
570  |  www.epidem.com	 Epidemiology  •  Volume 27, Number 4, July 2016

Original Article

Background: Targeted maximum likelihood estimation has been pro-
posed for estimating marginal causal effects, and is robust to misspecifi-
cation of either the treatment or outcome model. However, due perhaps 
to its novelty, targeted maximum likelihood estimation has not been 
widely used in pharmacoepidemiology. The objective of this study was 
to demonstrate targeted maximum likelihood estimation in a pharmaco-
epidemiological study with a high-dimensional covariate space, to incor-
porate the use of high-dimensional propensity scores into this method, 
and to compare the results to those of inverse probability weighting.
Methods: We implemented the targeted maximum likelihood estima-
tion procedure in a single-point exposure study of the use of statins 
and the 1-year risk of all-cause mortality postmyocardial infarc-
tion using data from the UK Clinical Practice Research Datalink. A 
range of known potential confounders were considered, and empiri-
cal covariates were selected using the high-dimensional propensity 
scores algorithm. We estimated odds ratios using targeted maximum 
likelihood estimation and inverse probability weighting with a vari-
ety of covariate selection strategies.

Results: Through a real example, we demonstrated the double robust-
ness of targeted maximum likelihood estimation. We showed that results 
with this method and inverse probability weighting differed when a 
large number of covariates were included in the treatment model.
Conclusions: Targeted maximum likelihood can be used in high-
dimensional covariate settings. In high-dimensional covariate set-
tings, differences in results between targeted maximum likelihood 
and inverse probability weighted estimation are likely due to sensitiv-
ity to (near) positivity violations. Further investigations are needed 
to gain better understanding of the advantages and limitations of this 
method in pharmacoepidemiological studies.

(Epidemiology 2016;27: 570–577)

Propensity score methods are widely used in pharmacoepi-
demiology to address measured confounding in situations 

where a large number of covariates have to be considered, 
especially in studies where the outcome is rare. The propen-
sity score is defined as an individual’s probability to receive 
the treatment of interest given covariates.1 Correct specifica-
tion of the propensity score model conditional on a sufficient 
set of confounding covariates is necessary for removing con-
founding bias in estimated treatment effects. Typically, the 
propensity score model includes covariates that are assumed 
to be associated with both the outcome and the exposure of 
interest. As an alternative to traditional covariate predefinition 
approaches, (semi-) automated procedures to select adjustment 
covariates, such as the high-dimensional propensity score are 
gaining popularity to address residual confounding.2–4

For health policy evaluation, the marginal treatment effect 
at the population level is often of particular interest. It is the 
average causal effect of the treatment on the outcome employing 
a counterfactual world framework: comparing the study popula-
tion if everyone were treated to the study population if every-
one were untreated.5 Several approaches have been developed 
to estimate the marginal treatment effect. For example, inverse 
probability weighting (IPW) can be used to estimate a marginal 
treatment effect.5,6 A class of doubly robust estimators has also 
been proposed, where the model includes a component of the 
efficient influence function for the parameter of interest. This 
component incorporates the inverse of the propensity score.7  
A related estimation procedure, targeted maximum likelihood 
estimation (TMLE), was subsequently developed by van der 
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Laan and colleagues8–10 and has been shown to have certain 
advantages over the inverse probability weighted estimator. 
When estimating a marginal treatment effect, correct specifica-
tion of the propensity score model is crucial to obtain an unbiased 
estimate by inverse probability weighting. TMLE allows specifi-
cation of both the treatment model and the outcome model and is 
doubly robust, which means that even under misspecification of 
one of the two models, the TMLE effect estimator is asymptoti-
cally consistent. Furthermore, it is locally efficient, meaning that 
the estimator has (asymptotically) the smallest standard error 
(SE) among a class of models when both models are correctly 
specified. For these reasons, TMLE is an appealing method for 
“confounder-adjusted” treatment effect estimation.

TMLE is a relatively new approach that has been applied 
to many study designs.11–13 However, perhaps due to its novelty 
and theoretical complexity, it has not been widely used in 
pharmacoepidemiologic studies involving large administrative 
databases. With respect to high-dimensional covariate sets, the 
need for data adaptive methods was one of the open problems 
that motivated the development of TMLE.14 However, the prop-
erties of TMLE in high-dimensional covariate settings (e.g., 
considering hundreds of variables from administrative data-
bases) have not been widely investigated for the common data 
setting of a single-point exposure study.15–18 Our objective was 
therefore to illustrate the practical implementation of TMLE 
and demonstrate its application in frequent pharmacoepidemi-
ological settings. More specifically, we present the implemen-
tation of TMLE in single-point exposure studies with binary 
exposure and outcome and estimate risk differences (RD), risk 
ratios (RR), and odds ratios (OR). Furthermore, we apply the 
TMLE procedure in a point exposure drug effect cohort study 
of statin use postmyocardial infarction (MI) and the 1-year risk 
of all-cause mortality and compare the TMLE and IPW using 
varying covariate sets in the treatment and outcome models.

HIGH-DIMENSIONAL PROPENSITY SCORE
The high-dimensional propensity score procedure is a 

(semi)-automatic algorithm that identifies and selects a high-
dimensional set of covariates from clinical databases or health 
claims databases to generate an estimated propensity score.2 
This algorithm identifies the most prevalent codes within each 
provided data source and creates three covariates for each iden-
tified code. Subsequently, covariates are selected according to 
the magnitude of confounding bias induced by each covariate. 
These selected covariates along with some predefined variables 
are used to estimate the propensity score. The high-dimensional 
propensity score algorithm has been validated by comparing 
the results with those expected from randomized trials.19,20 
Given the availability of large claims databases in pharmaco-
epidemiologic studies, the high-dimensional propensity score 
has been implemented very frequently in practice since its  
development.4,21,22 Moreover, the possibility of incorporating 
the procedure into other propensity score based methods has 
become an interesting research area.

TARGETED MAXIMUM LIKELIHOOD 
ESTIMATION

We illustrate TMLE in a point treatment study where 
for each subject, we observe a binary outcome Y, binary treat-
ment indicator variable A, and W, which is a vector including 
all important confounders for the effect of A on Y. TMLE can 
be used to estimate the proportion of individuals experiencing 
a certain event (outcome) if everyone were treated in a target 
population and the proportion with such an event if everyone 
were untreated. We will refer to these two quantities as our 
parameters of interest. The marginal causal effect (i.e., RD, 
RR, or OR) can then be computed by utilizing (e.g., subtract-
ing or dividing) the two corresponding parameter estimates.

The targeted parameter of interest can be summa-
rized as a function of the counterfactual outcomes, i.e., 
ψ = [ ] [ ]= =f E Y E YA A( , )1 0 . Here, E YA a=[ ]  refers to the expected 
outcome Y in a counterfactual world where every individual 
in the study population receives treatment A = a. Since Y is 
a binary outcome variable, this average corresponds to the 
proportion of individuals in the study population who would 
develop outcome Y = 1 under treatment A = a.

Let u E YA0 0= =[ ]  and u E YA1 1= =[ ] , so that any statistic 
that is a function of these two quantities can be subsequently 
computed. In particular, the common effect measures of risk 
such as RD, RR, and OR can be parameterized as follows:

ψ1 1 0= = −RD u u

ψ 2 1 0= ( ) = ( ) −log RR log logu u( )

ψ 3 1 0= = −log OR logit logit( ) ( ) ( ),u u

where logit logx
x

x
( ) =

−








1
.

TMLE is implemented in four steps. In the first step, an 
initial probability of outcome Y is estimated as a function of 
treatment A and covariates W. In the second step, a probability 
of treatment A is estimated as a function of covariates W. In the 
third step, the initial probability of outcome Y is updated via the 
fluctuation parameters, which can be estimated by a parametric 
model that includes a clever covariate to address residual bias. 
The clever covariate is usually derived from the efficient influ-
ence function for the parameter of interest.9,10,23 The magnitude 
of the fluctuation parameter reflects the strength of the asso-
ciation of a function of the propensity score with the (nonran-
dom) signal in the residuals. When there is little signal in the 
residuals, the fluctuation parameter will be close to 0. In the 
final step, the vector of parameters of interest (i.e., u0  and u1 ) 
is estimated by the G-computation formula,24 using the updated 
probabilities of the counterfactual outcomes. A detailed descrip-
tion of the TMLE implementation is provided in eAppendix 1 
(http://links.lww.com/EDE/B45). SEs, confidence intervals, 
and null-hypothesis testing in TMLE framework are shown in  
eAppendix 2 (http://links.lww.com/EDE/B45).

http://links.lww.com/EDE/B45
http://links.lww.com/EDE/B45
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SOFTWARE FOR IMPLEMENTING TMLE
R packages for implementing TMLE in both single-

point exposure and longitudinal study are available and 
easily implemented.23,25 We programmed a SAS macro for 
a general implementation of TMLE in binary point expo-
sure and outcome study (see eAppendix 3; http://links.lww.
com/EDE/B45).

EXAMPLE: STATIN USE POSTMYOCARDIAL 
INFARCTION AND THE 1-YEAR RISK OF  

ALL-CAUSE MORTALITY

Data Sources
We constructed a retrospective population-based cohort 

study to examine statin use and the 1-year risk of all-cause 
mortality following an acute MI using data extracted from 
the Clinical Practice Research Datalink (CPRD), a UK clini-
cal database of general practitioner records. These data were 
linked to the Hospital Episode Statistics (HES) database, con-
taining detailed hospitalization records.

Study Population
The study population consisted of patients aged 18 

years and older with a recorded MI (using ICD-10 codes in 
HES data or Read codes in the CPRD) between 1 April 1998 
and 31 March 2012. Only the first eligible MI was included 
for each patient. Due to our use of linked databases, diag-
noses of MI recorded within 30 days of the original event 
were considered part of the original event. Cohort entry was 
defined as 30 days after the date of either hospital discharge 
(HES-identified events) or MI diagnosis (CPRD-identified 
events). The study was restricted to patients with at least 1 
year of CPRD and HES history before their MI to ensure 
sufficient observation time to assess potential confounders. 
In addition, this study used a new user design, excluding 
patients with a statin prescription in the 365 days before 
the date of hospital admission or diagnosis of MI.26 Patients 
were followed until death from any cause, departure from 
the CPRD or HES, end of follow-up (1 year), or end of the 
study period (31 March 2012), whichever occurred first. 
Statin exposure was assessed during the 30 days between 
hospital discharge or general practitioner record of MI diag-
nosis and cohort entry. Patients who received a statin pre-
scription during this period were considered exposed, and 
those who did not were considered unexposed. To minimize 
misclassification of exposure, patients were excluded if 
there were other hospitalizations (other than MI) during this 
period for which the length of stay was 14 days or more. The 
outcome of interest, all-cause mortality, was defined as any 
death recorded in either the CPRD or HES during the 1-year 
follow-up period. This study was approved by the Inde-
pendent Scientific Advisory Committee for Medicines and 
Healthcare Products Regulatory Agency database research 
(protocol number 14_018) and the Research Ethics Board of 
the Jewish General Hospital in Montreal, Canada.

Potential Confounders
A range of known potential confounders was included 

in the propensity score model or the outcome model in the 
analyses. These confounders, measured in the year before 
MI, include demographic characteristics (e.g., age, sex), time 
variables (e.g., year of cohort entry), clinical characteris-
tics (e.g., smoking, alcohol use, and obesity), comorbidities  
(e.g., diabetes mellitus, atrial fibrillation, coronary artery dis-
ease [recorded >30 days before the index MI], acute coro-
nary syndrome, cerebrovascular disease, congestive heart 
failure, chronic obstructive pulmonary disease, hypertension, 
hypercholesterolemia, peripheral vascular disease, previ-
ous coronary revascularization, previous stroke, previous 
MI [recorded >30 days before the index MI]), and previous 
medications prescribed (e.g., aspirin, angiotensin-convert-
ing enzyme inhibitors, angiotensin receptor blockers, beta-
blockers, calcium-channel blockers, diuretics, fibrates, and 
nonsteroidal anti-inflammatory drugs). We also adjusted for 
the number of prescriptions issued and the number of hospi-
talizations in the previous year, two proxies for overall health. 
In addition, 400 variables empirically selected by the HDPS 
algorithm were also included to minimize the unmeasured 
confounding. A total of 32,792 subjects were included in the 
study cohort, of which 2,978 died during the year of follow-
up. There were 3,518 subjects censored within the 1 year of 
follow-up.

Estimation of the Treatment Effect
We used an intention-to-treat analysis to compare the 

1-year risk of all-cause mortality among patients who initi-
ated statin treatment and patients who did not. We conducted 
complete-case analysis that excluded subjects who were lost 
to follow-up within 1 year, assuming noninformative censor-
ing. The data dimensions for the high-dimensional propensity 
scores algorithm were general practice data (diagnoses, refer-
rals, immunizations, and laboratory tests), HES diagnosis 
data, HES procedure data, and CPRD medication data, with 
codes recorded in the year before MI assessed for potential 
inclusion. Using the HDPS macro,27 the 200 most prevalent 
codes were identified in each dimension and 400 empirical 
covariates were selected. Assuming missing at random, mul-
tiple imputation by chained equations was used to impute 
missing smoking and obesity data using the predefined con-
founding variables, treatment, outcome, and the 400 empiri-
cal selected covariates.28,29 TMLE and inverse probability 
weighted estimators with different propensity score models 
were used to estimate the marginal ORs of 1-year all-cause 
mortality associated with statin use.

Statistical Modeling
To explore the performance of TMLE in a high-dimen-

sional data setting and compare with inverse probability 
weighting, we used a varying number of covariates (Table 1) 
in the propensity score in both approaches and for the out-
come model in TMLE. The simple covariate set (W1) included 

http://links.lww.com/EDE/B45
http://links.lww.com/EDE/B45


Epidemiology  •  Volume 27, Number 4, July 2016	 Application of TMLE to Pharmacoepidemiologic Research

© 2016 Wolters Kluwer Health, Inc. All rights reserved.	 www.epidem.com  |  573

some important confounders, such as age, sex, obesity, smok-
ing, and a history of diabetes. The moderate covariate set 
(W2) included all the prespecified potential confounders. The 
full covariate set (W3) included all the potential confounders 
and the 400 empirically selected variables. These covariates 
were included as main terms in the propensity score model 
as well as the outcome model in TMLE using logistic regres-
sion. Interactions between covariates were not considered. 
Inverse probability weighted estimators were constructed 
using four nested covariate sets in the propensity score mod-
els. The weight for each subject is equal to the inverse of the 
estimated probability of having received his or her own treat-
ment conditional on the covariate set. This weight is stabilized 
by multiplying by the marginal probability of treatment in the 
study population. Weighted unadjusted logistic regressions for 
the outcome were fit using generalized estimating equations, 
providing marginal estimates as well as robust variance esti-
mates. These inverse probability weighted estimators yielded 
compatible results to the marginal estimates obtained using 
TMLE, as noncollapsibility of the OR was not an issue.28 For 
TMLE, 16 models were composed from the permutation of 
the covariate sets in Table 1 for the treatment and the outcome 
models. Although we recognize that some of these models 
were not the best choices in practice, we believe that these 16 
models should address the consequence of different incorrect 
model specifications, and possibly reflect the double robust-
ness property of TMLE. Without any adjustment in either the 
propensity score model or the outcome model, the inverse 
probability weighted estimator and TMLE both provide crude 
estimates (without confounder control).

RESULTS
Baseline cohort characteristics are presented in Table 2. 

Patients who received a statin tended to be younger, entered 
the cohort later, had more prescriptions overall, and were 
more likely to have been prescribed an angiotensin-converting 
enzyme inhibitor, aspirin, or beta-blocker.

Results for the 16 models are given in Table 3. Adjust-
ing for an increasing number of covariates from W1 to W3, the 
inverse probability weighted estimator and TMLE (with no 

covariates included in the outcome model) provided estimates 
that were far from the crude estimate (log OR: −1.12). With 
only a few important covariates (simple set W1) included in 
the propensity score model, the inverse probability weighted 
estimator and TMLE produced equivalent results for effect 
estimation (−0.84) and precision (the SE for both was 0.04). 
However, given the limited adjustment for confounding, the 
estimates were most likely biased. Although the inverse prob-
ability weighted estimator and the analogous TMLE used the 
same propensity score model, the estimates diverged when 
W2 and W3 were used; TMLE resulted in a stronger treatment 
effect as well as a larger SE compared with the inverse prob-
ability weighted estimator. TMLE with no adjustment in the 
propensity score model and adjustment for W1 in the outcome 
model provided similar results to those obtained with adjust-
ment of W1 via the treatment model. Adjusting for W2 in the 
outcome model in the TMLE gave estimates close to −0.56 
except for the full treatment model. Adjusting for all the mea-
sured confounders and the 400 empirical selected variables in 
the TMLE outcome model, the estimates (i.e., close to −0.32) 
were all similar regardless of the treatment model specifica-
tion. The treatment model including no covariates or a few 
important confounders (W1) yielded the highest precision 
(SE, 0.04).

Inspection of the Distribution of the Propensity 
Score

In contrast to the results where only a few covariates 
were considered, the inverse probability weighted estimator 
and TMLE produced different estimates in high dimensional 
covariate settings (including W2 or W3). With a large number 
of covariates included in the propensity score model and given 
the multivariate covariate distribution, the assumption of posi-
tivity, which requires the probability of receiving any level of 
treatment conditional on the covariates has to be greater than 
zero for each individual, may have been violated or nearly 
violated. This may have generated large SEs and/or biased 
estimates.16,31–33

Therefore, we investigated the distribution of the pro-
pensity score from the three different model specifications. 
The histograms of the estimated propensity score are shown 
in the Figure for the three treatment models. With an increas-
ing number of covariates included in the treatment model, the 
distribution of the propensity score was more dispersed. The 
range, median, and quartiles of the propensity score are pre-
sented in Table  4 by treatment groups. When including the 
moderate or full set in the propensity score model, the maxi-
mum values of the propensity score were extremely close to 
1 in both the treated and untreated groups, while the mini-
mum values were extremely close to 0. The Figure and Table 4 
show indications of the near positivity violation and partially 
explain the instability of the effect estimates after adjust-
ing for all the measured covariates and/or 400 empirically 
selected variables. With the same adjustment for covariates in 

TABLE 1.  Potential Covariates to be Adjusted in the Study 
of Statins and Mortality Using Targeted Maximum Likelihood 
Estimation and Inverse Probability Weighting

Covariate  
Set

Covariates 
Included in 
the Model Description

Empty set Null No covariates

Simple set W1 Predefined important confounders (age, sex, 

obesity, smoking, and history of diabetes)

Moderate set W2 All prespecified confounders

Full set W3 All potential confounders (W2 + the 400 

empirical selected variables)



Pang et al.	 Epidemiology  •  Volume 27, Number 4, July 2016

574  |  www.epidem.com	 © 2016 Wolters Kluwer Health, Inc. All rights reserved.

the treatment model, the divergent results between the inverse 
probability weighted estimator and TMLE that includes the 
exposure only in the outcome model (uninformative outcome 
model specification) may reflect their different utilization of 
the propensity score.

Stabilized weights with a mean of 1 and a small range 
are desirable for the variance estimation using inverse prob-
ability weighting.32 Inverse probability of treatment weights 
obtained using the most restricted propensity score model 
were well behaved (Table 5); however, this model was likely 
to fail to account for many important confounding variables. 
The moderate propensity score model yielded weights with 
desired mean of 1 but with much larger maximum value, 
implying a larger estimated variance for the treatment effect 
comparing to the variance estimation from the simple propen-
sity model approach. The model adjusting for the full set of 
covariates generated weights with mean 1.04, again suggest-
ing a near violation of the positivity assumption and possible 
bias. Moreover, the SD and range of the weights were large, 
revealing potential poor precision of the effect estimates. In 
fact, for a fixed outcome model in TMLE, the SE of the esti-
mate increased with increasing number of included covariates.

DISCUSSION
We have demonstrated the implementation and use of 

TMLE to estimate the average causal effect of statin use on 
1-year all-cause mortality using a large administrative dataset, 
and compared these results to an inverse probability weighted 

TABLE 2.  Baseline Characteristics of Post MI Patients With or 
Without Statins Use

Characteristics

No Statin Statin

N (%) N (%)

Cohort size, n 13,671 (100) 19,121 (100)

Age (yrs)

 � 0–39 197 (1) 318 (2)

 � 40–49 684 (5) 1,904 (10)

 � 50–59 1,561 (11) 4,159 (22)

 � 60–69 2,374 (17) 4,835 (25)

 � ≥70 8,855 (65) 7,905 (41)

Male 7,783 (57) 13,021 (68)

Smoking

 � Yes 6,855 (50) 12,101 (63)

 �N o 5,091 (37) 6,118 (3)

 � Missing 1,725 (13) 902 (5)

Alcohol use 169 (1) 332 (2)

Obesity

 � Yes 1,620 (12) 3,051 (16)

 �N o 5,904 (43) 8,781 (46)

 � Missing 6,147 (45) 7,289 (38)

Year of entry

 � 1998 905 (7) 389 (2)

 � 1999 1,304 (10) 698 (4)

 � 2000 1,409 (10) 970 (5)

 � 2001 1,483 (11) 1,190 (6)

 � 2002 1,282 (9) 1,559 (8)

 � 2003 1,158 (9) 1,738 (9)

 � 2004 967 (7) 1,690 (9)

 � 2005 797 (6) 1,549 (8)

 � 2006 737 (5) 1,598 (8)

 � 2007 708 (5) 1,560 (8)

 � 2008 657 (5) 1,470 (8)

 � 2009 687 (5) 1,472 (8)

 � 2010 697 (5) 1,473 (8)

 � 2011 718 (5) 1,389 (7)

 � 2012 162 (1) 376 (2)

Comorbidities

 � Diabetes mellitus 1,939 (14) 1,849 (10)

 �A trial fibrillation 2,418 (18) 1,763 (9)

 �C oronary artery disease 2,608 (19) 1,489 (8)

 �A cute coronary syndrome 1,344 (10) 2,412 (13)

 �C erebrovascular disease 1,048 (8) 607 (3)

 �C ongestive heart failure 3,147 (23) 2,580 (14)

 �C hronic obstructive pulmonary 

disease

1,336 (10) 1,233 (6)

 � Hypertension 4,428 (32) 6,554 (34)

 � Hypercholesterolemia 1,473 (11) 4,040 (21)

 � Peripheral vascular disease 610 (5) 511 (3)

 � Previous coronary revascularization 2,076 (15) 6,875 (36)

 � Previous stroke 690 (5) 341 (2)

 � Previous MI 891 (7) 380 (2)

(Continued)

Previous medications prescribed

 �A spirin 6,546 (48) 17,127 (90)

 �ACE  inhibitors 4,518 (33) 14,533 (76)

 �AR Bs 768 (6) 1,269 (7)

 � Beta-blockers 4,444 (33) 15,228 (80)

 �C alcium-channel blockers 3,231 (24) 4,303 (23)

 � Diuretics 5,723 (42) 6,076 (32)

 � Fibrates 177 (1) 125 (1)

 �N SAIDs 2,794 (20) 4,232 (22)

Prescription count

 � 0–4 4,222 (31) 1,594 (8)

 � 5–7 2,597 (19) 5,799 (30)

 � 8–11 2,869 (21) 5,921 (31)

 � ≥12 3,983 (29) 5,807 (30)

Number of hospitalization

 � 0–1 8,355 (61) 12,406 (65)

 � ≥2 5,316 (39) 6,715 (35)

ACE indicates angiotensin-converting enzyme; ARBs, angiotensin receptor 
blockers; NSAIDs, nonsteroidal anti-inflammatory drugs.

TABLE 2.  (Continued)

Characteristics

No Statin Statin

N (%) N (%)
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estimator. Our main results showed that, using TMLE, when 
the full covariate set was included in the outcome model, all 
estimated ORs were in agreement regardless of the treatment 
model specification. These estimates are less prone to bias and 
more precise compared with the inverse probability weighted 
estimators using the corresponding propensity score models 
alone, as TMLE offers an additional opportunity for adjust-
ment for confounding via the outcome model, and is also less 

influenced by practical positivity violations due to extreme pro-
pensity scores. This empirically reflects the double robustness 
property of TMLE, in that when the initial outcome model was 
consistently estimated, there was little signal in the residual or 
bias reduction in the updating step via the treatment model (the 
estimates of the fluctuation parameters were close to 0). How-
ever, we were unable to assess the bias of the two methods under 
a near positivity violation, since the true effect was unknown.

TABLE 3.  Effect Estimate of Statins Use Post MI on 1-year All-cause Mortality by Different Targeted Maximum Likelihood 
Estimation and Inverse Probability Weighting Modeling Approaches

Outcome Model A A, W1 A, W2 A, W3

Method IPW1-4 TMLE1-4 TMLE5-8 TMLE9-12 TMLE13-16

Treatment 
Model

Log 
(OR)

SE  
(log (OR)) OR

Log 
(OR)

SE  
(log (OR)) OR

Log 
(OR)

SE  
(log (OR)) OR

Log 
(OR)

SE  
(log (OR)) OR

Log 
(OR)

SE  
(log (OR)) OR

Null −1.12 0.04 0.30 −1.2 0.04 0.31 −0.85 0.04 0.43 −0.57 0.04 0.57 −0.32 0.04 0.73

W1
a −0.85 0.04 0.43 −0.84 0.04 0.44 −0.84 0.04 0.43 −0.56 0.04 0.57 −0.32 0.04 0.73

W2
b −0.48 0.08 0.62 −0.53 0.11 0.59 −0.53 0.09 0.59 −0.59 0.07 0.56 −0.37 0.07 0.69

W3
c −0.09 0.10 0.91 −0.27 0.13 0.77 −0.26 0.13 0.77 −0.36 0.12 070 −0.38 0.08 0.69

aPredefined important confounders (age, sex, obesity, smoking, and history of diabetes).
bAll prespecified confounders.
cAll potential confounders (W2 + the 400 empirical selected variables).

FIGURE.  Histograms of the estimated propensity score from three different models. A, W1: predefined important confounders 
(age, sex, obesity, smoking, and history of diabetes); (B) W2: all prespecified confounders; (C) W3: all potential confounders (W2 
+ the 400 empirical selected variables).
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It is important to note that the two methods handle sparse 
data and near positivity violations differently. Inverse prob-
ability weighting methods, which are known to be sensitive to 
extreme propensity scores and near-positivity violations,34,35 
use the estimated propensity score for the treated subjects and 
1 minus the estimated propensity score for the untreated sub-
jects. Therefore, only the treated subjects who have estimated 
propensity scores extremely close to 0 and untreated subjects 
who receive estimated propensity scores extremely close to 
1 will contribute to the extreme weights. On the other hand, 
in step 3 of the TMLE procedure, updating is done for each 
subject under treatment and nontreatment. Any propensity 
score that is extremely close to 1 or 0 inflates the value of the 
potential clever covariates, which can cause unstable param-
eter estimates and/or potential bias. However, the use of a non-
null outcome model in TMLE is designed to compensate for 
this instability. Truncation of the propensity score may also 
prevent poor precision (but at the price of increased bias);31,32 
we therefore performed a sensitivity analysis with propensity 
score truncated at the 1st and 99th percentile for both inverse 
probability weighting and TMLE. The results are provided in 
eTable 1 in eAppendix 4 (http://links.lww.com/EDE/B45), 
showing slightly changed point estimates and improved preci-
sion in both inverse probability weighting and TMLE espe-
cially in the case of high-dimensional covariates adjustment 
in the propensity score models.

Our study had some limitations. We excluded censored 
subjects, assuming noninformative censoring. The estimates 

would be biased if this assumption was not met. Therefore, we 
conducted additional sensitivity analysis that incorporated a 
censoring model. The results were very similar to those from 
the complete-case analysis, indicating noninformative cen-
soring (results not shown). We therefore only considered the 
complete-case analysis as our primary analysis. In addition, 
there was a certain amount of missing values for smoking and 
obesity in our example (Table 1). We used multiple imputa-
tion by chained equations to impute these missing values. In 
our multiple imputation models, we included all the baseline 
covariates as well as the exposure and the outcome of interest 
to make the missing at random assumption more plausible.29 
The results might be biased if this assumption was not met. 
Furthermore, we only included main effects of the covariates 
in our analysis without considering higher order terms. Resid-
ual bias may be still present if the treatment effect is nonlinear. 
To take advantage of the properties of TMLE, consistent esti-
mation of both the treatment and outcome model are required 
and thus data-adaptive methods, such as Super Learner,14 are 
recommended when implementing TMLE. The ability to inte-
grate data adaptive methods while retaining valid inference is 
a motivation for TMLE. However, we intended to showcase 
the implementation of TMLE in a relative simple scenario and 
thus did not consider complex data-adaptive methods.

Moreover, we investigated the relative performance of 
inverse probability weighting and TMLE with a high-dimen-
sional setting in a single-point exposure study on a binary 
outcome. Our results may not extend to more realistic set-
tings with time-varying treatments and failure time outcomes. 
We only focused on the high dimensional propensity score 
algorithm for variable selection, while other alternative data-
adaptive procedures are available and could be integrated in 
TMLE.36–40 In particular, collaborate TMLE was developed to 
select the best adjustment set in high-dimensional settings and 
therefore may be more efficient in finite samples.37 In contrast 
to the univariate approach of high-dimensional propensity 
score for confounder selection, collaborate TMLE assesses 
the multivariate effect of covariates on the parameter for the 
propensity score model. A comparison of these two methods 
should be considered in future studies.

TABLE 4.  Distribution of Propensity Score Estimated from Three Different Models by Treatment Group

Model Treatment Maximum Upper Quartile Median Lower Quartile Minimum

Simple (W1)
a 0 0.77 0.66 0.53 0.45 0.34

Simple (W1) 1 0.77 0.71 0.66 0.48 0.34

Moderate (W2)
b 0 0.99 0.48 0.21 0.08 0.002

Moderate (W2) 1 0.99 0.96 0.88 0.69 0.01

Full (W3)
c 0 1 0.41 0.15 0.06 0

Full (W3) 1 1 0.97 0.92 0.73 0.01

aPredefined important confounders (age, sex, obesity, smoking, and history of diabetes).
bAll prespecified confounders.
cAll potential confounders (W2 + the 400 empirical selected variables).

TABLE 5.  Distributions of the Stabilized Weights from Three 
Different Propensity Score Models

Model Mean (SD) Maximum Minimum

Simple (W1)
a 1 (0.23) 1.78 0.63

Moderate (W2)
b 1 (1.74) 69.67 0.42

Full (W3)
c 1.04 (3.82) 390.77 0.42

aPredefined important confounders (age, sex, obesity, smoking, and history of 
diabetes).

bAll prespecified confounders.
cAll potential confounders (W2 + the 400 empirical selected variables).

http://links.lww.com/EDE/B45
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In summary, we have demonstrated the step-by-step 
implementation of TMLE and implemented TMLE in a point 
exposure study, estimating the average effect of post-MI 
statin use on the 1-year risk of all-cause mortality. The high-
dimensional propensity score algorithm can be incorporated 
naturally in the TMLE process to account for the proxies of 
unmeasured confounding. Even when using the same mod-
eling approach for the propensity score, TMLE and inverse 
probability weighting estimators can perform differently due 
to their different utilization of the propensity score. While 
TMLE is appealing for its double robustness property, as with 
many other methods near violations of positivity may be prob-
lematic for the estimation process.
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