estimates when selecting 

between actions. These items include statements such as 'A series of losses will provide me 

with a learning experience that will help me win later', 'Losses when gambling are bound to 
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be followed by a series of wins', and 'There are times that I feel lucky and thus, gamble those 

times only', reflecting the conviction that, in the context of commercial gambling games, it is 

somehow possible to identify opportunities when winning outcomes are more or less likely. 

Our findings demonstrate that precisely those gamblers with the strongest predictive control 

biases tend not to use the reinforcement histories to estimate (reasonably) accurately reward 

probabilities. Such prior beliefs mean that gamblers with convictions of predictive control 

'think they know best' and are unable to select between actions on the basis of their 

estimated expected value, potentially disrupting their ability to learn the value of gambling 

games (Turner, 2011).

There are at least some implications of our findings for treatment development. 

Impulsiveness can sometimes predict relapse in samples of treated pathological gamblers 

(Adinoff et al., 2007; Alvarez-Moya et al., 2011; Ramos-Grille, Goma-i-Freixanet, Aragay, 

Valero, & Valles, 2015). By contrast, shallow probability, though not delay, discounting is 

associated with reduced gambling participation during the delivery of psychosocial 

treatments and then increased likelihood of abstinence at 1-year follow-up (Petry, 2012). Our 

data suggest highlight one mechanism for these relationships; namely that heightened 

impulsiveness and, possibly, strengthened cognitive biases complicate treatment efficacy by 

blocking new learning about the reward contingencies of gambling games (Toneatto et al., 

1997).

Finally, we acknowledge that our experiment has several limitations. First, our experiment 

was subject to one important limitation; it did not examine the effects of impulsivity and 

gambling-related cognitive biases in individuals with diagnoses of DSM-IV problem 

gambling or DSM-V disordered gambling, making it unclear whether our findings extend to 

individuals who have experienced severe or prolonged gambling harm. Similarly, our sample 

included a number of individual who only gambled only a few times a year, highlighting the 

relevance of our findings to those with limited to regular gambling participation. Second, our 

sample size was relatively small, highlighting the need for follow-up experiments to 

replicate our findings. Third, the patterns of gambling activities reported by our participants 

were relatively broad, raising the possibility that action-selection and action-value learning 

differs amongst gamblers with focused involvement in 'strategic' gambling forms; e.g. sports 

betting and poker (Lorains et al., 2014).

Notwithstanding these limitations, our data link the generic risk factor of impulsivity and the 

specific risk factor of predictive control to changes in action-selection and action-value 

learning. As such, these findings warrant further investigation as putative cognitive 

mechanisms that undermine the ability of vulnerable individuals to use the reward structure 

in gambling games to regulate participation and limit potential harm.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
(A) An example of the probability-tracking task sequence (Behrens et al., 2007). In this 

instance, the player chose the green option (indicated by a grey background) and win the 57 

points reward allotted to that option as signalled by the presentation of the correct option in 

the middle of the display; (B) Mean and S.E. of Bs for all regressors from the single 

participant GLMs of 87 regular (but non-pathological) participating gamblers. Regressors 

include: (i) a constant term (ii) tracked probability for the green option on the current choice; 

(iii) reward magnitude for the green option on the current choice; (iv-v) wins and the 

magnitude of the wins on the preceding choice (i.e., 'win-stay' or 'win-big-stay' strategies); 

and (vi-vii) loss and the magnitude of the losses on the preceding choice (i.e. 'lose-shift' or 

'lose-big-shift' strategies).
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Fig. 2. 
(A) Individual Bs indicating the use of the optimal (Bayesian) probability estimate in 

making choices as a function of non-planning impulsivity score from the Barratt's 

Impulsivity Scale (BIS-11) (Patton et al., 1995); (B) Individual Bs indicating the use of the 

optimal (Bayesian) probability estimate in making choices as a function of predictive control 

cognitions on the Gambling-related cognitions scale (GRCS) (Raylu & Oei, 2004) alongside 

items on the predictive control subscale displayed on the right of the figure.
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Fig. 3. 
(A) Learning rates (natural log) as a function of non-planning impulsivity score on the 

Barratt’s Impulsivity Scale (BIS-11)(Patton et al., 1995); (B) Probability distortions as 

indicated by overweighting and underweighting of low and high probabilities in participants 

with low and high non-planning impulsive participants (≈ +/- 1 S.D.).
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Table 1

Demographic and psychometric characteristics of 87 regular (but non-pathological) participating gamblers

N (%), Mean (SD) Mean (SD)

Sex (male) 74(85.10) Chasing Questionnaire

Age 32.78(11.49)   Big wins 13.47(5.92)

Years of education 14.47(2.92)   Big losses 10.38(5.23)

  Near-misses 4.45(1.85)

Gambling problems   Total 28.30(11.92)

 Past year 0.76(1.01)

 Lifetime 1.59(1.98) Impulsivity

  Attentional 12.38(3.05)

Gambling losses (past year)   Motor 22.87(3.56)

  < £100 61(70.1)   Non-planning 23.67(4.64)

  £100 - £500 19(21.8)   Total score 59.26(9.61)

  > £500 6(6.9)

Gambling-related cognitive biases

Gambling frequency (past year)   Gambling expectancies 12.53(4.82)

  Once or a few times 24(27.6)   Illusions of control 7.38(4.30)

  1-3 times a month 12(13.8)   Predictive control 16.87(6.47)

  1-3 times a week 40(46.0)   Perceived inability to stop 8.82(5.09)

  Daily 11(12.6)   Interpretive control/bias 12.11(5.04)

  Total score 57.90(19.70)

Affect

  State positive 33.01(6.29)

  State negative 12.17(3.70)

Gambling problems - National Opinion Research Centre (NORC) DSM-IV gambling screen (Hodgins, 2004); Affect – Positive and Negative 
Affective Scales (PANAS; Watson et al., 1988); Chasing Questionnaire (CHQ; O'Connor & Dickerson, 2003); Impulsivity – Barratt's Impulsivity 
Scale (BIS-11; Patton et al., 1995); Gambling-related cognitive biases – Gambling Related Cognitions Scale (GRCS; Raylu & Oei, 2004).

Int Gambl Stud. Author manuscript; available in PMC 2016 June 02.



 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Lim et al. Page 21

Table 2

Group-level regression of Bs from the single participant GLMs (for optimal probability-tracking) against 

demographic and psychometric scores in 87 regular (but non-pathological) participating gamblers

B SE B β

Constant 13.56 4.05

Education   0.30 0.13  .22*

Age  -0.10 0.03 -.29**

Sex   0.82 1.01  .08

Past year gambling problems  -0.13 0.38 -.03

Total score/CHQ   0.05 0.03  .16

State positive affect/PANAS  -0.08 0.06 -.17

Predictive control/GRCS  -0.13 0.06 -.21*

Non-planned impulsivity/BIS-11  -0.34 0.09 -.41***

Note: R2 = .62 (p < .001); Covariates shaded in grey; *p < .05; **p < .01; ***p < .001 CHQ – Chasing Questionnaire (O'Connor & Dickerson, 
2003); PANAS – Positive and Negative Affective Scales (Watson et al., 1988); GRCS – Gambling-related cognitions scale (Raylu & Oei, 2004); 
BIS-11 – Barratt's Impulsivity Scale (Patton et al., 1995).
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