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Abstract

We present an algorithm, COMPEL, (COnstant Molecular Pressure with Ewald sum for Long 

range forces) to conduct simulations in the NPT ensemble. The algorithm combines novel features 

recently proposed in the literature to obtain a highly efficient and accurate numerical integrator. 

COMPEL exploits the concepts of molecular pressure, rapid stochastic relaxation to equilibrium, 

exact calculation of the contribution to the pressure of long range non-bonded forces with Ewald 

summation, and the use of Trotter expansion to generate a robust, highly stable, symmetric and 

accurate algorithm. Explicit implementation in the MOIL program and illustrative numerical 

examples are discussed.
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Introduction

Molecular dynamics (MD) is a powerful and flexible tool for the study of complex systems 

at the molecular and atomic level. The models and algorithms that we use today are the 

product of some fifty years of continuous development. A major direction for study 

throughout the years has been the design of algorithms that allow the sampling of different 

statistical mechanical ensembles.

The macroscopic (thermodynamic) state of a statistical mechanical system can be 

characterized by the quantities that are fixed at defined values.
1,2 Experiments carried out in 

laboratory conditions are typically defined by constant pressure, temperature and number of 

particles; these conditions correspond to the isobaric-isothermal ensemble, also known as the 

NPT ensemble. While all ensembles are equivalent in the thermodynamic limit, switching 

between ensembles for finite size systems can be challenging. For example, using the NVT 

ensemble to mimic NPT requires a specified choice of density. There is no simple way to 

estimate the density of non-homogeneous systems such as solvated proteins, membranes or 

micelles. Even in the case of liquid mixtures, only the densities of pure liquids are usually 

known. It is therefore essential to carry out equilibration simulations in which the volume 

can be adjusted such that the pressure matches a target value. Further complications arise 

when the system under study is subject to driving forces which alter its thermodynamical 

state; in such a case it is therefore necessary to perform molecular dynamics simulations in 

which the volume is automatically adjusted so that the pressure remains constant.

Many algorithms, including some quite recent proposals, have been suggested to sample 

from the NPT ensemble (e.g.
3–6

). In this paper we present a stochastic algorithm for the 

isobaric-isothermal ensemble that combines the best features previously introduced in 

different contexts to obtain a comprehensive, accurate and stable algorithm. Our approach 

exploits and combines state-of-the-art simulation techniques in two distinct areas: (i) 

algorithms for the integration of the equations of motion based on certain splittings of 

stochastic differential equations
7–11

 and (ii) algorithms for the calculation of the forces 

based on Ewald summation.
12–15

 We have implemented and evaluated our method in the 

molecular dynamics software package MOIL.
16

In microcanonical molecular dynamics, Newton’s equations of motion are solved to advance 

the system in time, thus generating a trajectory. One typically assumes ergodicity of the 

dynamics and hence that the trajectory samples all accessible configurations of the micro-

canonical ensemble (or NVE). To sample the isobaric-isothermal ensemble, the simulation 

needs to incorporate additional mechanisms in order to control temperature (thermostat) and 

pressure (barostat). The most common ways to impose a temperature control are velocity 

rescaling,
17

 weak coupling method,
18

 stochastic methods that mimic the behavior of a 

thermal bath such as the Langevin equation
19

 and Nosé-Hoover dynamics.
20

 Nosé 

introduced the idea that a thermal bath can be modelled using an additional degree of 

freedom over which one may integrate to provide the correct sampling of physical 

quantities. The approach has been referred to as pseudomicrocanonical simulation, as the 

integration of the extended system is essentially conservative, while averages of quantities 
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which are functions of position and momenta only correspond to the NVT ensemble. Nosé’s 

seminal idea has led to a variety of different extended system methods.

All of the methods mentioned above are in principle able to reproduce correct 

thermodynamics, i.e. the correct microstate distribution of the corresponding ensemble. 

However, any thermostating algorithm alters the dynamics of the system with respect to 

Newton’s equations of motion. These thermostat-dependent artifacts in the dynamics can 

hinder the quality of measurement of transport properties and kinetics. Of particular 

importance is the interplay between ergodic sampling of the thermodynamic ensemble and 

the need to capture dynamical approximation properties of the underlying Hamiltonian 

system. With respect to other methods, the Nosé-Hoover thermostat is thought to better 

preserve dynamical properties since the perturbation to the system is acting through a single 

auxiliary degree of freedom. Evans
21

 pointed out that the perturbation of dynamics is O(1/ν) 

where ν is the number of degrees of freedom. Recently, Basconi and Shirts,
22

 in numerical 

experiments, have confirmed that the transport properties of several systems simulated using 

Nosé-Hoover are statistically indistinguishable from those of the same system simulated in 

the microcanonical ensemble. Leimkuhler and collaborators
23

 have studied the transport 

properties of stochastic thermostat methods, observing that for example the combination of 

Nosé-Hoover with degenerate noise in the auxiliary thermostat variable only (Nosé-Hoover-

Langevin dynamics
24

) is capable of accurately representing dynamical properties.

For the control of pressure, most modern schemes build on the extended system approach of 

Andersen
25

 which maintains the pressure by allowing the volume of the simulation cell to 

fluctuate under the control of an additional degree of freedom, sometimes referred to as a 

“piston,” which is usually implemented in combination with some sort of thermostat. A 

drawback of the Andersen barostat is that the mass of the piston determines the way in 

which the system approaches to equilibrium. While the average volume and the magnitude 

of its fluctuations are correct there is a significant memory visible in volume fluctuations. 

The volume as a function of time contains in fact regular oscillations (“ringing”) inversely 

proportional to the mass of the piston.
26

 The ringing phenomenon leads to difficulties in the 

choice of parameters. A method for controlling the oscillations is the “Langevin piston” 

method due to Feller et al
27

 which couples an under-damped Langevin dynamics process to 

the piston equation. We incorporate a similar technique here so that, in addition of producing 

the correct dynamics and reasonable kinetics at the limit of long time, we also seek to 

control the mixing time (the necessary waiting time during which the system relaxes to the 

appropriate equilibrium state) to be as short as possible.

Motions along bonds in molecular systems are typically the fastest degrees of freedom. 

These set an upper bound on the timestep that can be used in integrating the equations on 

motion. For this reason, in MD it is often beneficial to impose holonomic constraints to 

speed up the simulation and to make it more stable by “freezing” the degrees of freedom 

with the fastest dynamics.
28

 The use of NPT algorithms in the presence of constraints is not 

entirely straightforward; the problem was solved by Kneller and Mulders
29

 and further 

investigated by Ciccotti et al.
30

 Their approach is demanding and, fortunately, not necessary; 

the use of the alternate approach of molecular pressure is a simpler and more efficient. In 

“molecular pressure” the pressure is calculated using positions and momenta of molecules 
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instead of atoms; the equivalence between the molecular and the atomic formulations of the 

pressure was first proved Ciccotti and Ryckaert.
31,32

 This procedure avoids consideration of 

covalent bonding forces. The atomic and the molecular pressure are a special case of a 

generalized scheme in which the pressure is expressed by using the positions and momenta 

of subsets of atoms within molecules.
4
 The use of molecular pressure in MD recently gained 

new interest; see for example the recent implementation in the software Desmond of the 

Martyna-Tobias-Klein algorithm applied to molecular pressure.
3

By the use of molecular pressure the NPT algorithm acts by rescaling molecular positions 

only; thus leaving bonds unaffected. Molecular pressure provides two advantages compared 

to pressure calculations based on atomic positions. First, to calculate the molecular pressure 

we only need to calculate the virial of the inter-molecular forces; i.e. only non-bonding 

interactions contribute to the pressure. Second, calculating the molecular virial greatly 

reduces fluctuations of pressure; once again, this is due to the fact that the virials of the 

rapidly changing forces due the covalent potential are not included in the calculation.
33

To build a time-stepping algorithm from continuous equation of motion a discretization 

scheme is required. In MD it is common to use a symmetric Trotter expansion of the 

Liouville operator. This type of approach dates to the seminal paper of Ruth on symplectic 

integration
34

 and it has been used to build efficient integrators for a wide range of 

applications, such as multiple timestepping (e.g. RESPA).
35

 In our case we will use an 

under-damped Langevin equation for the motion of the piston. This equation can be 

decomposed into Hamiltonian components and Ornstein-Uhlenbeck equations. The 

integrator for the Langevin equation can then be constructed by composing Hamiltonian 

flows with the exact distributional solution of the Ornstein-Uhlenbeck (linear stochastic) 

system. While very natural, this type of method was introduced and studied relatively 

recently.
7–11

The second key ingredient of molecular simulations is the model that we use to describe the 

system under consideration. The functional form of MD force fields remained essentially the 

same for decades; however, the way interactions are calculated has evolved. The interacting 

potential between atoms consists of bonding and non-bonding terms. The bonding 

interactions are modeled by two-, three- and four-body energy terms while the non-bonded 

interactions consist in fixed-point charge electrostatic forces and a Lennard-Jones (LJ) 

potential that models hard-core and dispersive forces.

The calculation of non-bonding interaction is computationally expensive and it tends to 

dominate the total runtime of MD simulations. In the early days, to save computer time, all 

the interactions were set to zero at a given cutoff distance. Eventually, the analysis of 

artifacts due to truncation led to the use of Ewald summation for electrostatic interaction. 

Particle Mesh Ewald
12

 is now a de facto standard in molecular simulations. Recently, the 

growing heterogeneity of simulated systems together with the availability more 

computational power support applying a similar approach to Lennard Jones (LJ) 

interactions.
13

 LJ interactions decay with distance as r−6, a decay rate that is much more 

rapid than electrostatic interactions (r−1), which explains the earlier focus on electrostatic 

terms. For example, Wennberg et al
36

 have shown that the use of a cutoff of 10Å for LJ 
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interactions introduces deviations up to 5% in the order parameters of lipid bilayers with 

respect to simulations with no cutoff, i.e. using Ewald summation.

Truncation of dispersive interactions is highly relevant in measuring the pressure. The 

neglected interactions are all attractive and add up. This leads to errors in the estimation of 

the pressure that, at the typical cutoff of 10Å, are of the order of hundreds of Atm. Errors of 

this kind can be estimated in case of isotropic, homogeneous liquids.
37

 Lague et al
38

 have 

calculated the long-range correction for anisotropic systems such as membranes and proteins 

by measuring the pressure with a very long distance cutoff once every few timesteps. The 

correction is then applied statically until a new long cutoff calculation is executed and a new 

estimate for the correction is available.

We propose an algorithm for constant molecular pressure in which all the long-range 

interactions are calculated using Ewald summation. The algorithm consists of a Nosé-

Hoover thermostat coupled with a Langevin piston. The stochastic equations of motion are 

discretized using a reversible multiple timestep Trotter expansion that takes advantage of the 

splitting method for the Langevin equation. We illustrate that the algorithm is highly 

accurate and stable and that it converges rapidly to the desired values. It is implemented in 

the simulation program MOIL.

The paper is organized as follow. The first section introduces the equations of motion. The 

second section is dedicated to the model and the representation of the potentials by Ewald 

summations. The third section is about molecular pressure and how it is measured. The 

fourth section outlines the discretization procedure and the explicit algorithm. The last 

section provides numerical examples.

Equations of Motion for the Isobaric-Isothermal Ensemble

The system consists of N molecules. A molecule is defined as a group of atoms that are 

covalently linked. The use of molecular pressure implies the study of gas and liquid phases. 

It does not make sense (for example) to investigate covalent solids such as diamond using 

molecular pressure. We will indicate the position vector of the center of mass of a molecule 

by , the momentum by  and the mass by Mμ. The total number of atoms in the system 

is n with the number of atoms of molecule μ being nμ. We indicate the coordinates of atom i 

in the coordinate system of molecule μ by , the momentum by  and the mass by mi. 

So we have:

(1)

We use the shorthand i ∈ μ to indicate that atom i is in molecule μ, thus the expression for 

the mass of molecule μ could be written Mμ = Σi∈μ mi

The atoms are subject to K holonomic constraints

Di Pierro et al. Page 5

J Chem Theory Comput. Author manuscript; available in PMC 2016 December 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(2)

The number of degrees of freedom of the system is g = 3n − K. The force induced by the 

constraints on atom i that belongs to molecule μ is . The atoms interact through the 

potential U( ), with  being the force acting on atom i and  representing the vector of 

all internal forces acting on molecule μ.

The molecules are contained in a volume V and the system is kept at equilibrium with a 

thermal bath at constant temperature Text and at constant pressure Πext. The internal kinetic 

temperature of the system is the average of T* given by

(3)

and the internal molecular pressure is obtained by averaging:
32

(4)

We explain how to calculate the molecular pressure for periodic boundary conditions in a 

dedicated section, below.

In order to reproduce the sampling of the isobaric-isothermal ensemble, the equations of 

motion are not derived directly from a Hamiltonian, but instead include additional degrees of 

freedom. In addition to the set of coordinates already defined, we introduce the variables V, 

η and ξ (η and ξ are dimensionless). The volume of the system, V, is viewed as a dynamical 

variable associated to the barostat, with PV representing the associated barostat 

“momentum” and MV the “mass”. Note that the units of MV are mass × length−4. η is the 

coordinate associated with the thermostat; and Pη and Mη, respectively, are the momentum 

and mass (units mass×length2) associated with the coordinate η. ξ is associated with the 

coupling between the thermostat and the barostat and has momentum Pξ and mass Mξ (units 

mass×length2), respectively.

Our formulation is based on the following equations of motion:
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(5)

Where W = W(t) is a one-dimensional Wiener process, γ is the friction constant for the 

volume control variable, with units of reciprocal time, and ; likewise γη and 

ση are friction and stochastic amplitude for the stochastic process attached to the thermostat 

variable.

The equations of motion above are similar to those of Marry and Ciccotti
5
 (see also the 

earlier paper of Hunenberger
4
), the main difference to be found in the equations for the 

momentum of the piston and thermostat which are here treated using a stochastic approach. 

In experiments, we find that the use of stochastic perturbation in the barostat significantly 

reduced the problem of “ringing,” as observed by Feller et al.
27

 in relation to the Andersen 

barostat.

In our simulations, the stochastic modification of the thermostat did not yield additional 

benefits as compared to the stochastic perturbation of the pressure variable alone, so we 

simply took γη = 0 in experiments presented here. However, the incorporation of this term is 

useful since it ensures ergodicity;
39

 its inclusion may be valuable in simulations of certain 

types of system with stiff harmonic internal coupling.

For γ = γη = 0 the equations of Marry and Ciccotti are recovered. In this case the equations 

of motion above preserve the following quantity that we will refer to as the extended energy 

in the sequel:

(6)

where H( , , , ) is the sum of the kinetic and potential energies of the physical system 

expressed in molecular coordinates. The extended energy is not relevant in the stochastic 

setting; it is however particularly useful during the coding process to provide evidence for 

the correctness of the implementation.
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Derivation of the Partition Function

In this section we illustrate that the equations of motion we discussed above reproduce the 

probability density distribution of the isobaric-isothermal ensemble which, in the 

unconstrained case, is given by

(7)

The complete derivation of the partition function for the case of zero friction and in the 

presence of constraints may be found in Kalibaeva et al.
6
 The partition function for the 

deterministic equations of motions is found to be:

(8)

where  represents the collection of all physical and artificial variables,

(9)

∫ d  represents the usual integral with respect to all variables, and

(10)

This is easily seen to correspond to the desired NPT distribution following integration over 

the auxiliary variables PV, η, Pη, ξ, Pξ.

To demonstrate that ρ̃ is preserved under the evolution of the deterministic equations, one 

may write out the equations (5), for γ = γη = 0, in the compact form

(11)

The continuity equation corresponding to the evolution of the probability density of this 

system takes the form

(12)

where

(13)

Di Pierro et al. Page 8

J Chem Theory Comput. Author manuscript; available in PMC 2016 December 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The dagger indicates that this the adjoint of the Lie derivative associated to the system 

defined by Eq. 5 which acts on a function ϕ of the phase variables as

(14)

Using the equations Eq. 5 (with γ = γη = 0) and the definition of ρ̃ given above, it can be 

shown that
5

(15)

meaning that ρ̃ is a steady state of the equations.

For completeness, and for later discussion in the setting of discretization, we write out the 

operator ℒ below. This can be obtained directly by substitution of ṽ (the vector field on the 

right hand side of Eq. 5, taking γ = γη = 0) into Eq. 14, we have

(16)

The above discussion pertains to the deterministic case, where no stochastic perturbation is 

incorporated. Unfortunately it is not possible to prove that the deterministic system is 

ergodic for the desired distribution. Following the usual approach taken in the physics 

literature, one typically assumes that, given sufficient internal complexity of the dynamical 

system, the ergodic property will hold in some practical sense, meaning simply that 

sufficiently long averages taken along dynamic paths will correspond to equilibrium 

averages.

When γ ≠ 0 or γη ≠ 0, the additional stochastic terms in Eq. 5 lead to a Fokker-Planck 

equation for the evolution of the probability density which may be written

(17)

where ℒdet is as described above, and
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(18)

ρ̃ is stationary with respect to the δℒ† operator, as well, and thus with respect to the 

combined operator. Moreover, because the system is now subject to stochastic perturbations 

it is possible to prove that the system is ergodic,
39

 at least for the case γη ≠ 0 and for a 

harmonic underlying system. The proposed equations of motion therefore reproduce the 

NPT ensemble.

The Force Field

The atoms in the system are subject to a force field that reflects the atom-atom interactions 

both within the simulation cell and between atoms of different cells. The potential energy 

may be written

(19)

where Ucb represents terms involving covalently bound atoms and Unb represent non-bonded 

interactions. The covalent terms comprise bonds, angles, dihedrals and improper dihedrals 

potentials:

(20)

The covalent terms above, and the constraint forces do not contribute to the molecular 

pressure; therefore from now on only non-covalent terms are taken into account.

We define the set ℳ as the set of atom pairs (i, j) that are separated by less than three bonds. 

Non-bonding, non-imaged interactions for pairs of the ℳ set are either not calculated 

(separated by one or two bonds) or, if separated by three bonds (1–4 interactions), are 

calculated using special terms.

For the non-bonding term we need to take into account the fact that we will use periodic 

boundary conditions. If  is the vector that shifts each periodic copy of the system, then the 

non-bonding terms are of the form

(21)

where
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(22)

with qi representing the charge on atom i, and the * appearing in the summation indicating 

that one should omit terms for which both  = 0 and (i, j) ∈ ℳ. Similarly

(23)

These terms together describe the Lennard-Jones potential for modelling the van der Waals 

interaction. Aij and Bij are parameters associated to the repulsive and attractive interactions 

between atoms, respectively. We assume a product combination rule, Aij = AiAj, Bij = BiBj, 

which is ideal for the implementation of Ewald summation. Other combination rules are 

possible but in this case the calculation of reciprocal summations are considerably more 

expensive.

In computing the fast decaying term U12, we assume a distance-dependent cutoff, i.e. the 

interaction is taken to be zero for distances greater than some fixed value. Due to the rapid 

decay of this term, the error is neglible beyond say 10Å.

The terms U6 and UC are calculated without cutoff using the technique of Ewald summation 
1. We define  to be the reciprocal lattice vector; the structure factor is therefore

(24)

Up to an arbitrary constant β, the electrostatic potential may be written as the sum of four 

terms:
14

(25)

In a similar way, the U6 potential may decomposed as the sum of the following four terms:
15

1In the calculation of Ewald summation we use the standard tinfoil infinite boundary term.
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(26)

where the structure factor here is

(27)

For the calculation of the reciprocal part of both U6 and UC, the algorithm used is Particle 

Mesh Ewald (PME).
12

Molecular Pressure

The atomic pressure is related to the trace of the internal stress tensor:

(28)

where the stress tensor for a system of atoms in periodic boundary conditions is:
26,40,41

(29)

Where  indicates the force that copy  of atom j exercises on atom i. The symbol ⊗ 

indicates the tensor product. From this we recover the well known expression for the 

pressure:

(30)

The averaged quantity of the second term in the above expression is the atomic virial Watm. 

In a similar way the molecular pressure of a system with periodic boundary conditions can 

be written as:
5,26,32

(31)
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The averaged quantity in the second term of the above expression is the molecular virial 

Wmol. On average the molecular pressure and the atomic pressure are equal as proven by 

Ciccotti and Ryckaert
42

 for closed systems and by Akkermans and Ciccotti
32

 for open 

systems with periodic boundary conditions.

The positions of atoms are identified by their molecular coordinates plus their relative 

coordinates; therefore the molecular and the atomic virials are related as follows:

(32)

where we have used  and where  is the total force applied to atom i. We will 

use this relation to calculate the molecular virial Wmol by computing the atomic virial and 

post-processing it by subtracting the correction Σα αΣi∈α  ·  as shown above.

This approach results in a cleaner implementation. First, the molecular positions do not need 

to be communicated to the routines that perform the force calculation. Second, and more 

importantly it solves a problem that arises when a molecule extends across the boundary of 

the simulation box (see Figure 1). In this case, atoms belonging to the same molecule 

actually interact through two different periodic copies, so in the implementation we would 

have two different molecular coordinates associated to the same molecule. The 

implementation of the atomic virial does not have the same problem.

It is clear from the definition that the molecular virial of intramolecular forces is zero; 

therefore from now on we will deal exclusively with the intermolecular potentials, i.e. we 

will not calculate the virial of bonds, angles, torsions, improper torsions, 1–3, 1–4 

interactions and constraints. This is a major advantage of using the molecular pressure.

The expression we have derived so far for the atomic virial is not suitable to be utilized in 

conjunction with Ewald summation because the individual atomic forces are lost. Following 

previous work in the literature,
14,26,40

 let us redefine the positions as:

(33)

where h is the 3 × 3 matrix defined by

(34)
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where the three vectors are the edges of the unit cell of the periodic box, the components of 

the vector  lie in [0, 1], and the vector  has integer components (representing the 

translation of the cell in each direction). If the simulation box is a cuboid then h is given by

(35)

We can now derive an alternative expression for the atomic virial in the case of a uniform 

deformation. In a uniform deformation we keep  constant and we change the size of the 

box by stretching or compressing the edges of the box Lγ. Thus

(36)

For a generic pair potential  it is straightforward to show that the atomic virial 

can be expressed in terms of the deformation variables by
40,41

(37)

Now we can calculate the molecular pressure (in terms of the molecular forces) as:

(38)

We next give the corresponding terms of the virial in the context of Ewald summation. The 

atomic virial of the electrostatic potential is given in terms of the Ewald components (direct, 

reciprocal and self) as
14

(39)

(40)
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(41)

We omit the virial of the correction term because this potential does not contribute to the 

molecular pressure being intramolecular in nature.

With regard to the Lennard-Jones attractive component, the atomic virial has a similar 

decomposition

(42)

(43)

(44)

(45)

As before, we do not calculate the virial of the correction term since, being an 

intramolecular term, it does not contribute to the molecular virial.

When LJ interactions are calculated using a distance cutoff a truncation error is introduced; 

calculating the pressure by the use of the virial of the Ewald summation avoids any 

truncation error. Using a cutoff to truncate the LJ interaction is a common solution in MD; 

the error introduced in the evaluation of the forces is indeed negligible. Unfortunately, the 

bias introduced in the calculation of the pressure is significant; the neglected interactions are 

all attractive, due to the long negative tail of the LJ potential. The resulting error in the value 

of the measured pressure is quite large at the typical cutoff distances of 10–12Å. For a 

homogenous isotropic liquid of density it is possible to compute the pressure truncation 

error:

(46)

For example, for TIP3P water the truncation error is ~200 Atm at 10Å and is still ~60 Atm 

at 15Å. The correction term is much more difficult to calculate for inhomogeneous and/or 

anisotropic liquids like mixtures of solvents or solutions, solvated proteins and membranes. 

To address this issue some heuristic methods have been proposed. Price et al
43

 have 

proposed a method in which the truncation correction is calculated using a very long 
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Lennard Jones cutoff (every k steps); this approximation is valid under the assumption that 

the error is a quantity that varies adiabatically (i.e. slowly) in time.

Discretization of the Equations of Motion

The phase space probability density ρ(t) evolves in a step of size Δt according to

(47)

Functions ϕ of the phase variables evolve under the adjoint of this operator, i.e. if (t + Δt; 

, t) represents the solution at time t + Δt, given that (t) = , then we have, for any scalar 

valued function ϕ of the phase variables,

(48)

The operator etℒ is referred to as the evolution operator. ℒ can be decomposed as

(49)

where ℒdet is the Lie-derivative of the deterministic part of the system which is given in Eq. 

16 and δℒ is the Fokker-Planck operator corresponding to the linear stochastic differential 

equations (SDEs) combining dissipation and random forcing, see Eq. 18.

The natural method for integrating the equations, which is inspired by prior work in 

symplectic integrators for Hamiltonian systems, is to split the deterministic part into pieces 

which are directly and exactly integrable and to additionally treat the stochastic Ornstein-

Uhlenbeck terms by exact distributional integration; the flows of each of the pieces are then 

composed to define the numerical method.
7–11

A variety of splitting methods are possible. Based on previous experience we employ a 

decomposition of ℒ into simple terms as follows:

(50)

where the various components are as follows:
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The operators ℒ1, …, ℒ6, ℒ11 and δℒ1, δℒ2 are responsible for updating the extended 

variables, while the remaining operators drive the evolution of atomic and molecular 

positions and momenta.

Operators ℒ1, ℒ7, ℒ9, and ℒ12 give rise to multiplication by an exponential factor:

(51)

while the other deterministic operators result in translations

(52)

The stochastic terms are evolved using an exact weak (distributionally correct) solution of 

exp(tδℒ) which is easily written down. For example, for the SDE , an exact 

weak solution is

(53)

where R(t) is a standard Gaussian random variable with mean zero and unit variance.

Rescaling the simulation box is an expensive task since the non-bonded interaction lists must 

be recomputed, thus there is an advantage to delaying this task for several timesteps. This 

leads us to the use of a symmetric multiple timestepping procedure in which a longer 

timestep is used between changes to the box size parameter V than is used for updating the 

other variables. Specifically, we employ a symmetric Trotter factorization, based on 

performing ν basic timesteps between changes of the box size, of the following form:

(54)

In our case

(55)
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Each factor is approximated by a further decomposition in to the enumerated components in 

such a way that the resulting discrete approximation is symmetric.

The constraint forces are treated using the SHAKE
28

 and RATTLE
44

 algorithms, with the 

resulting explicit integrator reported in the appendix.

Numerical Examples

We use three systems to test the algorithm described above.

We first test the deterministic algorithm (i.e. we set γ= γη = 0) in order to verify the 

correctness of the implementation. We then compare the behavior of the stochastic algorithm 

for two different friction values with the behavior of the deterministic algorithm. In the 

simulation the short time step was set to 1fs and the long time step (the one associated with 

the pressure control) was 8fs.

The first system is the peptide LKKLGKKLLKKLLKKGLKKL solvated in 6588 TIP3P
45 

water molecules also containing 12 sodium ions and 22 chloride ions; the system has no net 

charge. The peptide was simulated with periodic boundary conditions in a cube with an edge 

of 59Å. Particle Mesh Ewald algorithm was used for both electrostatic and dispersive 

interaction. Short-range interactions were calculated up to the distance of 9.8Å; long-range 

interactions were calculated using a grid of 64×64×64 points.

We used the following coupling constants:

The force field utilized for the peptide and the ions was OPLS462. The peptide was 

compressed from standard conditions to 1200 Atm at constant temperature of 300K. The 

total simulation time was 100ps. The system was compressed from a volume of ~ 206000Å3 

to a volume of ~ 192000Å3. The results of this test are shown in Figure 2. The compression 

phase lasted about 80ps. There is no significant drift of the conserved extended energy or the 

temperature; the fluctuations are about 1Kcal/mol.

The second system used was a membrane composed of 128 DOPC molecules surrounded by 

6097 TIP3P water molecules. The force field used for the DOPC molecules was the united-

atom Berger force field
47

 for the acyl chain atoms and OPLS
46

 for the head groups; this set 

up was the same as used in.
48

In this case the size of the periodic box was initially set to 66.026Å×66.026Å×74.854Å. 

Ewald summation was used as before but with a grid 64×64×76. The membrane was 

expanded from ~ 1500 Atm to the standard conditions of 1 Atm at constant temperature of 

300K. The total time of simulation was 500 ps. The relaxation to standard conditions 

2All the force field parameters utilized in this manuscript are available for download together with the molecular dynamics package 
MOIL http://clsb.ices.utexas.edu/web/moil.html
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resulted into an expansion from a volume of ~ 323000Å3 to a volume of ~ 345000Å3. The 

results of this test are shown in Figure 3.

The time trace of the extended energy (Eq. 6) shows an initial relaxation resulting into a 

decrease of conserved quantity of about 1–2 Kcal/mol; after relaxation there is no 

measurable energy drift. The temperature shows no drift. During the initial 120ps the system 

undergoes the main expansion; then the membrane evolves at approximately constant 

volume with fluctuations of about 1000Å3, i.e. ~0.03%. Typical oscillations of the volume 

are present with period ~30ps; this is the phenomenon of ringing.

The last system we consider consists of 2033 TIP3P
45

 water molecules. For this system we 

analyze the behavior of both the deterministic and the stochastic algorithm. The system was 

let to equilibrate to a target pressure of 1 Atm from the initial condition of ~1000 Atm. The 

initial box size was set to 39.35Å×39.35Å×39.35Å. Short-range electrostatic and dispersive 

interactions were calculated up to the cutoff distance of 9.5Å while the remaining 

interactions were calculated in Fourier space using a grid 64×64×64. The following coupling 

constants were used:

The system was simulated using three different values for the volume friction coefficient γ = 

0/ps, γ= 0.01/ps and γ = .1/ps. The total simulation time was 1ns for each set up.

The resulting evolution in time for the variable volume is shown in Figure 4. The expansion 

phase of the system lasts 20 to 70 ps depending on the value of the friction; the higher the 

friction the slower the relaxation to equilibrium. Associated to a higher friction one also 

introduces a proportionately larger noise term; the effects of the noise are especially evident 

with the highest friction. After the initial expansion we observe volume fluctuations near an 

average determined by the preset pressure. Periodic ringing is clearly present in the 

deterministic algorithm and is reduced with moderate friction and practically eliminated 

with the highest friction value. As shown in Figure 6 all the runs exhibit the same probability 

distribution for the variable volume as expected. The measured density of TIP3P water at the 

average volume is 0.984 g/cm3. This value is consistent with what was previously found 

Price et al
43

 when the TIP3P model is used in combination with PME. The time traces for 

pressure and temperature are reported in Figure 5.

Conclusions

We developed a new algorithm that reproduces the isobaric-isothermal sampling. The 

algorithm integrates several previous ideas into a single, efficient, and accurate algorithm.

The inclusion of a stochastic forcing term avoids non-ergodic behavior. By tuning the 

friction value is also possible to adjust the rate of decay to equilibrium, at least as measured 

by the decay of autocorrelation of the piston variable. Although we considered the use of 

stochastic noise in both thermostat and barostat variables, in our simulations, the ringing 
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behavior was well controlled by just the single stochastic process coupled to the piston. For 

this reason, and in view of works such as,
22,23

 it is reasonable to expect that our algorithm 

will inherit the good characteristics of the deterministic algorithms in reproducing kinetic 

and transport properties; even though we have not specifically investigated those properties 

here. Retaining the option for a deterministic algorithm (obtained by setting γ= 0) provides a 

valuable tool for debugging in the form of the conserved effective energy.

As already observed by Feller et al,
27

 the inclusion of a stochastic term also eliminates the 

periodic oscillations in both pressure and volume. By using the molecular definition of 

pressure we have reduced the number of operations necessary to calculate the pressure itself 

since intramolecular interactions can be neglected. In particular, no special treatment for 

holonomic constraints is required. We have also shown how the molecular pressure can be 

calculated by using the atomic virial of intermolecular interactions only. Finally, we 

calculated all the long-range interactions and their stress tensors with Ewald sum. In this 

way we have avoided any truncation error in calculating the pressure and thus we also have 

avoided the necessity to introduce any correction scheme. The resulting algorithm it is 

implemented in the software package MOIL and it has been tested on several complex 

systems.
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Appendix

In this section we report the explicit algorithm as it is implemented in MOIL. For the 

definition of symbols please refer to the main text, we only remind that here Δt is the short 

time step and ν is the ratio between long and short time steps. The implemented algorithm 

is:

1

2

3

4

5

Repeat ν times:
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6

7

8

9

10

11

12

13 p μ ← SHAKE COORDINATES

14

15

16

17 eℒ13Δt

18 eℒ14Δt

29 F μi, F μ ← FORCES CALCULATION

20

21

22

23

24

25

26 p μ ← SHAKE MOMENTA

27
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28

29

30

31

32

33

34
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Figure 1. 
When a molecule extends across the periodic boundary atoms that belong to the same 

molecule interact through different periodic copies. When computing the molecular virial, 

atoms i1, j1, k1 are associated with the molecule centered in 1, while the atoms l2, m2, n2 

are associated with a copy that is positioned at 2 = 1 + . Therefore, in implementing 

the molecular virial, it is necessary to allocate multiple molecular coordinates to a single 

molecule.
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Figure 2. 
The peptide system is compressed to a target pressure of 1200 Atm (see main text for 

details). In Figure 2A the extended energy is shown as a function of time. In Figure 2B the 

pressure is shown in red and the black horizontal line marks the target pressure of 1200 Atm. 

Figures 2C and 2D show volume and temperature also as functions of time.
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Figure 3. 
The membrane system is expanded to a target pressure of 1 Atm (see main text for details). 

In Figure 3A the extended energy is shown as a function of time. In Figure 3B the pressure 

is shown in red and the black horizontal line marks the target pressure. Figures 3C and 3D 

show volume and temperature also as function of time. After the initial expansion periodic 

ringing is evident in both figures 3C and 3D.
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Figure 4. 
The volume as a function of time in constant pressure simulations. The results of the 

deterministic simulation are shown in green while the simulations with friction γ equal to 

0.01 and 0.1 are shown in blue and red, respectively. In panel A we plot a nanosecond 

simulation while in panel B only the first 100 ps are shown. Ringing phenomenon is clearly 

present in the deterministic simulation and is reduced in the stochastic algorithm depending 

on the size of the friction coefficient. The relaxation time to the preset pressure also depends 

on the value of the friction coefficient.
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Figure 5. 
Simulation of a water box under constant pressure conditions. Pressure and temperature are 

shown for 3 values of the friction constant 0, 0.01 and 0.1. Panels A, B and C show the 

instantaneous value of the pressure in red. The blue line indicates the value of the pressure 

averaged over 10 ps windows while the green line indicates the running average. The black 

horizontal line is the target pressure. Convergence to the target pressure is evident in all the 

runs. Panel D shows the temperature as a function of time for the three simulations: green 

correspond to friction coefficient γ equal to 0 and blue and red to 0.01 and 0.1 respectively. 

Once again, the horizontal black line indicates the target temperature.
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Figure 6. 
Volume distribution for the water box (see text for details). Histograms are reported 

histogram for the three different simulations: green bins are the results of the the 

deterministic simulations, blue and red are results of simulations with friction coefficients of 

0.01 and 0.1 respectively. The three simulations with different level of stochasticity converge 

to the same average volume and share the similar distributions for the volume variable.

Di Pierro et al. Page 30

J Chem Theory Comput. Author manuscript; available in PMC 2016 December 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Graphical Abstract
	Introduction
	Equations of Motion for the Isobaric-Isothermal Ensemble
	Derivation of the Partition Function
	The Force Field
	Molecular Pressure
	Discretization of the Equations of Motion
	Numerical Examples
	Conclusions
	References
	Appendix
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6

