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Abstract

Accurate representation of myocardial infarct geometry is crucial to patient-specific computational
modeling of the heart in ischemic cardiomyopathy. We have developed a methodology for
segmentation of left ventricular (LV) infarct from clinically acquired, two-dimensional (2D), late-
gadolinium enhanced cardiac magnetic resonance (LGE-CMR) images, for personalized modeling
of ventricular electrophysiology. The infarct segmentation was expressed as a continuous min-cut
optimization problem, which was solved using its dual formulation, the continuous max-flow
(CMF). The optimization objective comprised of a smoothness term, and a data term that
quantified the similarity between image intensity histograms of segmented regions and those of a
set of training images. A manual segmentation of the LV myocardium was used to initialize and
constrain the developed method. The three-dimensional geometry of infarct was reconstructed
from its segmentation using an implicit, shape-based interpolation method. The proposed
methodology was extensively evaluated using metrics based on geometry, and outcomes of
individualized electrophysiological simulations of cardiac dys(function). Several existing LV
infarct segmentation approaches were implemented, and compared with the proposed method. Our
results demonstrated that the CMF method was more accurate than the existing approaches in
reproducing expert manual LV infarct segmentations, and in electrophysiological simulations. The
infarct segmentation method we have developed and comprehensively evaluated in this study
constitutes an important step in advancing clinical applications of personalized simulations of
cardiac electrophysiology.
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[. Introduction

Left-ventricular (LV) myocardial infarction, a medical condition in which regions of a
patient’s LV lose viability due to prolonged ischemia, is a prominent cause of serious
complications, including heart failure and ventricular arrhythmia [1], [2]. Central to the
mechanisms underlying these complications is the structural and electrophysiological
remodeling that occurs in the infarct regions during the healing process [1], [3], [4].
Recently, computational modeling of patient hearts has emerged as a promising non-invasive
tool that can provide clinicians with personalized guidance in the treatment of post-infarct
arrhythmias [5], [6], [7], [8], [9], [10]. However, to accurately represent the myocardial
structural remodeling that occurs in ischemic cardiomyopathy, the computational models
need to incorporate the patient-specific geometry of the infarct region [5], [11]. Presently,
among the various imaging techniques used to acquire the infarct structure in the clinic [12],
two-dimensional (2D) late-gadolinium enhanced cardiac magnetic resonance (LGE-CMR)
scanning is the most widely used [13]. Therefore, accurate segmentation of the LV infarct
regions from clinically acquired LGE-CMR images is paramount to patient-specific
modeling of cardiac (dys)function in ischemic cardiomyopathy.

Existing approaches for LV infarct segmentation from LGE-CMR images can be broadly
categorized into those based on image intensity thresholding, feature clustering, or energy
minimization. Some of the techniques based on image intensity thresholding, including full
width at half maximum (FWHM) [14] and signal threshold to reference mean (STRM) [15],
[16], are the simplest to implement, and the most widely used in clinical studies. There are
other approaches that employ intensity thresholding in the segmentation, e.g., the region
growing [17], Otsu method [18], and watershed segmentation [19]; these are not as widely
used as FWHM or STRM. Feature clustering techniques that have been utilized in the infarct
segmentation include support vector machines [20], fuzzy c-mean clustering [21], and
dictionary learning [22]. A drawback of the infarct segmentation methods based on intensity
thresholding or feature clustering is that these methods do not incorporate any smoothness
constraints, and therefore are highly influenced by image noise [23]. Accordingly, LV infarct
segmentation methods based on energy minimization that incorporate smoothness
constraints, along with region and boundary data terms, have been developed [24], [23].
Rajchl et al. [24] developed an interactive approach for the infarct segmentation based on a
hierarchical convex max-flow method. However, this method was designed to operate on
three-dimensional (3D) LGE-CMR images [24], which are not widely used in the clinic. Lu
etal. [23] proposed to segment the infarct using a method based on graph cuts, but the
performance evaluations they conducted were limited, in that a dataset of only ten patient
images, and one accuracy metric, namely the infarct mass, was utilized [23]. Thus, there is a
lack of a methodology that has been developed and thoroughly evaluated for robustly
segmenting LV infarct from clinically acquired 2D LGE-CMR images. Additionally, no
prior study has evaluated the efficacy of an infarct segmentation method based on
computational simulations of cardiac (dys)function, for patient-specific modeling of the
heart. Our goal was to address these needs.

We expressed LV infarct segmentation from clinically acquired 2D LGE-CMR images as a
continuous min-cut optimization problem, and solved it using the dual formulation of the
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problem, namely the continuous max-flow (CMF). An image gradient-weighted smoothness
term, along with a data term that quantified similarity between intensity histograms of
segmented regions and those of a set of training images, was incorporated, for robustness,
into the optimization objective. The 3D geometry of the infarct was reconstructed from the
2D segmentation using an interpolation technique we developed based on logarithm of odds
(LogOdds). The developed methodology was extensively evaluated against expert manual
LV infarct segmentations from 51 short-axis (SAX) LGECMR images, with metrics based
on infarct geometry, and on outcomes of individualized simulations of cardiac
electrophysiology. Several previously reported LV infarct segmentation methods were also
implemented, and their performance was compared to that of our method.

Preliminary results from this study were published in conference proceedings very recently
[25]. This paper substantially extends the conference publication, with a more detailed
description of the methodology, 3D implementation of the CMF algorithm, use of several
additional clinical LGE-CMR images in the evaluation, and importantly, a new assessment
of the efficacy of the developed infarct segmentation method based on outcomes of
individualized simulations of cardiac electrophysiology.

[l. Methods

A. Overview of Our Methodology for Segmentation and Reconstruction of the LV Infarct

The workflow of our methodology for segmentation and 3D reconstruction of LV infarcts
from clinically acquired SAX LGE-CMR images is illustrated in Fig. 1. Given an image, the
epi- and endo-cardial boundaries of the LV were manually contoured in the image slices by
an expert. The infarct was then segmented using the CMF method, for which the LV
myocardium was used as the region of interest and the initialization region. We implemented
two different versions of the CMF algorithm, namely a 2D approach, where each slice was
segmented independently, and a 3D approach (CMF3D), where the entire stack of slices was
segmented at once by means of an intermediate image with isotropic resolution that was
created using nearest-neighbor interpolation method. Finally, the 3D geometry of the infarct
was reconstructed from the infarct segmentations using an interpolation technique we
developed based on LogOdds. Subsections B-D below describe in detail the components of
the pipeline shown in Fig. 1. All image processing tasks were performed in the Matlab
computing environment (Mathworks Inc., Natick, MA) installed on a personal computer
equipped with a 2.3 GHz Intel Core i7 CPU, 12 GB of RAM, and the Windows operating
system.

B. LV Infarct Segmentation Expressed as a Continuous Min-Cut Problem

Let /(x) € & be the given image, where % is the set of image intensities. Infarct
segmentation was formulated as an optimization problem by iteratively evolving a contour
€ (s) : [0,1] — R® over time, where sis the arc-length parameterization of % (5), as
illustrated in Fig. 2(a). Note that the mathematical formulations we provide here are for 2D
segmentation, but the same concepts apply to surface evolution for 3D segmentation. The

current contour ¢, at time ¢is propagated to its new position &}, ;, at time £+ /such that
%1, Minimizes the following energy [26]:
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min {.f%;e; (@) dot ] e (2) dot],,9(9) ds} &

where %”f and ;" are the foreground and background expansion regions with respect to «;,

e} (z)and ey () are the corresponding cost functions, and g(s) is a boundary smoothness
term [26]. Here, the foreground and background regions represent the LV infarct region and
normal myocardium, respectively. Let t(x) € {0, 1} be the function labeling the region
enclosed by ¢, such that «(x) = 1 when xis inside Crand «(X) = 0 otherwise.

In the present study, the cost functions were defined in terms of a data term Egp(¢)
comprising of the Bhattacharyya distance metric [27] between the intensity histograms /(2)

of the segmented regions and intensity histograms 7, () of a training dataset (target intensity
histograms), where /= £, band z € Z. The data term is defined as

By, (u)=— Z Z \ i (2) ;Lz (2). o)

i=fbzeZ

The target intensity histograms i 7.5 (2) were derived using the Parzen method [28] from the
expert manual segmentations of the entire set of training images. Note that the intensity
histogram of the infarct region varied substantially from one image to another, and therefore
the incorporation of multiple images in the derivation of target intensity histograms was

important. The region fidelity cost functions e}r (x)and e*b(x) were given by the first-order
derivatives of £{u) w.rt. u{x) [27], i.e.,

e @) =g > {\/m«z) () - ,/mm_z(x»}, ®

ey

where A;= [q ujdx, i= f, b, is the area of the foreground and background and K(.) is the
Gaussian kernel function [28].

To express Equation (1) as a continuous min-cut problem, let D;(x) and D,(x) be label
assignment functions defined as follows:

e (z), wherex € G,
— b ’ t
Dy (2) = { 0, otherwise
et (z), wherez ¢ ¢,
D = f ’ .
2 (%) { 0, otherwise @)

The optimization problem in Equation (1) can then be expressed as the continuous min-cut
formulation [26]
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u(.'lgéi{n[],l} <1 — D1> + <’U,, D2> +ng (I) ‘V’Lll|d,fc, (5)

where ¢(x) € {0, 1} is a binary constraint. We used an image gradient-weighted smoothness
function, g(x) = A1 + Ay exp(—kz | VA(X)|) in our formulation, where parameters hq; Ap; A3 >
0.

It is challenging to solve the combinatorial optimization problem (5), because it is highly
non-linear and non-convex. However, it has been proven, using the convex optimization
theory [26], [29], that problem (5) can be solved globally and exactly via the following
convex relaxation:

; 1—u,D D d
u(?)lez[%)l] < u, ]_> + <’LL, 2> +fszg (.'B) |V’U“ X, (6)

where the binary constraint t(x) € {0, 1} in Equation (5) is now relaxed to «(x) € [0, 1].
Thresholding the result of the convex relaxation in Equation (6) provides the exact and

global optimum of (1). In other words, the continuous min-cut problem in Equation (5) can
be solved globally.

C. CMF, the Dual Formulation of the continuous Min-Cut Problem

It is challenging to efficiently solve the continuous min-cut problem (6) directly. However, it
can be efficiently solved via its dual, the max-flow formulation, using one of the global
solvers available for this task [26], [30]. In the present study, we chose the CMF method
described by Yuan et al. [26]. Note that the convex relaxation problem in Equation (6) is
mathematically equivalent to the CMF formulation (Equation (12) in the previous study
[26]). The CMF formulation was efficiently optimized using the classical augmented
Lagrangian method [31] and implemented in the CUDA architecture (NVIDIA Corp., Santa
Clara, CA).

Since a first order-approximation of the data term was used in the optimization, the value of
energy function was not guaranteed to monotonically decrease with iterations. Accordingly,
the iterations were stopped when either the incremental change in segmented region area
between two successive iterations was smaller than 4 mm2, or the number of iterations
exceeded 8. These threshold values were determined heuristically. Figure 2(b) shows value
of Bhattacharyya distance metric as a function of iteration number for an example
segmentation.

D. Reconstruction of the 3D Infarct Geometry

To represent the LV infarct geometry in patient specific models of ventricular
electrophysiology, the segmentation of the infarct from 2D LGE-CMR images needs to
transformed into a 3D reconstruction [5], [32]. We have recently developed a technique
called LogOdds method for this reconstruction [33]. The LogOdds method was shown to be
significantly more accurate than several alternatives, including variational implicit, shape-
based interpolation, and nearest neighbor methods [33]. LogOdds is an example of a class of
functions that can be used to map binary image slices into the Euclidean space [34]. The
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mapped image slices can then be interpolated using linear combinations. Mathematically, let
p € IP be the probability that a voxel is assigned to a particular anatomical structure. Then,
the LogOdds of p, denoted as /ogif(p), is the logarithm of the ratio between pand its
complement. i.e., [o9it () :log(lf;p). Let L={logit (p) [p € P} and P (¢) =$, the
inverse of /ogifp). The functions /ogiqp) and P (§) make up a structure-preserving map
between IP and IL [34]. Let sbe the number of slices in the image, /7the number of pixels per
slice, and mthe number of voxels in the interpolated image. The discrete probability maps
P:Q — P", where Q ¢ R? are obtained from discrete label maps B : @ — B" of
segmentation. LogOdds maps L : @ — IL" are created from discrete probability maps using
logi{(.) function.

In this study, we used smoothing by spatial Gaussians with a standard deviation of two
pixels, to convert binary image slices containing the infarct segmentations into probability
maps. When a binary image slice representing the segmentation of an infarct region was
smoothed using the Gaussian kernel, each pixel was assigned a value in the interval [0, 1],
which we interpreted as the probability of that pixel belonging to the infarct region.
Similarly to Pohl et al. [34] we used a probability value of 0.5, which maps to a LogOdds
value to 0, to define the object boundary. The 2D probability maps resulting from Gaussian
smoothing were converted into LogOdds maps using the /ogif.) function. A cubic spline
method was then used in the interpolation I.°" — IL™, of the stack of 2D LogOdds maps into
a 3D image. A 3D probability map P : Q — P™ was generated from the interpolated image
via logistic transformation. Finally, the 3D probability map was thresholded to generate a 3D
reconstruction of the infarct region.

Even when the infarct segmentation is performed in 3D, the segmented regions need to be
interpolated to obtain the final reconstruction. This is because the voxel size of the
segmented image produced by CMF3D was 1.5-2.4 mm, which was coarser than the
element size of 0.4 mm needed to resolve the electrical activation wavefront [32].

E. Data Acquisition

The data we utilized to train and evaluate the CMF method comprised of clinical LGE-CMR
images of 61 patients with ischemic cardiomyopathy and LV dysfunction (LV ejection
fraction < 35%), randomly selected from the CMR arm of the PROSE-ICD study [35]. The
images were acquired with an inversion recovery fast gradient echo pulse sequence, 15 to 30
minutes after a total injection of 0.2 mmol/kg gadodiamide (Omniscan, GE Healthcare
Technologies). The patients were scanned in the SAX plane with a 1.5 Tesla whole-body
scanner (Signa CV/1, GE Healthcare, Milwaukee, Wisconsin; or Siemens Avanto, Erlangen,
Germany). The imaging parameters were as follows: TR 5.4 ms, echo time 1.3 ms, inversion
time (T1) 175 to 250 ms, 2 excitations, 1 R-R interval imaging, flip angle 20, 350-ms time
delay after the R wave, and 24 views per segment. In-plane resolution of the images was
1.5-2.4 mm, and the slice thickness was 8-10 mm, with 0-2 mm slice gap. The study
protocol was approved by the Johns Hopkins Hospital Institutional Review Board, and all
patients gave written informed consent. The LV myocardium and infarct were manually
contoured by an expert in all images.
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The data were divided into a training set and a testing set, consisting of 10 and 51 LGE-
CMR images, respectively. The training dataset comprising of a total of 48 slices was used
for sequentially optimizing the parameters of the CMF method (i.e., A1, A, and A3), and
generating the target intensity histograms. The testing dataset consisting of a total of 326
slices was used for evaluating the method. Note that, to maximize the testing set size, only a
small subset of the data was used to form the training set.

F. Evaluation of Accuracy of Infarct Segmentation based on Outcomes of
Electrophysiological Simulations

The block diagram for the evaluation of our infarct segmentation methodology based on
outcomes of electrophysiological simulations is shown in Fig. 3. Simulations of both normal
and abnormal cardiac function, in which cardiac electrical activity was modeled from ionic
channels to the whole organ, were performed. As these multiscale simulation experiments
were computationally very expensive, they were conducted with models generated from only
a subset of 7 LGE-CMR images randomly chosen from our testing set. For each of these 7
images, the RV boundaries were also manually contoured in each 2D slice using the ImageJ
software program (National Institutes of Health, Bethesda, MD), to incorporate the RV
geometry in the ventricular models. Ventricular geometry was then reconstructed from the
myocardial boundaries at an isotropic resolution of 0.4 mm using an interpolation method
based on variational implicit functions [36]. The infarct region was segmented from the
image using the CMF method, in addition to expert manual segmentation. Infarct tissue is
known to comprise of scar (also referred to as infarct core zone) and semi-viable
myocardium (or border zone) [35], and the two zones have different electrophysiological
properties. Accordingly, we divided the infarct regions in the segmented image slices into
the two zones, using a FWHM technique [35]. Three-dimensional geometry of the total
infarct region and core zone were first reconstructed using the LogOdds method. The
reconstruction for the border zone was then obtained as the relative complement of the
infarct core, where total infarct reconstruction was considered as the union. Note that, the
border zone geometry was not directly reconstructed from binary segmentations, because of
larger errors encountered in this reconstruction than those in our approach [37]. These larger
errors may be because the border zone is typically more complex in topology than the total
infarct and core. Using the ventricular reconstruction, and the infarct reconstructions, two
finite element models, one incorporating infarct zone geometries reconstructed from the
manual segmentation, and the other with infarct zone geometries built from the computed
segmentation, were created [38]. In this process, the 3D finite element meshes were
generated from the reconstructions as described previously [39]. The fiber orientations for
the models were estimated using a rule-based method [40]. The two models were identical
except for the differences in tissue labels of some of the elements that reflected the
differences in the infarct segmentations.

Electrical propagation was modeled using the monodomain formulation [32], which involves
the solution of a reaction-diffusion equation coupled to a system of ordinary differential
equations describing membrane kinetics. The governing equations were
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where ojis the intracellular conductivity tensor; V;;is the transmembrane potential; C;, is
the membrane specific capacitance; and /;,, is the density of the transmembrane current,
which in turn depends on V/,; and on a set of state variables u describing the dynamics of
ionic fluxes across the membrane. Intracellular conductivity ojassigned in the normal
myocardium were such that the resulting conduction velocities matched those recorded in
human ventricular experiments [41]. In the remodeled border zone, the transverse
conductivity was decreased by 90% to represent connexin 43 remodeling and lateralization,
which resulted in increased tissue anisotropy [42]. The infarct core was modeled as passive
tissue with zero conductivity. The Ten Tusscher human ventricular action potential model
was used to represent the membrane kinetics in the healthy myocardium [43]. For the border
zone, this action potential model was modified to represent electrophysiological changes that
have been observed experimentally [44], [45], [46]. These modifications resulted in a border
zone action potential morphology that had decreased upstroke velocity, decreased amplitude,
and increased duration, consistent with experimental recordings.

Sinus rhythm was simulated in all models by replicating activation originating from the
Purkinje network. The models were activated at six locations on the endocardium by stimuli
with a cycle length of 600 ms [47], [48]. The six locations included one on the RV free wall,
three on the LV septum, and two on the LV free wall. Appropriate timings of the stimuli
were chosen such that the resultant electrical propagation matched experimental data [49].
Since the electrophysiological remodeling within infarct tissue plays a crucial role in the
initiation and sustenance of arrhythmias [45], [6], we expected the differences in infarct
segmentations to affect the outcomes of simulations of abnormal cardiac function to a higher
degree than those of simulations of normal electrical activity. As such, simulations of VT
induction were conducted by applying, at the RV apex and the outflow tract in all models, a
programmed electrical stimulation (PES) similar to that used in the clinic [50]. Our PES
protocol consisted of 6 stimuli with a coupling interval of 350 ms, which were followed by a
premature stimulus whose cycle length was shortened until sustained VT was initiated or the
last stimulus failed to capture. If needed, two additional extrastimuli were delivered to
attempt arrhythmia induction. An arrhythmia was classified as sustained if it persisted for at
least 2 seconds. Pseudo-ECGs [51] were generated in all simulations by taking the
difference between the extracellular potentials calculated at two points in an isotropic
conductive medium surrounding the heart [49]. The activation maps in simulations were
derived by determining, at each node of the finite element meshes, the instant in time at
which the upstroke of the action potential at that node reached a threshold of 0 mV. All
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simulations were performed using the software package CARP (CardioSolv, LLC) [52], [53]
on a parallel computing platform.

G. Metrics for Assessment of Infarct Segmentation Accuracy

The CMF method was evaluated using metrics based on infarct geometry as well as
outcomes of individualized simulations of cardiac electrophysiology. The evaluation using
the geometry-based metrics was done in two ways. First, the 2D infarct segmentations
computed by the CMF method was compared to expert manual delineations, using metrics
based on region overlap, boundary distance, and area. As the region overlap-based metric,
we used the Dice similarity coefficient, DSC=2|Ra N Rul/(|Ral + | Rul), where B4 and
Ry, denote regions enclosed by computed and manual segmentations, respectively, and |.|
denotes the volume of a region. The boundary distance-based metric was root meat square
error (RMSE), calculated as the RMS of the shortest distance from each point on the
boundary of the computed segmentation to the boundary of the manual delineation. Absolute
area difference, SA=|As— A/ A, Where A4 and Ay, are the areas of computed and
manual segmentations, was used as the area-based metric. Second, we compared the 3D
infarct reconstructions built from the segmentation by the CMF method to the ones
generated from the manual delineations, using metrics based on region-overlap, boundary
distance, volume, surface area, and topology. Note that these 3D metrics were important
because they evaluated the performance of the segmentation methods in the estimation of
indices such as infarct volume and surface area, which have shown to be predictive of
clinical outcomes [35], [2]. Further, the generation of patient-specific models, for which the
CMF method was developed, utilized the 3D infarct reconstructions. The boundary distance
error in the 3D scenario was defined similarly to the 2D case, except that the calculation in
the former was based on surfaces. As volume- and surface area-based metrics, we used
volume difference (5Vg), absolute volume difference (5V), and surface area difference
(6SA), expressed as a percentage of the volume or surface area of the infarct reconstructions
built from the manual segmentation. The topology-based metric we employed was the
absolute difference in Euler characteristic (dy) between the infarct reconstructions built from
segmentations by the CMF method and the manual segmentation.

The difference in pseudo-ECGs between simulations with models incorporating infarct
reconstructions from segmentation by the CMF method and by manual delineation was
calculated using RMSE, mean absolute deviation (MAD), and correlation coefficient
(CORR) metrics. Note that the MAD and CORR metrics have been applied in prior clinical
studies to compare ECGs of reentrant activity [54]. The MAD metric is defined as

5 (x- x) - (vi- )|

MAD=21 - <, @
> (Xi_ X) + (Y— Y> |

i=1

where Xand Yare two waveforms with length 7 [54]. The MAD metric varies between 0%
and 100% corresponding to identical and completely different waveforms, respectively.
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The difference in activation maps between simulations with models incorporating infarct
reconstructions from segmentation by the CMF method and manual delineations were

Tp

assessed as activation time difference, ATD=> _ 1|Ti — T |/nn, where 7, is the number

of nodes in the finite element meshes of the models, and 74 and 77/, respectively, are the
activation times of node 7in simulations with models incorporating infarct reconstructions
from segmentations by the CMF method and manual delineation. The infarct core zone was
excluded from ATD calculations, as the core was modeled as an insulator and did not
activate. All metrics based on outcomes of electrophysiological simulations were computed
in the steady state, when activation from beat to beat was stable.

H. Comparison of the CMF method with Existing Infarct Segmentation Methods

The CMF method was compared to several existing infarct segmentation techniques,
including the FWHM method, the STRM approach with standard deviations one (STRM1),
two (STRM2) and three (STRM3) from the reference mean, and the region growing (RG)
algorithm. These methods were chosen due to their wide popularity in the clinical [35], [55],
[56], [57] and modeling [6], [58] research communities. Also, previous studies have
established high reproducibility and accuracy in infarct segmentation by the FWHM [15],
[59], [60] and STRM methods [59]. In all the existing methods, the LV myocardium
segmentation was used to constrain the infarct segmentation. The enhanced intensity region
of the myocardium, normal region of the myocardium, and a seed point in the infarct region,
for the FWHM, STRM, and RG methods respectively, were identified by an expert. To test
whether incorporating a smoothing step into the threshold-based methods increased their
accuracy, we re-evaluated these methods after applying connectivity filtering [18] to the
infarct segmentations by these methods. The accuracy of the infarct segmentations by the
existing methods was evaluated using metrics based on geometry, as in Fig. 1, and the results
were compared to those of the CMF algorithm. Note that, in the evaluation of the various
methods, the CMF method did not require any user inputs apart from the delineation of the
LV myocardium, but the other methods did. Wilcoxon signed rank sum tests were performed
to identify the statistically significant differences in DSC between the CMF method and the
others. Paired t-tests were conducted to examine statistically significant difference between
the log-transformed volumes of the infarct reconstructions built from segmentations by the
CMF method and those by the existing approaches. All statistical analyses were performed
using GraphPad Prism 6.2 (GraphPad Software Inc., CA), and an « of 0.05 was used as the
level of significance.

To evaluate whether the poorer performance of an infarct segmentation method in geometry-
based evaluations leads to inferiority in its performance in evaluations based on outcomes of
simulations, we selected one representative method from the existing techniques, and
evaluated its accuracy based on outcomes of electrophysiological simulations, as in Fig. 3.
The representative method we chose was the best alternative approach in terms of DSC,
which is widely regarded in the image processing community as an effective metric in
evaluating 3D geometries. Note that, we used the same interpolation method, i.e., the
LogOdds method, to reconstruct the 3D infarct geometry, regardless of the approach used to
segment the infarct from the 2D images.
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A. Assessment of Infarct Segmentation Accuracies with Geometry-based Metrics

The optimal values of the parameters A4, A2, and A3 of the CMF method, obtained after the
training, were 0.3, 0.1, and 10, respectively. For the CMF3D method, the optimal values of
these parameters were 0.4, 0.3, and 5, respectively. The mean computation time for the
execution of the CMF method was 0.8 +£0.3 s for a single slice, and 4.3+1.3 s for an LGE-
CMR image. The CMF method converged within two iterations for a single slice. Results of
the various infarct segmentation methods applied to an example LGE-CMR image are
shown in Fig. 4. Qualitatively, between the various methods, infarct segmentations by the
CMF method matched most closely with the manual delineations. Evidently, the
segmentations by the CMF method had a substantially smaller number of isolated regions
than those by the image intensity threshold-based techniques.

The summary of quantitative evaluation of the different infarct segmentation methods using
2D geometry-based metrics is shown in Table I. The CMF method outperformed all
alternatives, in all accuracy metrics. In particular, mean DSC of the CMF method was
significantly higher than those of alternatives. Among the existing methods, the STRM2
approach had the highest mean DSC. The summary of evaluation results for the core and
border zones were reported separately in Table 11. Between the infarct border zone and core,
all the methods reported substantially higher accuracy in DSC for the latter. Compared to all
the alternatives, the CMF method yielded significantly higher accuracy for the border zone.
While the addition of connectivity filtering to the existing methods reduced the number of
noise-induced false positive regions, and increased the DSC metrics of these methods by up
to 2%, this improvement was not sufficient enough to make the threshold-based methods
perform comparably to the CMF method.

The surfaces of total infarct reconstructions generated from the segmentations of three
example LGE-CMR images by the various methods are shown in Fig. 5. Qualitatively,
between the various infarct segmentation methods, the reconstruction corresponding to the
CMF method most closely resembled the one based on manual segmentation. Summary of
the quantitative evaluation of the different infarct segmentation methods with metrics based
on the 3D reconstructions is shown in Table I11. Similarly to the results in Table I, the CMF
method outperformed all alternatives, in all metrics. Particularly, the CMF method yielded
significantly higher DSC, and significantly smaller volume errors than the existing
techniques. On average, the CMF method underestimated the volume, as indicated by a
6Vign of —8.5%. Note that, the ranking of different methods according to their DSC values
was the same, regardless of whether the evaluation was done in 2D (Table I) or 3D (Table

).

B. Assessment of Infarct Segmentation Accuracy with Metrics based on Outcomes of
Electrophysiological Simulations

Since STRM2 was the existing method with the highest DSC, it was chosen as the
representative alternative method for comparison with the CMF method in our
electrophysiological simulation studies. The mean edge length of the finite element meshes
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generated for our ventricular models was 0.37 mm. Fig. 6 illustrates the activation maps, and
corresponding pseudo-ECGs, from one beat of sinus rhythm simulated for three patient
hearts. Visually, for a given patient heart, the activation maps simulated with models that
incorporated infarct reconstructions built from manual and computed segmentations matched
closely. However, between the pseudo-ECGs corresponding to the CMF and STRM2
methods, the former matched more closely with pseudo-ECGs corresponding to the manual
segmentation. The summary of quantitative evaluation of the CMF and STRM2 methods
based on outcomes of the sinus rhythm simulations are shown in Table IV. It was evident in
the quantitative evaluation that, between the CMF and STRM2 methods, the outcomes of
simulations corresponding to the former matched more closely with the ones corresponding
to the manual segmentation.

Table V presents the types of VTs initiated in our simulations of arrhythmia induction
performed on all generated models. Between the CMF and STRM2 methods, the type of VT
induced in models incorporating infarct segmentations with only the former perfectly
matched those induced with models incorporating manual segmentations. Of the seven LGE-
CMR images used in our simulation studies, VT was induced in models built from only
three, for all three types of infarct segmentations. The infarct border zones delineated from
these three images were larger than those from the rest, which is a major criterion for VT
inducibility [45]. Thus, we were able to induce VT in the nine models regardless of the
infarct segmentation method. Fig. 7 presents the simulated activation maps, and
corresponding pseudo-ECGs, from one cycle of VTs simulated with models built from the
three images. The activation maps of VT simulations matched closely across all three infarct
segmentation methodologies in Patient 1. In VT simulations performed for Patient 2,
between the activation maps corresponding to the STRM2 and manual segmentation
methods, the activation map corresponding to the CMF method matched the former more
closely. Although the direction of the simulated reentry circuit corresponding to the CMF
method is opposite of that of the manual method in Patient 2, the simulations based on the
CMF method will still be helpful in locating the organizing center of the reentrant circuit, for
identifying target locations for catheter ablations in post-infarction patients, and stratifying
the patient risk for ventricular arrhythmias post-infarct. For Patient 3, the VT simulated
using the model incorporating segmentations by the STRM2 method was polymorphic,
where the propagation pattern in the activation map shifted throughout the reentry period. In
contrast, in simulations for Patient 3 with models incorporating CMF or manual
segmentation, the VT was monomorphic. The pseudo-ECG corresponding to Patient 3 and
STRM2 method illustrates that the morphology of the underlying VT was polymorphic, as
listed in Table V. The RMSE, MAD, and CORR corresponding to the CMF method were
0.26 £ 0.11 mV, 33.1 + 11.6%, and 0.69 + 0.09, respectively. The values for the same
metrics corresponding to the STRM2 were 0.36 + 0.08 mV, 60.6 + 8.6%, and 0.32 £ 0.24.
Note that the differences in the RMSE, MAD, and CORR values between the CMF and
STRM2 methods were 100 /V, 27.5%, and 0.37, respectively, in VT simulations. These
differences were substantially larger than their corresponding values of 12 /A, 9.3%, and
0.05 in sinus rhythm simulations, underscoring the importance of employing accurate model
reconstruction methodologies for individualized simulations of arrhythmia in patient hearts.

IEEE Trans Med Imaging. Author manuscript; available in PMC 2016 June 03.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Ukwatta et al.

Page 13

V. Discussion

The objective of this study was to develop and thoroughly evaluate a method for the
segmentation of LV infarct from clinical LGE-CMR images, for patient-specific simulations
of ventricular electrophysiology, and in particular, infarct-related VT. The CMF method we
developed outperformed all alternative segmentation techniques, in terms of accuracy
metrics based on geometry as well as outcomes of electrophysiological simulations. To our
knowledge, this study is the first to evaluate the effect of inaccuracies in infarct
segmentation on outcomes of simulations of cardiac function. Our study shows that
inaccuracy in infarct segmentation affects the outcomes of VT simulations to a substantially
higher degree than those of sinus rhythm simulations, and thereby underscores the
significance of using accurate infarct segmentations in image-based simulations of infarct-
related cardiac arrhythmia. The development of the CMF method, and its comprehensive
evaluation constitute an important step in advancing clinical applications of image-based,
patient-specific simulations of cardiac function. Additionally, the CMF algorithm is
expected to improve automated, image-based measurements of infarct volume [35], surface
area [2], spatial distribution [61], and transmurality [62], which have been shown to be
predictive of clinical outcomes, including ventricular arrhythmia and sudden cardiac death.

To address the challenge of image intensity overlap between the infarct and the areas
surrounding the myocardium, especially the blood pool, the CMF method, similarly to prior
approaches, used a manual delineation of myocardial boundaries to define a region of
interest [35], [15], [14]. However, unlike the existing infarct segmentation techniques
implemented in this study, the CMF method performed the segmentation via an iterative
minimization of an energy function, which comprised of an image gradient weighted-spatial
regularization term, and a regional intensity histogram matching term. Due to the
incorporation of this regularization term, infarct segmentation by the CMF method, in
comparison with those by the existing approaches, were affected less by image noise, and
resulted in fewer isolated regions.

Our methodology utilized intensity histogram matching based on the Bhattacharyya distance
metric for contour evolution. Such an approach has been demonstrated to be robust by
numerous previous studies. Freedman and Zhang [27] were the first to demonstrate that
objects can be tracked in a level set framework using histogram matching with
Bhattacharyya distance metric, and optimize the energy function using a first-order
approximation. Although first-order approximations such as the one used in our study, do
not guarantee convergence to global optimum, such approximations can yield accurate
segmentations when a good initial solution is provided. More recently, several studies [63],
[64] described histogram matching with Bhattacharyya metric for convex optimization. For
instance, Punithakumar et al. [63] proposed a bound optimization scheme to optimize the
highly nonlinear Bhattacharyya metric under a sequential convex/dual optimization
perspective, which guarantees that the value of energy function monotonically decreases
with each iteration. Within cardiac imaging, several recent studies have used a similar bound
on the Bhattacharyya metric within a max-flow framework for automated segmentation [65],
[66]. In particular, Nambakhsh et al. [65] described a method for LV segmentation from
cardiac cine MR images based on a bound optimization scheme, which maximizes the
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Bhattacharyya distance metric between the estimated and model distributions of intensity
and shape.

Preservation of the boundary between the border zone and the rest of the tissue is important
for VT simulations. While some amount of detail in the border zone geometry will be lost
due to the smoothing in the CMF method, our results demonstrated that the benefits of
smoothing, e.g., minimizing the effects from noise, outweigh its limitations. Note that parts
of the border zone boundary that coincide with the core zone boundary will not be affected
by the smoothing in the CMF method. A potential alternative to our approach is to directly
segment all three regions (i.e., normal myocardium, infarct core, and border zone) using a
multi-region segmentation method based on energy minimization [24]. However, the
drawback of multi-region segmentation methods is twofold: they may produce
segmentations with artificial gaps between the core and border zone; and segmentation
methods based on energy minimization suffer from shrinking bias, which may lead to
shrinking of the relatively small border zone. In contrast with the multi-region segmentation
methods, the developed two-step approach (i.e., binary segmentation based on energy
minimization followed by thresholding) does not suffer from the above limitations, and is
also simpler to implement. Out of the two implementations of the CMF method, the 2D
approach outperformed the CMF3D. The decreased accuracy for the CMF3D method may
be due to misalignment of slices during image acquisition, or artifacts introduced by the
image interpolation method employed prior to 3D segmentation.

In our electrophysiological simulation studies, we observed that, irrespective of the infarct
segmentation method, the same error in segmentation affected the outcomes of VT
simulations to a substantially higher degree than those of sinus rhythm simulations. This was
because, in VT, the morphology of the infarct zone largely determines the reentrant circuits
that drive the pattern of wavefront propagation throughout the ventricles [45], [6]. Between
the CMF and STRM2 methods, the outcomes of the simulations with models incorporating
reconstructions built from infarct segmentations by the former were more similar to those
with models generated using manual infarct segmentations. Thus, the inferior performance
of the STRM2 approach compared to the CMF method in evaluations based on geometry
translated into poorer performance of the former in evaluations based on simulations.
Notably, between the CMF and STRM2 methods, the types of VTs induced with models
built using infarct segmentations with only the former perfectly matched those induced with
models generated using manual infarct segmentations. Since the STRM2 was the best
among the existing methods in terms of DSC, we expect the CMF method to be more
accurate in simulations than all the alternative methods used in our evaluation. All in all, our
results indicate that the infarct segmentations by the CMF method, in comparison with those
by the existing approaches, will be a better surrogate for manual infarct segmentations in the
creation of patient specific models of ventricular electrophysiology that may be used to
guide clinicians in therapeutic planning, and risk stratification [10], [6].

A limitation of our study is that the CMF methodology relied on manual delineation of
myocardium to constrain the infarct segmentation. However, the amount of manual labor
needed for the CMF method can be significantly decreased by utilizing myocardial
boundaries segmented semi-automatically, either directly from the LGE-CMR images [16],
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[19] or from co-registered cinematic CMR images, as done previously [23], [20], [18]. As
clinical LGE-CMR images are typically acquired with a large slice thickness, the data used
in this study contain artifacts from partial volume averaging. As such, an improvement on
the present study can be made in the future by utilizing data from high-resolution LGE-
CMR methods [24].

V. Conclusion

We have developed a novel, semi-automated methodology for segmentation of LV infarct
from clinical LGE-CMR images. The developed method has outperformed several
alternative approaches in reproducing expert manual infarct segmentations, and in
simulations of normal and abnormal ventricular electrophysiology. This study is the first that
has evaluated a methodology for myocardial infarct segmentation based on outcomes of
simulations of cardiac (dys)function, and constitutes an important step in advancing clinical
applications of image-based, patient-specific simulations of ventricular electrophysiology.
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Fig. 1.

Infarct

Block diagram of our processing pipeline to segment and reconstruct LV myocardial infarct
from multi-slice clinical LGE-CMR images. The letter(s) in parenthesis in a block refer(s) to
the corresponding subsection(s) of Section Il, where the processing in the block is described.
The pipeline involves delineation of the LV myocardium in 2D by an expert, segmentation
of the infarct in 2D using the CMF algorithm, and reconstruction of 3D infarct geometry

from the segmented slices using the LogOdds method.
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Fig. 2.
(a) Region changes arising from the evolution of the segmentation contour using the first-

order approximation of the distribution matching based on Bhattacharyya distance metric.
(b) Value of Bhattacharyya distance metric as a function of iteration number for an example
segmentation.
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Block diagram of model generation, and execution of electrophysiological simulations, for
the evaluation of our infarct segmentation method. the letter(s) in parenthesis in a block
refer(s) to the corresponding subsection(s), of Section Il, where the processing in the block
is described. From each LGE-CMR image, two ventricular models, one incorporating infarct
geometry reconstructed from manual segmentation, and the other with infarct geometry
reconstructed from computed segmentation, were generated. Outcomes of
electrophysiological simulations with the two models were then compared.
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Fig. 4.
Exemplary results of the different infarct segmentation methods applied for two LGE-CMR

images. Rows 1-3 correspond to the slices from the first image, rows 4-6 correspond to the
slices from the second image, and columns correspond to the various methods. The expert
manual delineation of the infarct in each of the slices is shown in yellow, and the contours
computed by the different methods are displayed in cyan.
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Fig. 5.
Surfaces of total infarct reconstructions generated from the segmentations of four example

LGE-CMR images using the various methods. Rows correspond to the images, and columns
correspond to the various methods.
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Fig. 6.
Activation maps and pseudo-ECGs from one beat of sinus rhythm simulated for three patient

hearts, with models that incorporated infarct reconstructions built from segmentations by
different methods. The activation maps are displayed in anterior views of the ventricles.
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Fig. 7.

Agtivation maps and pseudo-ECGs from one beat of VTs simulated for three patient hearts,
with models that incorporated infarct reconstructions built from segmentations by the
different methods. The hearts are numbered the same way as they are in Table V. Activation
maps are shown in anterior views of the ventricles for Patient 1 and 2, and in superior view
of the ventricle for Patient 3. The VTs were monomorphic except for the one corresponding
to Patient 3 and the STRM2 method.

IEEE Trans Med Imaging. Author manuscript; available in PMC 2016 June 03.



1duosnuey Joyiny 1duosnuen Joyiny 1duosnuey Joyiny

1duosnuen Joyiny

Ukwatta et al.

TABLE |

Page 27

Summary of quantitative evaluation of accuracies of the various methods in segmenting the total LV INFARCT,

USING 2D GEOMETRY-BASED METRICS. SIGNIFICANT DIFFERENCES BETWEEN THE DSC or CMF and those of other
methods are indicated by asterisks.

Method  DSC (%)  RMSE (mm) A (%)
CMF 76.67+#5.84  0.10+10.7  18.53+10.62
CMF3D  *73.21+10.04  11.07+8.77  33.45+29.23
FWHM  *63.57+10.38  13.6+144  43.41%24.14
STRM1 *65.63+10.04 18.03+12.05  61.7+54.00
STRM2  *67.40+12.64  14.3%14.6  34.92+34.92
STRM3  *65.88+15.61  13.64+13.7  25.32+24.04
RG *43.92+1423  11.88+19.6  97.217+119.8
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Summary of quantitative evaluation of the various methods for the infarct core and border zone segmentation
using the DSC. SiGNIFICANT DIFFERENCES BETWEEN THE DSC orF CMF and those of other methods are indicated by

asterisks.

Infarct Core  Border Zone
Method  DSC (%) DSC (%)
CMF 87.98+7.65 65.31+8.46
CMF3D  *85.92+10.51 *61.34+14.12
FWHM 88.13+8.54 *46.22+8.05
STRM1 87.60+8.61 *58.03+10.44
STRM2  *86.17+9.71 *58.64+12.8
STRM3  *83.99+11.95 *56.51+14.69
RG *53.15+14.94  *14.96+13.68
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Summary of quantitative evaluation of the various methods in segmenting the LV INFARCT, UsING 3D GEOMETRY-

BASED METRICS. SIGNIFICANT DIFFERENCES BETWEEEN THE DSC AND &V oF CMF and those of other methods are

indicated by asterisks.

Method  DSC (%) &V (%) Ngn (%)  RMSE (mm)  J85A (%)  Euler §
CMF 76.4+6.3 18.17£11.3  -8.5+20.4 2.22+2.55 17.1+£11.8 6.2+4.8

CMF3D  72.7+#11.3  22.31+18.4 2.5+43.7 3.76x3.10 25.6+£29.3  8.3%£10.5
FWHM  *62.6+12.1 *45.1+25.3 -31.6+41.1 3.10+2.96 33.3+24.8 13.3%+11.8
STRM1  *67.1+9.75 *55.5+46.7 50.8+51.8 6.65+3.89 31.6+28.9 20.7£19.0
STRM2  *69.6+11.5 *30.8+26.3 14.5+38.06 5.21£3.44 33.1+27.3 15.7£13.6
STRM3  *68.9+15.1 *25.3+215 -8.8+32.2 4.09+3.03 36.5+¢29.7 16.1+13.1
RG *45.8+15.4 *69.6+49.1 -37.7+76.8 6.22+3.58 51.3+23.9 7.246.1
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TABLE IV

Summary of quantitative evaluation of accuracies of the CMF ano STRM2 infarct segmentation methods,
based on outcomes of sinus rhythm simulations.

Method RMSE(mV) MAD (%) CORR  ATD (ms)

CMF 0.031+0.027 14.3+7.3  0.95+0.06 3.95+2.35
STRM2  0.043+0.029  23.6+14.7 0.90+0.08  6.14+2.9
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Tvypes orF VTs initiated in our simulations of arrhythmia induction performed on all generated models. MVT,

PVT, AND _DENOTE MONOMORPHIC VT, POLYMORPHIC VT, AND NO VT INDUCED, RESPECTIVELY.

Patient# Manual CMF STRM2
1 MVT MVT MVT
2 MVT MVT MVT
3 MVT MVT PVT
4 - - -
5 MVT MVT _
6 - - -
7 MVT

IEEE Trans Med Imaging. Author manuscript; available in PMC 2016 June 03.



	Abstract
	I. Introduction
	II. Methods
	A. Overview of Our Methodology for Segmentation and Reconstruction of the LV Infarct
	B. LV Infarct Segmentation Expressed as a Continuous Min-Cut Problem
	C. CMF, the Dual Formulation of the continuous Min-Cut Problem
	D. Reconstruction of the 3D Infarct Geometry
	E. Data Acquisition
	F. Evaluation of Accuracy of Infarct Segmentation based on Outcomes of Electrophysiological Simulations
	G. Metrics for Assessment of Infarct Segmentation Accuracy
	H. Comparison of the CMF method with Existing Infarct Segmentation Methods

	III. Results
	A. Assessment of Infarct Segmentation Accuracies with Geometry-based Metrics
	B. Assessment of Infarct Segmentation Accuracy with Metrics based on Outcomes of Electrophysiological Simulations

	IV. Discussion
	V. Conclusion
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Fig. 5
	Fig. 6
	Fig. 7
	TABLE I
	TABLE II
	TABLE III
	TABLE IV
	TABLE V

