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Abstract

Streptococcus (S.) pneumoniae strains vary considerably in their ability to cause invasive
disease in humans, which is at least in part determined by the capsular serotype. Platelets
have been implicated as sentinel cells in the circulation for host defence. One of their uten-
sils for this function is the expression of Toll-like receptors (TLRs). We here aimed to
investigate platelet response to S. pneumoniae and a role for TLRs herein. Platelets were
stimulated using four serotypes of S. pneumonia including an unencapsulated mutant
strain. In vitro aggregation and flow cytometry assays were performed using blood of
healthy volunteers, or blood of TLR knock out and WT mice. For in vivo pneumonia experi-
ments, platelet specific Myd88 knockout (PIt-Myd88™) mice were used. We found that
platelet aggregation was induced by unencapsulated S. pneumoniae only. Whole blood
incubation with all S. pneumoniae serotypes tested resulted in platelet degranulation

and platelet-leukocyte complex formation. Platelet activation was TLR independent, as
responses were not inhibited by TLR blocking antibodies, not induced by TLR agonists and
were equally induced in wild-type and TIr2™", Tir4™", Tir2/4”", TIr9™~ and Myd88™~ blood.
Plt-Myd88™~ and control mice displayed no differences in bacterial clearance or immune
response to pneumonia by unencapsulated S. pneumoniae. In conclusion, S. pneumoniae
activates platelets through a TLR-independent mechanism that is impeded by the bacterial
capsule. Additionally, platelet MyD88-dependent TLR signalling is not involved in host
defence to unencapsulated S. pneumoniae in vivo.
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Introduction

Streptococcus (S.) pneumoniae is a frequent inhabitant of the upper airways in healthy individu-
als, but also the most common cause of community-acquired pneumonia and a main cause of
sepsis [1, 2]. Sepsis is a life-threatening condition, where the host response to infection is injuri-
ous to tissues and organs [3]. During sepsis, activation of the coagulation cascade, together
with endothelial damage, leads to platelet activation. Platelets can additionally be activated

by pathogens and components thereof during bacterial dissemination [4-7]. Sepsis patients
indeed show an increase in platelet activation markers [8, 9] and a decrease in platelet counts
[10, 11], and the extent of these responses is associated with mortality.

Platelets are widely renowned for their role in haemostasis. More recently, platelets have
been implicated as major players in host defence [4, 6]. The platelet releasate contains a num-
ber of pro-inflammatory proteins and antimicrobial peptides [6, 7]. Platelet activation and P-
selectin expression lead to platelet-neutrophil interaction, which recruit neutrophils to an
inflammatory site [6, 12] and stimulate the release of neutrophil extracellular traps [6, 13].
Platelet depletion in vivo leads to enhanced bacterial growth and increased mortality during
murine S. pneumoniae [14] and Klebsiella pneumoniae [15] induced pneumosepsis.

Platelets express several immune related receptors such as Toll-like receptor (TLR) 1, 2, 4-7
and 9, receptors for Fc domain of IgG FcyRII and FceRI, complement receptors, and cyto- and
chemokine receptors [16]; additionally platelet protease activated receptor (PAR)1 (human
platelets), PAR3 (mouse platelets), PAR4 (both species), glycoprotein (GP)IV, GPIIbIIIa and
GPIbo can play a role in inflammatory reactions [16]. TLRs are a family of pattern recognition
receptors that are critical for microbial surveillance and regulation of inflammatory and
immune responses [17]. Functional roles for some platelet TLRs have been described [13, 18,
19], indicating that they are not residual receptors conserved from their bone marrow precur-
sors. However, several reported functions of platelet TLR’s have been questioned as discussed
in detail by Kerrigan and Cox [20].

Considering the important role for platelets in host defence to S. pneumoniae [14], we here
aimed to investigate whether and how S. pneumoniae can directly activate platelets. For this,
we measured S. pneumoniae induced platelet activation in a variety of assays in human and
mouse blood, investigated a possible role for TLR signalling herein, and performed in vivo
pneumonia experiments with platelet specific MyD88 depleted (Plt-Myd88™) mice to deter-
mine the potential role of TLR mediated MyD88 signaling in platelets during S. pneumoniae
induced pneumosepsis. We found that S. pneumoniae activates platelets through a TLR-inde-
pendent mechanism that is impeded by the bacterial capsule and that platelet MyD88-depen-
dent TLR signalling is not involved in host defence to unencapsulated S. pneumoniae in vivo.

Materials and Methods
Aggregation assay

Optical platelet aggregation was assayed with human platelet rich plasma on the aggreg-
ometer PAP-8E (Bio/data corporation, Horsham, PA) at 900 rpm and 37°C according to
manufacturer’s instruction. Citrate-anticoagulated whole blood was collected from healthy
volunteers. Platelet-rich plasma (PRP) was obtained by centrifugation at 180 g for 15 minutes
at room temperature (RT). PRP was recentrifuged at 1500 g for 10 minutes to obtain platelet-
poor plasma (PPP). Stimuli used were: S. pneumoniae serotype 2 (D39), S. pneumoniae sero-
type 3 (6303), S. pneumoniae serotype 4 (TIGR4), unencapsulated S. pneumoniae D39
(AcpsD39 [21]), lipoteichoic acid (LTA; 5 pg/mL; S. aureus, Invivogen, San Diego, CA),
Pam3CSK4 (5 pg/mL; Invivogen), lipopolysaccharide (LPS; ultrapure 5 pg/mL; E. coli,
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Invivogen) and recombinant S. pneumoniae serotype 2 capsule (rCPS2, 10 pg/mL; ATCC,
Manassas, VA). Maximum platelet aggregation was determined in the presence of thrombin
receptor activating peptide (TRAP, 15 uM; Sigma-Aldrich, St. Louis, MO). Indicated inhibi-
tors were added 15 minutes prior to stimulation: Abciximab (ABC, glycoprotein IIbIIIa
inhibitor Reopro, 10 ug/mL; Eli Lilly, Houten, the Netherlands), prostaglandin E1 (PGEL,
100 nM; Sigma-Aldrich), anti (a)-TLR2 (5 ug/mL, clone T2.5, blocking antibody; HBT,
Uden, the Netherlands), a-TLR4 (5 ug/mL, clone 18H10, blocking antibody; HBT) and a-
FeyRII (25 pug/mL, clone AT10, blocking antibody; Abcam, Cambridge, UK). To evaluate
platelet priming, PRP was stimulated for 5 minutes under stirring conditions at 37°C, before
adding subthreshold concentration of TRAP. For each experiment, the TRAP concentration
inducing the minimal measurable aggregation (hereby defined threshold concentration) was
determined; usually 234 nM. Peripheral blood mononuclear cells (PBMCs) were isolated
using Polymorphprep™ (Frensenius Kabi, Oslo, Norway) according to manufacturer’s
instructions. Recordings were stopped after 10 or 15 minutes. The medical ethical committee
of the Academic Medical Center in Amsterdam gave ethical approval for the conduction of
the study (no. NL 34294.018.10) and written informed consent was obtained from all healthy
controls.

Validation of anti-TLR2 antibodies

Anti-TLR2 antibodies T2.5, TLR2.45, TL2.1 (kindly provided by HBT, Uden, The Netherlands)
were tested for their ability to inhibit TLR2 function by 30 minutes pre-incubation of the anti-
bodies in heparinized human whole blood and stimulation with 300ng/mL of TLR2 ligand
PAM3CSK4 added by an equal of the ligand in RPMI1640 medium supplemented with 0.1%
human albumin and overnight incubation at 37°C and determination of released TNFo. using
ELISA (BD Biosciences Pharmingen (San Diego, CA).

Further testing of the inhibitory anti-TLR2 antibody T2.5 to inhibit responses by pure TLR2
ligands and S. pneumoniae responses was performed on HEK293 cells, stably transfected
with TLR2 and CD14 [22, 23]. These cells were stimulated overnight with LTA (5 pg/mL),
Pam3CSK4 (300 ng/mL) or 10° CFU AcpsD39, after a 30 minutes pre-incubation with 5 pg/
mL o-TLR2 or medium control. Following 16 hours of stimulation at 37°C, supernatant was
collected and IL-8 was determined using ELISA (R&D Systems, Abingdon, UK).

Flow cytometry

45 uL of citrated human or mouse whole blood was stimulated with 5 x 10” viable CFUs S.
pneumoniae D39, AcpsD39, 6303 and TIGR4 in 45 pL PBS. Maximum platelet activation was
determined in the presence of 15 pM TRAP. Where indicated, inhibitors were added 15 min-
utes prior to stimulation. Inhibitors were diluted in HEPES buffer (137 mM NaCl, 2.7 mM
KCl, 1 mM MgCl,, 20 mM HEPES, 3.3 mM NaH,POy,, 1 g/l bovine serum albumin, 5.6 mM D-
glucose, pH 7.4) and added in 5 pL to a final concentration of 5 pg/mL for a-TLR2, 10 pg/mL
for Abciximab and 25 pg/mL for a-FcyRII AT10. Following 30 minutes incubation at RT, 5 pL
stimulated blood was added to a mixture of antibodies in HEPES buffer, i.e., anti-CD61-APC
(Dako, Heverlee, Belgium), anti-CD62p-PE (Beckman Coulter, Woerden, the Netherlands),
anti-CD63-FITC (Beckman Coulter), anti-CD45-APC (BD biosciences, San Jose, CA), anti-
CD14-FITC (BD biosciences) or isotype controls for human studies and anti-CD61-APC (Bio-
Legend, San Diego, CA), anti-CD62p-FITC (Clone RB40.34, BD biosciences) and isotype con-
trols for mice and incubated at RT for 30 minutes. For platelet analysis, samples were fixed by
addition of 2.5 mL 0.3% paraformaldehyde-containing HEPES-buffer. For platelet-leukocyte
complex analysis, samples were fixed by addition of 0.5 mL 0.3% paraformaldehyde-containing
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HEPES-buffer and erythrocytes were subsequently lysed by addition of 1.8 mL aquadest fol-
lowing centrifugation for 10 minutes at 400g, after which pellets were resuspended in 200 uL
HEPES buffer. Toll like receptor 2 (Clone T2.5, Ebioscience) and Toll like receptor 4 (clone
HTA125, eBioscience) were measured on platelets fixated with 1% paraformaldehyde. Results
are representative of 2 independent experiments with 2 different donors.

Flow cytometry was performed on a Calibur flow cytometer (Becton Dickinson, Franklin
Lakes, NJ). Data were analysed using Flow]Jo (V10.0.4).

Animals

Specific pathogen-free C57Bl/6 mice were purchased from Harlan Sprague-Dawley (Horst, the
Netherlands). TIr2”", Tlr4”", Tlr9” and MyD88”~ mice were generously provided by prof. Shi-
zuo Akira (Research Institute for Microbial Disease, Osaka, Japan) [24-26]. Tlr2/4”" double
knock out mice were crossed from Tlr2”" and Tlr4”" as described [27]. MyD88 floxed mice
(Myd88"*"***) were kindly provided by prof. Anthony DeFranco [28]. Platelet specific MyD88
knock out (Plt-Myd88™") mice were generated by crossing these with mice expressing Cre
recombinase under the platelet factor 4 (PF4) promoter (The Jackson Laboratory, Bar Harbor,
Maine); littermates not expressing Cre were used as controls.

Mice were housed in a the animal facility of the Academic Medical Center with a 12 hour
day-night rhythm, food and water ad libitum, temperature and moisture control, and daily
checks. Upon arrival in the facility, mice were acclimatized for at least 7 days before use in
experiments. Mice were euthanized by cervical dislocation after anesthesia with (0.12mg/g
body weight) ketamine and (0.3ug/g body weight) dexmedetomidine intraperitoneally. Mice
were monitored minimally once daily during experiments. Human endpoint for infection
experiments was if mice were segregated from the others and unable to lift themselves from
supine position. No mice reached the human endpoint before the experimental endpoint. The
Institutional Animal Care and Use Committee of the Academic Medical Center approved all
experiments (Permit Number DIX21BR and DIX101643).

Experimental study design

Pneumonia was induced by intranasal inoculation with AcpsD39 (2 x 10” colony forming units
(CFU) in 50 uL isotonic saline) using previously described methods [21, 29]. Mice were eutha-
nized 16 hours after induction of pneumonia (N = 7/9 mice per group). Bacterial quantification
and storage of organs were performed as described [21, 29], platelet counts and activation (by
expression of P-selectin as described above) were determined in citrated whole blood by flow
cytometry. Mouse tumour necrosis factor (TNF-)a, interleukin (IL-)6, IL-1B, keratinocyte che-
moattractant (KC), PF4, soluble (s)P-selectin, E-selectin (R&D Systems) and thrombin-anti-
thrombin complexes (TATc; Bio-connect, Huissen, the Netherlands) were measured by ELISA.
Four-micrometer sections of the left lung lobe, spleen and liver were stained with hematoxylin
and eosin (H&E). To make sure sections were representative of the entire lung, sections were
first carefully cut into the middle part of the fixated lung and assessed by a blinded pathologist
before scoring. Slides were coded and scored by a pathologist blinded for group identity for the
following parameters: infiltrative surface (expressed as the percentage of total lung surface),
bleeding, infiltration, interstitial inflammation, endothelialitis, bronchitis, oedema, pleuritis
and presence of thrombi. All parameters were rated separately from 0 (condition absent) to 4
(most severe condition). The total histopathological score was expressed as the sum of the
scores of the individual parameters.
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Statistical analysis

All analyses were done using GraphPad Prism version 5.01 (GraphPad Software, San Diego,
CA). Comparisons between groups (8 mice per group) were tested using the Mann-Whitney U
test as data was non-parametric.” P-values < 0.05 were considered statistically significant.

Results

Unencapsulated, but not encapsulated, S. pneumoniae induces platelet
aggregation

Unencapsultated AcpsD39 S. pneumonia serotype 2 induced platelet aggregation in human
platelet rich plasma consistent with the observations of Keane et al [30] that unencapsulated S.
pneumoniae causes platelets to aggregate. The encapsulated D39 serotype 2, as well as S. pneu-
moniae serotype, 3 and 4 (6303 and TIGR4 respectively) failed to induce platelet aggregation
(Fig 1A). The finding that capsulated S. pneumoniae did not induce aggregation was consistent
with the lack of aggregation in the presence of a recombinant preparation of S. pneumoniae
capsule (CPS2) (Fig 1B). Platelet aggregation by AcpsD39 was activation dependent, required
fibrinogen binding to GPIIbIIIa and FcyRII occupation as it could be inhibited by PGE1, the
GPIIblIIIa antagonist Abciximab and the FcyRII antagonist AT10 (Fig 1C). In this respect the
platelet aggregation induced by AcpsD39 is in perfect agreement with previous reports [30, 31].
Platelets express Toll like receptors 2 and 4, which have been previously described to be
functional [19, 30, 32-34]. Using Flow cytometry, we could also detect Toll like receptor 2
and 4 on human platelets (Fig 1D). However, blocking of TLR2 did not affect aggregation (Fig
1C) which is in contrast to the TLR2-dependent S. pneumoniae-induced platelet activation
described by Keane et al [30]. Moreover, stimulation with the purified TLR2 agonists
Pam3CSK4 and LTA and the TLR4 agonist LPS failed to induce any response even at high con-
centrations (5 pg/mL; Fig 1E). We confirmed the capacity of the used TLR2 antibody T2.5 to
inhibit TLR2 responses in other assays. First we showed that T2.5 is a superior TLR2 blocking
antibody compared to other TLR2 antibodies in a whole blood assay (S1 Fig). Additionally,
TLR2 activation by S. pneumoniae AcpsD39 is inhibited by T2.5 (Fig 1F). These results indicate
that S. pneumoniae may aggregate platelets in a TLR2 independent manner.

Prestimulation with S. pneumoniae fails to modulate platelet aggregation
to subthreshold concentrations of TRAP

Previous studies have described a role for LPS in platelet ‘priming’, where LPS pretreatment
induced platelet hypersensitivity to subthreshold concentrations of classical platelet agonists
(24;25). However, we failed to observe any priming effect of pre-incubation of platelets with
either S. pneumoniae or TLR agonists before stimulation with subthreshold concentration
TRAP (Fig 2A and 2B). The priming effect of LPS described by Montrucchio (24) was mono-
cyte-dependent; we therefore repeated these experiments in the presence of isolated PBMC’s.
Still, no platelet hypersensitivity to subthreshold TRAP was found (S2 Fig).

S. pneumoniae D39, AcpsD39, TIGR4 and 6303 induce platelet
degranulation

Platelet activation by different agonists can induce a variety of responses. We therefore focused
on platelet granule release. Alpha granule degranulation was detected by CD62p (P-selectin)
surface expression and dense granule release was detected based on surface expression of CD63
[35]. Whole blood stimulation by S. pneumoniae D39, 6303, TIGR4 and AcpsD39 all resulted
in platelet CD62p and CD63 exposure, AcpsD39 being the most potent activator (Fig 3).
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Fig 1. Unencapsulated, but not encapsulated, S. pneumoniae induces human platelet aggregation. Platelet aggregation was
measured by light transmission as a percentage to the transmission through PPP in a stirring cuvette. TRAP was used as a positive
control; PBS as a negative control. Aggregation curves are depicted for stimulation with S. pneumoniae D39, AcpsD39, TIGR4 and
6303 (A) and rCPS2 (B). PRP was pre-incubated with a-TLR2, a-FcyRIl, PGE1, abciximab or PBS prior to AcpsD39 stimulation in (C).
Toll like receptor 2 and 4 expression on human platelets are shown in (D). Aggregation curves as a result of TLR agonist stimulation with
LTA, Pam3CSK4 or LPS are shown in (E). All aggregation curves are representative of 3 independent experiments using different
donors. HEK cells stably transfected with TLR2 and CD14 were pre-incubated with a-TLR2 and stimulated for 16 hours with LTA,
Pam3-CSK4 and AcpsD39, IL-8 was measured in the supernatant (n = 4) (F). * P<0.05.

doi:10.1371/journal.pone.0156977.g001

S. pneumoniae did not activate platelets via TLR2 or 4, as pre-incubation with o-TLR2 and o
TLR4 did not inhibit CD62p expression by S. pneumoniae (Fig 4A). Opposed to aggregation,
FcyRII and GPIIbIIIa inhibition did not block CD62p expression by S. pneumoniae D39 or
AcpsD39, but PGEI1 did (Fig 4A). Platelet surface expression of CD62p or CD63 was not
induced by direct TLR agonists LTA, Pam3CSK4 or LPS (Fig 4B and 4C).

Whole blood S. pneumoniae incubation results in platelet-leukocyte
complex formation

To determine whether S. pneumoniae whole blood stimulation results in formation of platelet-
leukocyte complexes, platelet markers CD61 and CD62p were measured on neutrophils,
monocytes and lymphocytes (shown for CD61 in Fig 5). All S. pneumoniae strains tested
induced some platelet-neutrophil complexes; AcpsD39 being the most potent (Fig 5A).
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incubated with S. pneumoniae D39, AcpsD39, TIGR4 and 6303 for 10 minutes in a stirring cuvette (B).
Aggregation curves are representative of 3 independent experiments using different donors.

doi:10.1371/journal.pone.0156977.9002

Platelet-monocyte complex formation occurred readily upon stimulation with all S. pneumo-
niae serotypes tested (Fig 5B), platelet-lymphocyte complexes were not induced (Fig 5C).
TLR2 and TLR4 were not directly involved in platelet-leukocyte complex formation as it was
not induced by the TLR agonists LTA, Pam3CSK4 or LPS (shown for neutrophils, monocytes
and lymphocytes in Fig 5D-5F).

Wild-type mouse platelets respond to S. pneumoniae D39 and AcpsD39
in a similar manner as platelets from TIr2”", Tir4™", Tir2/4”", TIr9™" and
Myd88™” mice

In order to test the contribution of TLR2 and 4 signalling in platelet responses to S. pneumo-
niae without the use of antibodies or synthetic agonists, we conducted similar whole blood
stimulation experiments in mouse blood comparing wild-type platelets with platelets of
Tlr2”", Tlr4”" and TIr2/4” strains using CD62p expression as readout for platelet activation.
Recently, a functional role for platelet TLR9 was described [18]. We therefore included Tlr9”"
mouse blood to investigate a possible role for TLR9 in this model. As a final control, we per-
formed the stimulation experiments with blood obtained from Myd88”~ mice, blocking
downstream signalling of all TLR receptors except for TLR3 [17, 36]. Tlr2”", Tlr4™", Tlr2/4™",
TIr9”" and Myd88™ platelets all showed enhanced CD62p expression to a similar extent

as wild-type platelets upon stimulation with S. pneumoniae D39 or AcpsD39, implicating
that there is no role for TLR signalling in direct platelet response to S. pneumoniae (Fig 6A
and 6B).
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Fig 3. S. pneumoniae D39, AcpsD39, TIGR4 and 6303 all induce human platelet degranulation. Whole
blood was stimulated with S. pneumoniae D39, AcpsD39, TIGR4 or 6303. Following 30 minutes of incubation
platelets were stained and analysed by flow cytometry for surface expression of CD62p (A) and CD63 (B).
Percentages were determined using isotype control antibodies to set the gate. TRAP was used as a positive
control and induced CD62p—and CD63 expression on 87% and 56% of platelets respectively; PBS induced
CD62p—and CD63 expression on 10% and 2% of platelets. Histograms are representative of 2 independent
experiments using different donors.

doi:10.1371/journal.pone.0156977.g003

Platelet MyD88 is not involved in host defence and response to AcpsD39
in vivo

It is known that platelets especially exert proinflammatory and immune modulatory effects in
the lungs [37]. To determine the impact of platelet specific TLR signalling during pneumonia
in vivo, Plt-Myd88™" and littermate control mice were inoculated with 2 x 10 CFU AcpsD39
via the airways. We chose to conduct these experiments with AcpsD39 which is cleared in an
almost completely MyD88 dependent manner [38], and the strain that was the most potent
inducer of platelet activation and platelet-leukocyte formation in our in vitro experiments. As
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doi:10.1371/journal.pone.0156977.g004

4
10 10° 10l

control mice clear this unencapsulated S. pneumoniae strain within 24 hours, we therefore sac-
rificed the mice after 16 hours when bacterial loads are still present. No differences were
detected in bacterial burdens in the lungs, blood, spleen or liver between control and Plt-
Myd88”" mice (Fig 7A). Additionally, no differences were found in platelet counts (Fig 7B) or
platelet activation measured by platelet surface CD62p (P-selectin) expression, PF4 and platelet
and endothelial cell activation marker sP-selectin (Fig 7C-7E). (Activated) platelets are consid-
ered to play an essential role in coagulation by providing a phospholipid surface for the assem-
bly of activated clotting factors [39]. To obtain insight in the role of MyD88 dependent platelet
signalling in systemic coagulation activation during AcpsD39 pneumonia, we measured TATc
levels in plasma of infected Plt-Myd88” and control mice. No differences were detected
between the groups (Fig 7F). Lastly, platelet MyD88 signalling had no influence on endothelial
cell activation during AcpsD39 pneumonia as E-selectin levels did not significantly differ
(Fig 7G).

Platelets secrete inflammatory mediators upon activation like Platelet Factor 4 and RANTES
[6] and platelets in complex with leukocytes can influence leukocyte effector function [4]. Dur-
ing AcpsD39 pneumonia however, cytokine production in the lungs did not differ between
control and Plt-Myd88”~ mice (Fig 8A-8D); plasma cytokine levels were below detection.
Platelets have been both associated with enhanced histopathological damage during inflamma-
tory challenges [40], and the protection of vascular integrity during inflammation [14, 15, 41].
However, no differences for inflammation parameters or infiltrated lung surface were found
between Plt-Myd88” and control mice, as reflected by the semi-quantitative scores of lung
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Fig 5. Human whole blood S. pneumoniae incubation results in platelet-leukocyte complex formation. Whole blood
was stimulated with S. pneumoniae D39, AcpsD39, TIGR4 or 6303. Following 30 minutes of incubation leukocytes subsets
were stained and analysed for surface expression of CD61. Percentages were determined using isotype control antibodies
to set the gate. Neutrophil-CD61 is depicted in (A), monocyte-CD61 in (B) and lymphocyte-CD61 in (C). TRAP was used as
a positive control and PBS as a negative control. Histograms are representative of 2 independent experiments using
different donors. In a similar fashion, neutrophil-platelet (D) and monocyte-platelet (E) and lymphocyte-platelet (F) complex
formation was analysed following stimulation with TLR agonists LTA, Pam3CSK4 and LPS.

doi:10.1371/journal.pone.0156977.9005

histopathology slides (Fig 8E and 8F). Additionally, no bleeding was found in the lungs of
either Plt-Myd88” or control mice.

Discussion

S. pneumoniae represents a major health burden worldwide [42]. Recently, platelets have been
implicated as major players in infection and immunity [6] and we have specifically shown this
for S. pneumoniae in vivo [14]. Platelets are activated during sepsis, directly by an invading
pathogen or indirect via injured endothelium and host coagulation activation [4]. In this paper
we demonstrate that S. pneumoniae directly activates platelets in a TLR independent fashion.
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Fig 6. Wild-type mouse platelets respond to S. pneumoniae D39 and AcpsD39 in a similar manner as
platelets from TIr2”", Tir4™", TIr2/47~, TIr9”"- and Myd88~'~ mice. Mouse wild-type, TIr2™", Tir4™", Tir2/4™",
TIr9”" and Myd88’/ ~ whole blood was stimulated with S. pneumoniae D39 (A) or AcpsD39 (B). Following 30
minutes of incubation platelets were stained and analysed by flow cytometry for surface expression of
CD62p. N = 2-3 mice per group; histograms are representatives for the mice genotypes.

doi:10.1371/journal.pone.0156977.g006

Platelet activation by all serotypes tested resulted in surface expression of CD62p and CD63
and platelet-leukocyte complex formation; AcpsD39 additionally induced platelet aggregation.
In accordance, Plt-Myd88”" mice were unaffected during AcpsD39 pneumonia.

The pneumococcal capsule inhibits mucosal clearance, facilitates binding to the epithelial
surface and inhibits complement- and phagocyte-mediated immunity [1]. Besides reduction
of exposure to several antibodies, capsular polysaccharide was suggested to prevent interaction
between Fcy receptors to the Fc component of IgG bound to pneumococci [1, 43]. This could
be why the only pneumococcal strain capable of inducing (FcyRII dependent) platelet
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Fig 7. Platelet MyD88 is not involved in host defence to AcpsD39 in vivo. Control (closed dots, grey bars)
and Plt-Myd88™~ mice (open dots, white bars) were infected with S. pneumoniae AcpsD39 via the intranasal
route and euthanized 16 hours thereafter. Bacterial counts were determined in lungs, blood, spleen and liver
(A). Platelet counts (B) and platelet activation (CD62p; C) were determined by FACS analysis for CD61 and
CD62p. PF4 (D), sP-selectin (E), TATc (F) and E-selectin (G) were measured in plasma using ELISA. Data
are expressed as scatter dot plots or box- and whisker plots depicting the smallest observation, lower
quartile, median, upper quartile and largest observation. N = 8 mice per group.

doi:10.1371/journal.pone.0156977.g007
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Fig 8. Platelet MyD88 is not involved in the inflammatory response to AcpsD39 in vivo. WT (gray bars)
and PIt-Myd88™" mice (open bars) were infected with S. pneumoniae AcpsD39 via the intranasal route and
euthanized 16 hours thereafter. Lung cytokine levels of TNF-a (A), IL-1B (B), IL-6 (C), and KC (D) were
measured by ELISA. Lung histopathology was scored by an independent pathologist; representative
microphotographs are shown in (E; 10x magnification) and pathology scores in (F). Data are depicted as are
expressed as box- and whisker plots depicting the smallest observation, lower quartile, median, upper
quartile and largest observation. N = 8 mice per group.

doi:10.1371/journal.pone.0156977.g008

aggregation was unencapsulated AcpsD39. Our results are in conflict with an earlier report
showing that both encapsulated and unencapsulated S. pneumoniae induced platelet aggrega-
tion via TLR2 mediated signalling. The strains we tested however did not induce platelet
aggregation unless in its mutated unencapsulated form (AcpsD39). AcpsD39 did not induce
aggregation in a TLR2 dependent manner, as we could not inhibit the reaction by adding
TLR2 blocking antibodies. In addition, direct TLR2 stimulation by TLR2 agonists LTA and
Pam3CSK4 failed to induce platelet activation.

In contrast to the results found on platelet aggregation, we found that all strains of S. pneu-
moniae can induce platelet degranulation and complex formation and that the pneumococcal
capsule only partly reduced this. In line with platelet aggregation, this was TLR independent, as
blocking TLR-antibodies did not inhibit this and platelets from WT and Tle2”, Tlrd”", Tlr2/
47, Tlr9”" and Myd88”" mice showed similar results. In contrast to platelet aggregation, this
was not FcyRII dependent, as blocking FcyRII antibodies had no effect and mice (which lack
FcyRII [44]) also show platelet degranulation and complex formation. It seems other (FcyRII
independent) mechanisms are involved in platelet degranulation and complex formation, pos-
sibly GpIb, PECAM-1 or complement receptors [45-47].

Our results differ from a previously published paper by Keane et al., which found that encap-
sulated D39 (serotype 2) and TIGR4 (serotype 4) could induce platelet aggregation. Moreover,
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they found that anti-TLR2-antibodies could inhibit aggregation, whereas we found no role for
TLR2 in interactions between platelets and S. pneumoniae. Several other papers have also
reported functional roles for platelet TLRs in vivo [13, 19, 48-50], however controversy still sur-
rounds the functionality of these receptors in in vitro assays. Stimulation of platelets with TLR2
or 4 ligands sometimes did [30, 51, 52] or did not [13, 34, 53] induce aggregation, did [34, 51] or
did not [13, 19, 33] induce CD62p (P-selectin) expression, did [52, 54] or did not [33] induce
Ca" mobilisation or thrombin generation [55]. We were unable to induce platelet activation by
direct TLR2 agonists LTA and Pam3CSK4 or TLR4 agonist LPS, in a variety of functional
assays. Possible differences between previous studies and ours (as well as differences between
previous papers) remain difficult to clarify, but could well encompass technical issues such as
culture method, amount and species of bacteria, quality of antibodies, PRP spinning protocols
or platelet isolation methods, presence of plasma or different aggregometers.

Opposed to direct activation two groups found a priming effect on platelets of LPS alone
[34], or in co-incubation with monocytes [53], whereafter platelets were ‘hyperexcitable’ and
aggregated by addition of subthreshold levels of classic platelet agonists. Nevertheless, TLR
agonists or encapsulated S. pneumoniae strains did not modulate the platelet response to sub-
threshold concentrations of TRAP in our hands.

The results presented have been generated in both murine and human blood. Although
there are great similarities between mice and humans [56] differences obviously exist [57].
Therefore, caution must be taken when extrapolating results generated in mice. In the present
study, in vitro data in human and murine blood showed similar results, with respect to the lack
of involvement of TLR2 in activation of platelets by S. pneumoniae. Moreover, a recent study
showed similar effects of platelets on host response in human sepsis patients as previously
found in mice[58].

In vitro human experiments were performed using different donors. It has previously been
reported that gender [59] and polymorphisms [60] can influence TLR expression and function.
We observed similar results in 3 donors, but we cannot exclude effects of polymorphisms in
this setting.

Platelets have been shown to be important in the host defence to S. pneumoniae pneumonia
[14] and the unencapsulated serotype 2 strain D39 (AcpsD39) is cleared in a MyD88 dependent
manner [38]. MyD88 dependent TLR signalling in platelets is not involved herein, as bacterial
clearance was similar in Plt-Myd88” and control mice during AcpsD39 pneumonia. In a gram
negative pneumosepsis model using K. pneumoniae, we also observed no or minor contribu-
tion of platelet MyD88 dependent signalling. [61]. Moreover, platelet MyD88 deletion had no
influence on platelet counts, platelet activation or coagulation activation.

Platelet TLR4 has been reported to modulate TNF-o production to bacterial lipopolysaccha-
ride (LPS) [48]. Platelet activation during infection could additionally influence cytokine levels
by release of cytokines from their own granules or by influencing leukocyte effector function
[4, 6]. TNF-o. and other cytokine levels were however similar in lungs of Plt-Myd88” and con-
trol mice in our experiments. While platelets are additionally known to regulate lung architec-
tural changes and vascular integrity during inflammation [40, 41], platelet activation via
MyD88 dependent TLR signalling seems not involved as we found no histopathological differ-
ences between the groups in our pneumonia model. Differences with previous findings and the
current could be explained by differences in type of bacteria used (gram positive or negative),
dosis and model (inflammation vs. infection experiments).

The described activation patterns provide additional evidence that platelets function as cir-
culatory sentinel cells in our immune system to detect and battle S. pneumonia as reported
[62]. However, in this work we also show that S. pneumoniae apparently activates platelets by a
mechanism that is independent of TLR signalling in platelets.
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