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Abstract

While treatments that induce DNA damage are commonly used as anti-cancer therapies, the 

mechanisms through which DNA damage produces a therapeutic response are incompletely 

understood. Here we have tested whether medulloblastomas must be competent for apoptosis to be 

sensitive to radiation therapy. Whether apoptosis is required for radiation sensitivity has been 

controversial. Medulloblastoma, the most common malignant brain tumor in children, is a 

biologically heterogeneous set of tumors typically sensitive to radiation and chemotherapy; 80% 

of medulloblastoma patients survive long-term after treatment. We used functional genetic studies 

to determine if the intrinsic apoptotic pathway is required for radiation to produce a therapeutic 
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response in mice with primary, Shh-driven medulloblastoma. We found that cranial radiation 

extended the survival of medulloblastoma-bearing mice and induced widespread apoptosis. 

Expression analysis and conditional deletion studies showed that p53 was the predominant 

transcriptional regulator activated by radiation and was strictly required for treatment response. 

Deletion of Bax, which blocked apoptosis downstream of p53, was sufficient to render tumors 

radiation resistant. In apoptosis-incompetent, Bax-deleted tumors, radiation activated p53-

dependent transcription without provoking cell death and caused two discrete populations to 

emerge. Most radiated tumor cells underwent terminal differentiation. Perivascular cells, however, 

quickly resumed proliferation despite p53 activation, behaved as stem cells, and rapidly drove 

recurrence. These data show that radiation must induce apoptosis in tumor stem cells to be 

effective. Mutations that disable the intrinsic apoptotic pathways are sufficient to impart radiation 

resistance. We suggest that medulloblastomas are typically sensitive to DNA-damaging therapies 

because they retain apoptosis competence.

Introduction

Whether DNA-damaging anti-cancer treatments must induce apoptosis to be clinically 

beneficial remains an unsettled question with important implications. Because resistance to 

apoptosis is recognized as a hallmark of cancer [1, 2], it has been proposed that radiation 

and chemotherapy act through non-apoptotic mechanisms, including mitotic catastrophe, 

senescence, and necrosis [3, 4]. If tumor cells die through non-apoptotic mechanisms the 

active participation of the tumor cell may not be required; for example injury may 

accumulate until cell viability is compromised. Apoptosis, in contrast, requires the function 

of endogenous molecular pathways within the tumor cell. If apoptosis is required for 

treatment response, resistance to therapy may arise from any mutation that disrupts the 

apoptotic pathways.

Medulloblastoma, the most common malignant brain tumor in children, is an ideal cancer in 

which to examine the role of apoptosis in treatment response, because most 

medulloblastomas are strikingly sensitive to DNA-damaging therapies. Whereas 

medulloblastoma was invariably fatal before the use of external beam radiation (xRT) , 

radiation of the entire neuraxis results in 60% long-term survival [5]. The addition of 

chemotherapy to xRT further increases the 5-year event-free survival (EFS) to 81% [6]. In 

contrast, for children with glioblastoma, xRT and chemotherapy produce a 3-year EFS of 

7% [7]. The biologic basis for the specific sensitivity of medulloblastoma to conventional 

therapy is unknown, and in every molecular subgroup of medulloblastoma, outcomes are 

heterogeneous [8]. Determining the cellular processes required for medulloblastoma to 

respond to xRT may lead to alternative, less toxic therapeutic approaches and to new ways to 

identify and address the 20% of patients with resistant tumors.

Insight into the molecular pathogenesis of medulloblastoma has made it possible to generate 

transgenic mice that develop primary medulloblastoma with high incidence and short latency 

[9–13]. Aberrant activation of the Sonic Hedgehog (SHH) signaling pathway defines a 

molecular subgroup that includes patients with sporadic and familial tumors, overall 28% of 

patients [14]. Constitutive activation of the Shh pathway in neural progenitors in transgenic 
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mice causes tumors that faithfully recapitulate the SHH-subgroup of human 

medulloblastoma, sharing a common site of origin, histology and molecular signature. 

Transgenic, conditional SmoM2 mice, express a mutant, constitutively active allele of the 

Shh receptor component Smoothened, when activated by cre recombinase [15]. Mice with 

the genotype Math1-cre;SmoM2 (M-Smo) express SmoM2 in cerebellar granule neuron 

progenitors and develop medulloblastoma with 100% frequency by postnatal day 12 (P12) 

[16], providing a highly efficient preclinical model. Deleting specific genes in M-Smo mice 

offers a genetic approach to identify molecular determinants of tumor response.

Prior studies in primary tumor models of both medulloblastoma and lymphoma have shown 

that p53 function is essential for treatment effectiveness [17–20]. Many cancers with intact 

p53, however, are treatment resistant. Diverse cellular processes may be engaged by p53 

activation after treatment, including both apoptosis and cell cycle exit [21]. Testing the 

functional role of specific mechanisms that operate downstream of p53 in mediating 

treatment sensitivity may identify new mechanisms of resistance to therapy. Here, we 

directly tested the importance of the intrinsic apoptosis pathway in a primary tumor model in 
vivo. We subjected mice with Shh-driven medulloblastomas to xRT, determined that this 

treatment elicited a p53-dependent response, and then examined the effect of deleting the 

apoptosis gatekeeper protein Bax. While Bax mutations have not been identified in 

medulloblastoma, Bax deletion served in our model as a genetically tractable method of 

blocking apoptosis; numerous genetic and epigenetic events may effectively block apoptosis 

in the human disease. We used this genetic approach to determine if a functional intrinsic 

apoptotic pathway is required for xRT to produce a clinically significant benefit.

We modeled radiation therapy by subjecting M-Smo mice with primary medulloblastoma to 

cranial xRT. We found that 10Gy of radiation, delivered in either 1 dose or in 5 fractions of 2 

Gy, produced a strong anti-tumor effect. Transcriptomic analysis prior to the onset of 

apoptosis demonstrated that xRT induced a pattern of gene expression changes that was 

highly dependent on p53 regulation and included both pro-apoptotic and anti-proliferative 

components. Conditional deletion of either p53 or Bax blocked the therapeutic benefit of 

xRT, demonstrating the importance of p53-induced activation of endogenous apoptotic 

pathways in mediating medulloblastoma treatment sensitivity.

Methods

Mice

All animals were handled and used in accordance with approved practices of the Animal 

Care and Use Committee of the University of North Carolina (IACUC# 13–121). Math1-cre 

mice [46] were shared by David Rowitch (UCSF, San Francisco, CA) and Robert Wechsler-

Reya (Sanford-Burnham Medical Research Institute, La Jolla, CA). Bax floxed (Baxfl/fl) 

mice (strain:6329), SmoM2 mice (strain:5130), and p53 floxed (p53fl/fl) mice (strain:8462) 

were purchased from Jackson Laboratories, Bar Harbor, ME, USA. All mice were 

maintained on a C57/Bl6 background through at least 4 crosses and both sexes were used for 

experiments. Genotypes were determined by PCR using Tail Lysis Buffer (Allele 

Biotechnology, cat#ABP-PP-MT01) and genotyping protocols from Jackson Labs 

(jaxmice.jax.org).
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xRT treatment

Tumor-bearing pups at P12 were administered continuous anesthesia (Isoflurane, 1.5%) for 

4 min. inside a small animal research irradiator (RS 2000, Rad Source Technologies) that 

delivered an x-ray dose of either 2 Gy or 10Gy, centered on the posterior fossa, with the dose 

rate of 2.6 Gy/min. Cranial radiation was achieved by shielding the body of the animal with 

a lead plate. 2Gy doses were repeated daily to a total dose of 10 Gy. Sham-treated mice were 

administered anesthesia without xRT. Mice were heated and monitored while recovering 

from anesthesia and returned to their home cage for survival studies.

Kaplan Meier survival analysis

Tumor-bearing mice were monitored daily for health status and movement abnormalities. 

All mice were euthanized at the onset of symptoms, including 10% weight loss, ataxia or 

lethargy. The age of the animal at the time of harvest due to tumor symptoms was recorded 

as the event-free survival. The Kaplan-Meier method was used to estimate survival and Log 

Rank tests were used to compare survival between experimental groups.

Histology

Tissue was collected for histology at indicated times after xRT and processed for 

immunohistochemistry (IHC) as previously described [24]. Briefly, brains were fixed in 4% 

formaldehyde in PBS for 24 hours then embedded in paraffin and sectioned. IHC was 

performed on paraffin-embedded sections after deparaffinization in Histoclear and 

rehydration in a graded ethanol series, heated to boiling in 10 mM citrate buffer, pH 6.0, in a 

pressure cooker for 15 min. After antigen retrieval, IHC was performed using primary 

antibodies: phosphorylated histone H2AX (γH2AX) (cat#9718, Cell Signaling Technology, 

Danvers, MA, USA), Bax (cat#AF820, Sigma, St. Louis, MO, USA), p53 (cat#2527, Cell 

Signaling Technology), cleaved Caspase 3 (cC3) (cat#9664, Cell Signaling Technology), 

NeuN (cat#MAB377, EMD Millipore, Billerica, MA, USA), p21 (cat#ab109199, Abcam, 

Cambridge, UK), Proliferating Cell Nuclear Antigen (PCNA; cat#2586, Cell Signaling 

Technology), phosphorylated Histone H3 (pH3; cat#9701, Cell Signaling Technology), 

phosphorylated p53 (p-p53 ; cat #9284, Cell Signaling Technology), and Sox2 (cat # 

AB5603, EMD Millipore). H&E-stained sections were prepared using standard techniques. 

TUNEL staining was performed per manufacturer’s protocol (cat#C10245, Life 

technologies, Carlsbad CA). Where indicated, nuclei were counterstained with 4′6-

diamino-2-phenylindole (DAPI; cat#D1306, Life technologies), diluted 200 ng/ml in PBS 

for 5 min. Stained slides were scanned using an Aperio ScanScope XT and imaged using 

Aperio ImageScope software (Aperio, Vista, CA, USA).

Expression arrays and analysis

Tumor tissue was dissected and immediately flash frozen at indicated times after xRT. 

Frozen tissue was homogenized by sonication in RLT buffer (Qiagen), and total RNA was 

purified following manufacturer’s instructions (QIAGEN, cat#74104). RNA was labeled, 

hybridized to Affymetrix Mouse Gene 2.1ST arrays, per manufacturer’s protocol 

(Affymetrix, Santa Clara, CA USA) and scanned by the UNC-Lineberger Genomics core.
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Microarray analysis was performed using R (http://www.r-project.org/) and Bioconductor 

(http://www.bioconductor.org/) for independent SmoM2 mice without radiation (n = 6) and 

SmoM2 mice 2 hours after radiation (n = 6). T-test was used to identify genes that change 

significantly between the two groups. A list of 123 genes identified in this analysis with 

increased RNA abundance after radiation was used to identify potentially enriched biologic 

processes using the GSEA software [47]. The Affymetrix gene expression dataset has been 

deposited in GEO.

For RT-qPCR, cDNA was prepared from total RNA using oligo-dT primers and the 

Superscript III kit (Life Technologies, Cat# 18080400) per manufacturer’s instructions. 

SYBR-green qPCR was then run on cDNA, using primer sequences: p21- 

CAGCAGAATAAAAGGTGCCACA, GACAACGGCACACTTTGCTC; PUMA- 

AGGTGCCTCAATAGCAACCC, CTCCCTGGAGCCCCG, β2 Microglobulin- 

CTCGGTGACCCTGGTCTTTC,TTGAGGGGTTTTCTGGATAGCA, GAPDH- 

AAGAGGGATGCTGCCCTTAC, CGGGACGAGGAAACACTCTC.

In situ hybridization

PUMA and p21 mRNA were detected by in situ hybridization using the RNAScope 2.0 HD 

Brown Assay kit (Cat# 300056, Advanced Cell Diagnostics, Hayward CA, USA). Probes for 

PUMA (Cat# 300031) and p21(Cat# 408551) were obtained from Advanced Cell 

Diagnostics and used per manufacturer’s protocol, including RNAse-free DNAse treatment.

In-vivo treatments

Etoposide—Tumor-bearing pups at P12 were dosed with 5mg/kg etoposide (cat#E1383, 

Sigma) in saline solution containing 1% DMSO. A single 50ul intraperitoneal injection of 

etoposide was given; 8 hours after injection tissue was harvested for histology.

BrdU/EdU labeling—A single 400mg/kg dose of BrdU (cat#B5002, Sigma) and, 2 days 

later, a single dose of 400mg/kg EdU (cat#A10044, Life technologies), both in 100ul of 

saline solution, were given by intraperitoneal injection at time points indicated in text. 

Double labeling was accomplished through standard histological processing using a 

monoclonal primary antibody against BrdU (cat#5292, Cell Signaling Technology) and 

Click-iT® chemistry for labeling of EdU (cat#C10337, Life technologies).

Results

Mouse medulloblastoma, like human medulloblastoma, responds to xRT with increased 
survival time

We have previously shown that a single fraction of 10 Gy induces a wave of apoptosis in M-

Smo medulloblastomas after a latent period of 3–4 hours [22]. To determine if radiation 

produced a sustained regression, consistent with a clinically relevant benefit, we compared 

survival of M-Smo mice with or without xRT. At P12, tumor-bearing mice were randomly 

assigned to receive xRT (n=34) or no treatment (n=23). We subjected mice in the xRT group 

to 10 Gy cranial irradiation, focused on the posterior fossa. Control mice were subjected to 

sham treatment with anesthesia without irradiation. xRT increased median survival from 20 
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to 36 days (p<0.001; Log rank test) with 15% of treated mice surviving disease free for > 

100 days (Figure 1A). A separate set of mice treated with 10 Gy administered as 5 daily 

fractions of 2Gy showed a similar increase in survival (p<0.001; Log rank test; Figure 1A’.)

Histologic analysis demonstrated a temporal pattern of radiation response that was 

consistent from animal to animal. We examined 3 biologic replicates at progressive intervals 

after single-fraction treatment. We found that tumors became less densely cellular by 4 hours 

after treatment with 10Gy xRT, decreased in size by 24 hours, and involuted by 5 days 

(Figure 1B–E). Prior to xRT, rare, scattered tumor cells demonstrated spontaneous DNA 

damage as determined by IHC for γH2AX; after xRT, all tumor cells and adjacent neurons 

stained strongly for γH2AX in 3/3 mice, indicating widespread DNA damage (Figure 1F,G). 

The increased γH2AX signal dissipated by 24 hours after xRT in 3/3 mice as tumor cells 

underwent cell death and neurons completed the repair of DNA damage (Figure 1H,I). 

Tumor cell apoptosis, demonstrated by IHC for cC3, began at 4 hours after xRT in all mice 

examined, and persisted over the first 24 hours after treatment (Figure 1J–M). TUNEL 

staining also demonstrated cell death beginning 4 hours after xRT (Supplementary Fig. 

S1A). Treatment with a single fraction of 2Gy produced similar, but more heterogeneous 

patterns of TUNEL staining, DNA damage and cell death 4 hours after xRT (Supplementary 

Fig. S1B–F). Thus, 2Gy and 10Gy doses of xRT provoked tumor cell apoptosis in mouse 

medulloblastoma after a latent period of less than 4 hours, and a cumulative dose of 10Gy 

significantly extended mouse survival.

The transcriptional response of medulloblastomas to xRT is predominantly driven by p53 
and includes regulators of apoptosis and cell cycle progression

To define the early molecular events mediating the tumor response to xRT, we compared 

mRNA isolated from medulloblastomas 2 hours after xRT or from untreated control tumors. 

10 Gy cranial xRT was administered to tumor-bearing M-Smo mice (n = 6). RNA was 

isolated from tumors 2 hours after treatment, prior to the onset of apoptosis, defined by 

detectable cleavage of caspase 3. For comparison, RNA was isolated from an equal number 

of littermate, sham-treated controls. RNA was analyzed on Affymetrix Mouse Gene 2.1ST 

expression arrays. The mRNA levels of 123 genes were increased by 1.5 fold or greater after 

xRT, with a corrected p-value < 0.01 (Figure 2A). GSEA analysis demonstrated a significant 

concordance between these genes and previously published p53-related gene sets (Figure 2B 

and Supplementary Table 1–3). Previously identified p53 targets demonstrated significantly 

greater fold change after xRT compared to the entire set of genes analyzed (Figure 2C). This 

association was observed for a set of 52 genes that were identified from published literature 

as p53-induced (Supplementary Table 1), and for a set of 163 genes detected in a recent 

GRO-seq analysis of p53 targets (Supplementary Table 2) [23]. As a control, a gene set 

randomly drawn from 10 unrelated MSigDB sets (control gene set, Supplementary Table 4) 

demonstrated no difference in RNA fold change. Ingenuity Pathway Analysis similarly 

identified p53 as the upstream regulator most strongly activated by xRT, with 26/73 

consensus p53 targets up-regulated (p = 1.3x10−19); no other upstream regulators were 

identified with the significance within 3 orders of magnitude. Together, these pathway- and 

gene-specific comparisons demonstrated that xRT-induced RNA changes were highly 

associated with p53 response.
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Among the p53 target genes that were strongly up-regulated in response to xRT were the 

pro-apoptotic genes (Apaf: FC=1.9, p=4.2x10−6; Bax: FC=1.9, p=9.7x10−7; PUMA: 

FC=3.8, p=2.8x10−7), and inhibitors of cell cycle progression (p21/Cdkn1A: FC=3.9, 

p=1.2x10−8). Using quantitative PCR we confirmed that PUMA and p21 mRNA were 

increased 8 and 6 fold, respectively, after xRT (Figure 2D). These data show that xRT 

activated a coherent, reproducible transcriptional profile in medulloblastoma that was driven 

largely by p53 and included genes promoting both cell death and cell cycle arrest.

To confirm the essential role of p53 in the response to xRT in our model, we bred mice with 

conditional alleles of p53 into Math1-cre and SmoM2 lines to generate homozygous, Math1-

cre;SmoM2;p53f/f (M-Smo;p53floxed) mice and heterozygous Math1-cre;SmoM2;p53f/+ 

littermate controls (M-Smo;p53het) . Both genotypes developed tumors with 100% 

frequency by P12. We treated both genotypes with 10 Gy xRT and examined 3 biologic 

replicates of each genotype at specific intervals after treatment. Radiation induced 

homogeneous accumulation of p53 protein in all M-Smo;p53het tumors within 2 hours 

(Figure 3A,B). As expected, in M-Smo;p53floxed tumors, p53 protein was absent from tumor 

cells and only accumulated in endothelial cells of tumor capillaries (Figure 3C,D). Induction 

of both PUMA and p21 after xRT was significantly reduced in 3/3 M-Smo;p53floxed tumors 

(Figure 3E–J). In 3/3 p53-deleted tumors at 4 hours, 24 hours or 5 days after xRT, radiation 

did not provoke widespread apoptosis, although some cell death in stroma was observed at 4 

hours (Figure 3K–M). In contrast, 3/3 M-Smo;p53het tumors responded to xRT with 

precipitous apoptosis, similar to tumors with wild type p53 (data not shown). Proliferation 

was transiently suppressed by xRT in M-Smo;p53floxed tumors, as mitoses were undetectable 

in all tumor 4 hours after radiation (Figure 3N). Mitosis resumed by 24 hours, however, and 

continued at 5 days (Figure 3O,P). Although xRT induced transient cell cycle arrest in M-

Smo;p53floxed tumors, this growth arrest was not sustained. These results show that p53 was 

required for xRT to produce a durable therapeutic response.

The therapeutic effect of xRT requires a functional intrinsic apoptotic pathway

To determine if the intrinsic apoptotic pathway was required for the p53-mediated response 

of medulloblastoma to radiation, we next examined the effect of xRT on tumor-bearing mice 

with conditional deletion of the pro-apoptotic protein Bax. Mice with floxed alleles of Bax 

were bred into a Math1-cre and SmoM2 background to generate homozygous, Math1-

cre;SmoM2;Baxf/f (M-Smo;Baxfloxed) mice and homozygous Math1-cre;SmoM2;Bax+/+ 

littermate controls (M-Smo;BaxWT). Bax protein was absent in M-Smo;Baxfloxed tumors, 

and Bax deletion did not alter tumor histology (Supplementary Figure S2A–D). IHC for 

cC3, however, demonstrated that spontaneous apoptosis was markedly reduced 

(Supplementary Figure S2E,F). We did not detect a statistically significant effect of Bax 

deletion on the survival of mice with Math1-cre;SmoM2-driven tumors (Supplementary 

Figure S2G). We previously found that Bax deletion accelerated tumorigenesis in the more 

slowly tumorigenic ND2:SmoA1 mouse line [24]. However, Bax deletion did not accelerate 

the already rapid tumorigenesis of Math1-cre;SmoM2 mice.

We examined the effect of Bax deletion on survival after xRT by comparing the survival of 

radiated mice with M-Smo or M-Smo;Baxfloxed genotypes. Event-free survival was 
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significantly shorter in xRT-treated M-Smo;Baxfloxed mice and resembled the survival of M-

Smo mice without treatment (Figure 4A). Consistent with a lack of clinical benefit, we 

found no significant difference in the event-free survival of treated and untreated M-

Smo;Baxfloxed mice (n=10;Log Rank p=0.76). Fractionated xRT, administered as five doses 

of 2Gy similarly failed to extend the survival of M-Smo;Baxfloxed mice, which showed 

significantly shorter survival compared to M-Smo mice treated with 5 doses of 2Gy (Figure 

4A’). These data show that Bax was required for xRT to impart a clinically significant 

benefit.

To confirm that Bax deletion did not alter the induction of DNA damage or p53 activation, 

we examined γH2AX and p53. In 3/3 replicate pups of both M-Smo;BaxWT and M-

Smo;Baxfloxed mice, xRT produced extensive DNA double strand breaks, demonstrated by 

γH2AX (Figure 4B–D). This DNA damage produced equivalent phosphorylation of p53 

(Figure 4E–G). Unlike M-Smo;BaxWT tumors, M-Smo;Baxfloxed tumors did not undergo 

synchronous apoptosis 4 hours after xRT as indicated by relatively little induction of caspase 

3 cleavage (Figure 4H–M) or TUNEL staining (Figure 4N–P). In the absence of Bax-

dependent apoptosis neither DNA damage per se, nor the resulting p53 engagement were 

sufficient to cause widespread cell death or to extend mouse survival.

To test the possibility that radiation-induced cell death was delayed, rather than prevented in 

Bax-deleted tumor cells, we examined tumors at greater intervals after treatment, 

specifically 5 days after single fractions 10Gy or at the end of 5 daily fractions of 2 Gy. 

Medulloblastomas with intact Bax typically decreased in size within 48 hours after xRT and 

reached a minimum tumor size by 5 days. In contrast, Bax-deficient tumors consistently 

persisted as large masses (Figure 5A–C). 48 hours after 10Gy xRT, only scattered cells in 

M-Smo;Baxfloxed tumors demonstrated caspase 3 cleavage (Figure 5D) and scattered cells 

underwent non-apoptotic cell death, identified by positive TUNEL staining and negative 

staining for cleavage of caspase 3 (Figure 5D,G). 5 days after xRT, neither cC3 nor TUNEL 

demonstrated increased cell death (Figure 5 D–I). These results show that latent cell death in 

Bax-deleted tumors was not widespread and did not significantly disrupt tumor growth.

We further investigated whether the cytotoxic effect of chemotherapy required intact 

apoptotic pathways. We compared DNA damage and apoptosis in M-Smo;Baxfloxed and M-

Smo;BaxWT littermates 8 hours after IP etoposide injection (n=3 for each group). Etoposide 

caused extensive DNA damage in tumors of all treated mice (data not shown). BaxWT 

tumors demonstrated with extensive apoptosis, whereas in M-Smo;Baxfloxed tumors cell 

death was markedly reduced (Fig 5J,K). Thus, Bax is necessary for apoptosis in response to 

diverse, DNA-damaging therapies.

Apoptosis-deficient tumor cells resolve after treatment into terminally differentiated and 
proliferating populations

Examination of replicate M-Smo;Baxfloxed tumors at successive intervals after treatment 

demonstrated the fate of radiated tumor in the absence of apoptosis. Although xRT did not 

slow the progression of M-Smo;Baxfloxed tumors, we noted significant changes in tumor 

pathology. In 3/3 M-Smo;Baxfloxed tumors we found that the xRT-induced phosphorylation 

of H2AX resolved by 48 hours, indicating that medulloblastoma cells were able to repair 
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radiation-induced DNA double strand breaks when apoptosis was blocked (Figure 6A,B). By 

48 hours after xRT, all 3 Bax-deleted tumors demonstrated histologic changes indicating 

widespread differentiation. Tumor cells became less densely packed, elaborated eosinophilic 

neuropil and formed abundant Homer-Wright rosettes (Figure 6C,D). Consistent with 

terminal differentiation along the expected trajectory of neural progenitors, a large 

subpopulation within all 3 M-Smo;Baxfloxed tumors radiated tumors strongly up-regulated 

the neuronal marker NeuN (Figure 6E,F).

Despite the widespread differentiation induced by xRT, M-Smo;Baxfloxed tumors 

consistently progressed. Prior studies of RCAS-induced medulloblastomas in mice have 

shown that these tumors harbor a subpopulation in the perivascular regions that resumes 

proliferation within 72 hours of treatment with 2Gy xRT [20]. We did not find similar early 

recurrence after 10Gy in M-Smo mice with intact p53 and Bax. In M-Smo;Baxfloxed tumors, 

however, we found that perivascular cells resumed proliferation after a period of quiescence. 

In 3/3 M-Smo;Baxfloxed mice examined 4 hours after xRT, the p53 target p21 was 

specifically up-regulated in tumor cells along capillaries (Figure 7A). Expression of p21 

persisted through 24 hours, and during this period no cells expressing the proliferation 

marker PCNA were detected (n = 3). By 48 hours after xRT, 4/6 tumors examined contained 

PCNA+ cells. In all four tumors, these cells were predominantly located in the perivascular 

regions (Figure 7B). Double labeling for PCNA and the differentiation marker p27 

demonstrated that proliferating and differentiating tumor cells resolved spatially into discrete 

regions, with proliferation along blood vessels and differentiation further from the 

perivascular space (Figure 7C). All 9 radiated, M-Smo;Baxfloxed mice in the survival study 

that were harvested at the time of tumor progression demonstrated abundant PCNA+ tumor 

cells, indicating that after a latent period, proliferation consistently resumed. Taken together, 

these data show that a proliferative subpopulation, traceable to the perivascular regions, 

drives tumor recurrence after xRT in our model. These perivascular cells were subject to 

p53-mediated transcriptional changes, but in the absence of apoptosis, the activation of p53 

did not produce lasting therapeutic effects through either non-apoptotic cell death or 

sustained growth arrest.

To examine the tendency of tumor cells to enter and to exit the cell cycle after xRT, we 

labeled cells at S phase at 2 discrete time points, using incorporation of BrdU and EdU. M-

Smo;Baxfloxed mice were injected with BrdU 5 days after xRT, and then injected with EdU 2 

days later. Mice were harvested 4 hours after EdU injection. In 3/5 mice, we found that 

BrdU injection labeled a large number of tumor cells. In all 5 of these tumors, EdU label 

was also strongly detectable. In these 5 tumors, we consistently found that the set of BrdU+ 

cells included both EdU+ and EdU- negative cells, while all EdU+ cells were also BrdU+ 

(Figure 7D–F). The presence of BrdU+ cells that were EdU+ indicates that cells that were 

cycling 5 days after xRT gave rise to progeny that continued to divide. The presence of BrdU

+ cells that were EdU- cells indicates that some of the progeny of cells dividing 5 days after 

xRT either exited the cell cycle or proliferated more slowly.

To immunophenotype the BrdU+ tumors cells, we double labeled sections with antibodies to 

BrdU and either NeuN, PCNA or stem cell marker Sox2. Sox2 expressing cells have been 

associated with tumor recurrence in human medulloblastoma and have been shown to 
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behave as tumor stem cells, recapitulating recurrent medulloblastoma in Ptc mice treated 

with Ara-C [25]. We found in all 5 of the radiated, M-Smo;Baxfloxed mice with BrdU+ 

tumors, the BrdU labeled population included both NeuN+ and PCNA+ subpopulations 

(Figure 7G–L) indicating that cells that proliferate in the early period after xRT behaved like 

stem cells, giving rise to both differentiating and self-renewing progeny. Consistent with the 

neural stem cell phenotype, tumor cells that incorporated BrdU 5 days after xRT were 

predominantly Sox2+ 2 days later in all 5 mice examined (Figure 7 M–O). These results 

demonstrate that tumor stem cells that do not undergo apoptosis after xRT retain a 

proliferative capacity despite activation of p53. Considered against the more durable 

therapeutic response to cranial xRT in M-Smo tumors with intact p53 and Bax, the 

recurrence pattern after xRT in Bax-deficient medulloblastomas highlights the importance of 

inducing apoptosis in the stem cell population.

Discussion

Medulloblastoma is, on average, remarkably responsive to conventional treatment with xRT 

and chemotherapy. This susceptibility was discovered empirically, and the molecular basis 

for this susceptibility has not been defined. We have investigated the molecular mechanisms 

of treatment response in spontaneous medulloblastomas in transgenic, SmoM2 mice. We 

found that xRT produced a survival benefit in our model only when it activated a p53-

dependent transcriptional response that induced apoptosis.

Medulloblastomas with conditional deletion of p53 were highly resistant to xRT. In these 

tumors, xRT did not induce either the pro-apoptotic or cell cycle regulatory arms of the p53-

associated transcriptional response, demonstrated respectively by a lack of PUMA and p21 

up-regulation after xRT. Consistent with the absence of these molecular events, tumors with 

p53 deletion did not undergo treatment-related apoptosis and resumed proliferation within 

24 hours after treatment.

Medulloblastomas with Bax deletion were equally radiation resistant, despite having intact 

p53. The absence of apoptosis after xRT in these tumors made it possible to discern p53-

dependent effects that would otherwise have been obscured by widespread cell death. Unlike 

p53-deficient tumors, radiated Bax-deficient tumors resolved into 2 distinct populations, as 

tumor cells either terminally differentiated or continued to proliferate. Terminally 

differentiated tumor cells expressed neuronal markers and formed Homer-Wright rosettes. 

Although rosettes are commonly observed in human medulloblastoma, the exaggerated 

abundance of rosettes in radiated M-SmoBaxfloxed tumors recalls the histologic appearance 

of the highly malignant pediatric brain tumor known as Embryonal Tumor with Multilayered 

Rosettes (ETMR) [26]. Despite the increased differentiation of radiated, Bax-deleted 

medulloblastoma, these tumors progressed as rapidly as untreated tumors, due to the rapid 

growth of the proliferative component.

Paired BrdU/EdU experiments and immunophenotyping of BrdU+ tumor cells demonstrated 

the proliferative tumor cells that drove recurrence behaved as stem cells, giving rise to 

differentiating progeny and self-renewing proliferators. Prior investigations subjecting 

RCAS-induced, primary mouse medulloblastomas to 2Gy xRT showed that tumor stem cells 
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in the perivascular niche resumed proliferation within 72 hours of treatment [20]. We found 

that 10Gy xRT was sufficient to prevent early recurrence in M-Smo tumors, but only when 

the functions of both p53 and the intrinsic apoptotic pathway remained intact.

In mice with intact p53, Bax deletion allowed cells throughout the tumor to survive xRT. 

While p53 activation induced terminal differentiation in most cells of radiated, Bax-deficient 

tumors, perivascular stem cells did not undergo prolonged cell cycle arrest after treatment. 

The up-regulation of p21 in perivascular cells after xRT demonstrated that radiation 

provoked a p53-mediated response. In the absence of apoptosis, this p53-mediated 

transcriptional response was unable to prevent perivascular stem cells from repopulating the 

tumors. Thus perivascular stem cells were resistant to the p53-mediated cell cycle exit that 

led to differentiation outside of the perivascular regions. Taken together with the prior 

studies using lower dose xRT [20], our studies show that effective tumor treatment requires 

control of perivascular stem cells, through a dose of xRT that is sufficient to produce stem 

cell death through the intrinsic apoptotic pathway.

While we found that p53 function is required for response to xRT in our model, the 

relationship observed in medulloblastoma patients between p53 mutation and recurrence 

after therapy is complex [27–29]. Most medulloblastomas are radiosensitive and most 

medulloblastomas are p53 wild-type. Prior studies have shown in other tumors that p53 

function is required for the susceptibility of cancer cells to DNA-damaging therapies [18, 
19, 30–33]. In medulloblastoma patients, the effect of p53 mutation has depended on 

molecular subgroup. In the SHH subgroup of medulloblastoma, tumors with p53 mutation 

are significantly more likely to recur after treatment; in contrast, in the WNT subgroup, p53 

mutation is not associated with recurrence [34]. All of the p53 mutations detected in these 

studies, however, were missense mutations, rather than deletions. Moreover, the mutations 

associated with the WNT and SHH subgroups were not equivalent. Specific mutant alleles 

may retain varying degrees of residual p53 function, and may also produce gains of function 

that affect prognosis [35]. Our model shows that complete loss of p53 function confers 

radiation resistance, consistent with the worse prognosis of Shh subgroup patients with 

mutant p53. The consequences of p53 missense mutations in human medulloblastoma must 

be interpreted in light of the subgroup context, the degree of residual p53 activity and 

potential gain of function.

We propose that loss of competence for apoptosis, downstream of p53, is a significant 

source of resistance to therapy. With variable impact and an overall frequency of about 5%, 

p53 mutations cannot account for the 20% rate of medulloblastoma recurrence. We found 

that even in tumors with intact p53, a single mutation in the apoptosis pathway is sufficient 

to cause radiation resistance. While Bax mutations have not been identified in 

medulloblastoma sequencing studies [36, 37] and Bax protein is consistently detected in 

patient-derived medulloblastoma samples [24], obstruction of apoptosis may be 

accomplished in cancer through diverse mechanisms, including up-regulation of anti-

apoptotic Bcl-2 homologs and activation of Akt. Our previous finding that Bcl-2 expression 

correlates inversely with spontaneous apoptosis in patient-derived medulloblastoma samples, 

shows that Bax-dependent cell death is actively modulated by other proteins. Thus although 

Bax deletion does not directly model a genetic change seen in human medulloblastoma, the 
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principle demonstrated by Bax deletion, that apoptosis is required for treatment sensitivity, 

remains highly relevant. Moreover, this principle may be generalizable to other cancers, 

where inactivating frameshift mutations in Bax have been identified, including human colon 

cancer, gastric cancer and high grade glioma [38–41]. Our data indicate that any mutation or 

post-translational event that impairs the internal apoptotic pathway can confer treatment 

resistance.

Differentiation after DNA-damaging therapies has been observed in diverse cancers [42, 43]. 

We show that the combination of genotoxic stress, functional p53 and impaired apoptosis is 

sufficient to induce abundant differentiation, as xRT provoked neural differentiation in 

tumors with intact p53 and Bax deletion. We previously noted abundant intra-tumor 

differentiation in untreated, Bax-deficient medulloblastomas in the more slowly tumorigenic, 

ND2:SmoA1 mouse line; we interpreted terminal differentiation as an alternative fate choice 

for apoptosis-incompetent tumor cells with DNA damage that prevented continued 

proliferation [24]. In these untreated tumors, we ascribed DNA damage to replication stress. 

A similar histologic pattern was previously described in untreated medulloblastomas 

generated through simultaneous deletion of PTEN and overexpression of Shh [20]. In these 

tumors, PTEN loss caused activation of Akt, which may, like Bax deletion, effectively block 

apoptosis [44]. Taken together, these data show that the presence of differentiation in a 

tumor specimen, particularly after treatment, is not necessarily evidence of benign prognosis 

but rather may indicate defective apoptosis and increased risk of recurrence.

The similarity between radiated M-Smo;Baxfloxed medulloblastoma and ETMR suggests the 

possibility of a common mechanism. ETMR, like Bax-deleted medulloblastoma, is highly 

resistant to treatment. The pathogenesis of ETMR has been related to a fusion of the TTYH1 

promoter with the C19MC microRNA cluster, ultimately leading to aberrant DNA 

methylation [45]. The mechanism of ETMR treatment resistance, however, is not known. 

Changes in DNA methylation, however, may plausibly alter the capacity for apoptosis, for 

example by changing the expression of key apoptosis-regulating proteins. Our data suggest 

that apoptosis resistance in the setting of genomic instability can produce differentiated 

pathology along with poor prognosis and should be suspected in malignant tumors such as 

ETMR that show abundant differentiation.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Medulloblastomas in M-Smo mice are radiation sensitive
A,A’) Kaplan Meier curves demosntrated that xRT extends the survival of medulloblastoma-

bearing mice. B–E) H&E stained sections of representative tumors harvested at the indicated 

interval after xRT. Tumors reduction is detectable 24 hours after xRT and is maximal by 5 

days. F–I) IHC for γH2AX shows that cells with detectable DNA damage are rare in 

untreated tumors; xRT induces homogeneous γH2AX expression at 4 hours after xRT, that 

resolves by 24 hours. J–M) IHC for cC3 shows that apoptotic cells are rare in untreated 

tumors. Radiation induces widespread apoptosis by 4 hours after treatment. Apoptosis 
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continues through 24 hours after xRT. By 5 days, apoptotic cells are rare within the residual 

tissue that persists after xRT. Scale bars are 1mm in low power images and 20 µm in insets.
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Figure 2. Increased expression of p53 targets mediating apoptosis and cell cycle arrest after xRT
A) Quantification of mRNA abundance after xRT based on expression microarray data. B) 

The five most enriched gene sets from the genes with increased expression using GSEA 

analysis (see supplementary table 1). C) Comparison of mRNA abundance change after xRT 

among indicated gene sets (see supplementary table 2). P-values are estimated by 

permutation. D) Fold change in the abundance of mRNA for Puma, p21 and GAPDH when 

radiated and untreated M-Smo tumors are compared (n=3 for each group). Abundance of 

mRNA was measured by quantitative RT-PCR and normalized to the abundance of β2 

Microglobulin (B2M) mRNA. Puma and p21 are induced by xRT, while GAPDH abundance 

is not significantly altered.

Crowther et al. Page 18

Cancer Res. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Conditional deletion of p53 abrogates the treatment response to xRT
A,B) IHC for p53 demonstrates accumulation of p53 protein 2 hours after xRT in M-Smo 

tumors with intact p53. C,D) In M-Smo;p53floxed tumors, p53 is absent in tumor cells but 

detectable in adjacent stroma and in endothelial cells within the tumors. E–J) In situ 
hybridization demonstrates mRNA for Puma and p21 as indicated. Both Puma and p21 

mRNAs are induced by xRT in M-Smo tumors. Post-xRT expression of Puma and p21 is 

reduced in tumors with conditional deletion of p53. K–M) Cleavage of caspase 3 is not 

induced in M-Smo;p53floxed tumors by xRT at either 4 hours, 24 hours or 5 days after 

Crowther et al. Page 19

Cancer Res. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



treatment. N–P) IHC for PH3 demonstrates mitotic figures. M-Smo;p53floxed tumors 

demonstrate absence of mitosis 4 hours after xRT, but demonstrate frequent mitoses 24 

hours and 5 days after treatment. Scale bars: 1mm (A,C and K–P), 100 µm (B,D and E–J), 

and 50 µm (insets).

Crowther et al. Page 20

Cancer Res. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. Medulloblastomas with Bax deletion are resistant to xRT despite activation of p53
A,A’) Kaplan Meier curves compare the survival of radiated M-Smo;Baxfloxed mice to 

radiated and untreated M-Smo mice. Log Rank analysis shows that the difference in the 

survival of radiated mice with intact or deleted alleles of Bax is statistically significant. B–

G) xRT induces γH2AX (B–D) and phosphorylation of p53 (E–G) in medulloblastomas of 

both M-Smo and M-Smo;Baxfloxed mice. H–M) IHC for cC3 demonstrates that apoptosis is 

strongly induced by xRT in M-Smo tumors, but greatly reduced in M-Smo;Baxfloxed tumors. 
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N–P) TUNEL staining similarly demonstrates that cell death after xRT is greatly reduced in 

tumors with Bax deletion. Scale bars: 50 µm (B–-G and K–P), 100 µm (H–J).
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Figure 5. Absence of cell death in medulloblastoma with Bax deletion after xRT or 
chemotherapy
A–C) H&E stained sections of representative, radiated M-Smo;Baxfloxed tumors at (A) 48 

hours after 10 Gy, (B) 5 days after 10 Gy, and (C) after 5 daily doses of 2Gy consistently do 

not demonstrate tumor regression typical of medulloblastoma with intact Bax. D–I) cC3 and 

TUNEL staining do not demonstrate widespread apoptosis at the indicated interval after 

treatment. J,K) IHC for cC3 shows apoptosis in an M-Smo tumor 8 hours after etoposide 

treatment. Markedly less apoptosis is induced by etoposide in a representative M-

Smo;Baxfloxed tumor. Scale bars: 500 µm (A–C and J,K), 50 µm (D–I).
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Figure 6. Radiation induced changes in Bax-deleted medulloblastomas: DNA repair and 
neuronal differentiation
A,B) γH2AX, strongly detectable 4 hours after xRT resolved by 48 hours, consistent with 

effective DNA repair. C,D) Between 4 and 48 hours after xRT, M-Smo;Baxfloxed 

medulloblastomas developed a differentiated histology, marked by the elaboration of 

eosinophilic neuropil and the formation of Homer Wright rosettes. E,F) IHC for NeuN 

demonstrates the dramatic increase in NeuN expression that was consistently seen 48 hours 

after radiation of Bax-deleted tumors. Scale bars: 100 µm (A–D and insets), 1 mm (E,F).
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Figure 7. In apoptosis-deficient tumors, xRT fails to prevent the growth of perivascular stem cells 
that drive recurrence
A) IHC demonstrates p21 up-regulation specifically in cells of the perivascular region 

(arrowhead) 4 hours after xRT. B) 48 hours after xRT, cells of the perivascular region 

(arrowhead) express proliferation marker PCNA. C) Double labeling with antibodies to 

PCNA and differentiation marker p27 demonstrates proliferation in the perivascular region 

(arrowheads) and differentiation further from the vessels. D–F) BrdU injected 5 days after 

xRT labels a subpopulation of tumor cells in a representative M-Smo;Baxfloxed tumor. EdU 

injection 2 hours prior to harvest labels an overlapping subpopulation. All EdU+ cells were 
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BrdU+, indicating that cells proliferating 7 days after xRT descend from cells proliferating 2 

days earlier. Some BrdU+ cells were EdU- consistent with a portion of BrdU+ cells having 

left the cell cycle. G–I) In the same tumor, a portion of BrdU+ cells express NeuN (yellow 

arrows), consistent with neuronal differentiation. J–L) In the same tumor, numerous BrdU+ 

cells are PCNA+, indicating continued proliferation. M–O) BrdU+ cells were predominantly 

Sox2+, consistent with a stem cell phenotype. Scale bars: 100 µm (A–C), 50 µm (D–O).
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