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Abstract

Accurate representation of myocardial infarct geometry is crucial to patient-specific computational 

modeling of the heart in ischemic cardiomyopathy. We have developed a methodology for 

segmentation of left ventricular (LV) infarct from clinically acquired, two-dimensional (2D), late-

gadolinium enhanced cardiac magnetic resonance (LGE-CMR) images, for personalized modeling 

of ventricular electrophysiology. The infarct segmentation was expressed as a continuous min-cut 

optimization problem, which was solved using its dual formulation, the continuous max-flow 

(CMF). The optimization objective comprised of a smoothness term, and a data term that 

quantified the similarity between image intensity histograms of segmented regions and those of a 

set of training images. A manual segmentation of the LV myocardium was used to initialize and 

constrain the developed method. The three-dimensional geometry of infarct was reconstructed 

from its segmentation using an implicit, shape-based interpolation method. The proposed 

methodology was extensively evaluated using metrics based on geometry, and outcomes of 

individualized electrophysiological simulations of cardiac dys(function). Several existing LV 

infarct segmentation approaches were implemented, and compared with the proposed method. Our 

results demonstrated that the CMF method was more accurate than the existing approaches in 

reproducing expert manual LV infarct segmentations, and in electrophysiological simulations. The 

infarct segmentation method we have developed and comprehensively evaluated in this study 

constitutes an important step in advancing clinical applications of personalized simulations of 

cardiac electrophysiology.
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I. Introduction

Left-ventricular (LV) myocardial infarction, a medical condition in which regions of a 

patient’s LV lose viability due to prolonged ischemia, is a prominent cause of serious 

complications, including heart failure and ventricular arrhythmia [1], [2]. Central to the 

mechanisms underlying these complications is the structural and electrophysiological 

remodeling that occurs in the infarct regions during the healing process [1], [3], [4]. 

Recently, computational modeling of patient hearts has emerged as a promising non-invasive 

tool that can provide clinicians with personalized guidance in the treatment of post-infarct 

arrhythmias [5], [6], [7], [8], [9], [10]. However, to accurately represent the myocardial 

structural remodeling that occurs in ischemic cardiomyopathy, the computational models 

need to incorporate the patient-specific geometry of the infarct region [5], [11]. Presently, 

among the various imaging techniques used to acquire the infarct structure in the clinic [12], 

two-dimensional (2D) late-gadolinium enhanced cardiac magnetic resonance (LGE-CMR) 

scanning is the most widely used [13]. Therefore, accurate segmentation of the LV infarct 

regions from clinically acquired LGE-CMR images is paramount to patient-specific 

modeling of cardiac (dys)function in ischemic cardiomyopathy.

Existing approaches for LV infarct segmentation from LGE-CMR images can be broadly 

categorized into those based on image intensity thresholding, feature clustering, or energy 

minimization. Some of the techniques based on image intensity thresholding, including full 

width at half maximum (FWHM) [14] and signal threshold to reference mean (STRM) [15], 

[16], are the simplest to implement, and the most widely used in clinical studies. There are 

other approaches that employ intensity thresholding in the segmentation, e.g., the region 

growing [17], Otsu method [18], and watershed segmentation [19]; these are not as widely 

used as FWHM or STRM. Feature clustering techniques that have been utilized in the infarct 

segmentation include support vector machines [20], fuzzy c-mean clustering [21], and 

dictionary learning [22]. A drawback of the infarct segmentation methods based on intensity 

thresholding or feature clustering is that these methods do not incorporate any smoothness 

constraints, and therefore are highly influenced by image noise [23]. Accordingly, LV infarct 

segmentation methods based on energy minimization that incorporate smoothness 

constraints, along with region and boundary data terms, have been developed [24], [23]. 

Rajchl et al. [24] developed an interactive approach for the infarct segmentation based on a 

hierarchical convex max-flow method. However, this method was designed to operate on 

three-dimensional (3D) LGE-CMR images [24], which are not widely used in the clinic. Lu 

et al. [23] proposed to segment the infarct using a method based on graph cuts, but the 

performance evaluations they conducted were limited, in that a dataset of only ten patient 

images, and one accuracy metric, namely the infarct mass, was utilized [23]. Thus, there is a 

lack of a methodology that has been developed and thoroughly evaluated for robustly 

segmenting LV infarct from clinically acquired 2D LGE-CMR images. Additionally, no 

prior study has evaluated the efficacy of an infarct segmentation method based on 

computational simulations of cardiac (dys)function, for patient-specific modeling of the 

heart. Our goal was to address these needs.

We expressed LV infarct segmentation from clinically acquired 2D LGE-CMR images as a 

continuous min-cut optimization problem, and solved it using the dual formulation of the 
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problem, namely the continuous max-flow (CMF). An image gradient-weighted smoothness 

term, along with a data term that quantified similarity between intensity histograms of 

segmented regions and those of a set of training images, was incorporated, for robustness, 

into the optimization objective. The 3D geometry of the infarct was reconstructed from the 

2D segmentation using an interpolation technique we developed based on logarithm of odds 

(LogOdds). The developed methodology was extensively evaluated against expert manual 

LV infarct segmentations from 51 short-axis (SAX) LGECMR images, with metrics based 

on infarct geometry, and on outcomes of individualized simulations of cardiac 

electrophysiology. Several previously reported LV infarct segmentation methods were also 

implemented, and their performance was compared to that of our method.

Preliminary results from this study were published in conference proceedings very recently 

[25]. This paper substantially extends the conference publication, with a more detailed 

description of the methodology, 3D implementation of the CMF algorithm, use of several 

additional clinical LGE-CMR images in the evaluation, and importantly, a new assessment 

of the efficacy of the developed infarct segmentation method based on outcomes of 

individualized simulations of cardiac electrophysiology.

II. Methods

A. Overview of Our Methodology for Segmentation and Reconstruction of the LV Infarct

The workflow of our methodology for segmentation and 3D reconstruction of LV infarcts 

from clinically acquired SAX LGE-CMR images is illustrated in Fig. 1. Given an image, the 

epi- and endo-cardial boundaries of the LV were manually contoured in the image slices by 

an expert. The infarct was then segmented using the CMF method, for which the LV 

myocardium was used as the region of interest and the initialization region. We implemented 

two different versions of the CMF algorithm, namely a 2D approach, where each slice was 

segmented independently, and a 3D approach (CMF3D), where the entire stack of slices was 

segmented at once by means of an intermediate image with isotropic resolution that was 

created using nearest-neighbor interpolation method. Finally, the 3D geometry of the infarct 

was reconstructed from the infarct segmentations using an interpolation technique we 

developed based on LogOdds. Subsections B-D below describe in detail the components of 

the pipeline shown in Fig. 1. All image processing tasks were performed in the Matlab 

computing environment (Mathworks Inc., Natick, MA) installed on a personal computer 

equipped with a 2.3 GHz Intel Core i7 CPU, 12 GB of RAM, and the Windows operating 

system.

B. LV Infarct Segmentation Expressed as a Continuous Min-Cut Problem

Let I(x) ϵ  be the given image, where  is the set of image intensities. Infarct 

segmentation was formulated as an optimization problem by iteratively evolving a contour 

 over time, where s is the arc-length parameterization of , as 

illustrated in Fig. 2(a). Note that the mathematical formulations we provide here are for 2D 

segmentation, but the same concepts apply to surface evolution for 3D segmentation. The 

current contour  at time t is propagated to its new position  at time t + h such that 

 minimizes the following energy [26]:
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(1)

where  and  are the foreground and background expansion regions with respect to , 

 and  are the corresponding cost functions, and g(s) is a boundary smoothness 

term [26]. Here, the foreground and background regions represent the LV infarct region and 

normal myocardium, respectively. Let u(x) ϵ {0, 1} be the function labeling the region 

enclosed by  such that u(x) = 1 when x is inside Ct and u(x) = 0 otherwise.

In the present study, the cost functions were defined in terms of a data term EBh(u) 

comprising of the Bhattacharyya distance metric [27] between the intensity histograms hi(z) 

of the segmented regions and intensity histograms  of a training dataset (target intensity 

histograms), where i = f; b and . The data term is defined as

(2)

The target intensity histograms  were derived using the Parzen method [28] from the 

expert manual segmentations of the entire set of training images. Note that the intensity 

histogram of the infarct region varied substantially from one image to another, and therefore 

the incorporation of multiple images in the derivation of target intensity histograms was 

important. The region fidelity cost functions  and e+b(x) were given by the first-order 

derivatives of E(u) w.r.t. ut(x) [27], i.e.,

(3)

where Ai = ∫Ω ui dx, i = f, b, is the area of the foreground and background and K(.) is the 

Gaussian kernel function [28].

To express Equation (1) as a continuous min-cut problem, let D1(x) and D2(x) be label 

assignment functions defined as follows:

(4)

The optimization problem in Equation (1) can then be expressed as the continuous min-cut 

formulation [26]
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(5)

where u(x) ϵ {0, 1} is a binary constraint. We used an image gradient-weighted smoothness 

function, g(x) = λ1 + λ2 exp(−λ3 ∣ ∇I(x)∣) in our formulation, where parameters λ1; λ2; λ3 > 

0.

It is challenging to solve the combinatorial optimization problem (5), because it is highly 

non-linear and non-convex. However, it has been proven, using the convex optimization 

theory [26], [29], that problem (5) can be solved globally and exactly via the following 

convex relaxation:

(6)

where the binary constraint u(x) ϵ {0, 1} in Equation (5) is now relaxed to u(x) ϵ [0, 1]. 

Thresholding the result of the convex relaxation in Equation (6) provides the exact and 

global optimum of (1). In other words, the continuous min-cut problem in Equation (5) can 

be solved globally.

C. CMF, the Dual Formulation of the continuous Min-Cut Problem

It is challenging to efficiently solve the continuous min-cut problem (6) directly. However, it 

can be efficiently solved via its dual, the max-flow formulation, using one of the global 

solvers available for this task [26], [30]. In the present study, we chose the CMF method 

described by Yuan et al. [26]. Note that the convex relaxation problem in Equation (6) is 

mathematically equivalent to the CMF formulation (Equation (12) in the previous study 

[26]). The CMF formulation was efficiently optimized using the classical augmented 

Lagrangian method [31] and implemented in the CUDA architecture (NVIDIA Corp., Santa 

Clara, CA).

Since a first order-approximation of the data term was used in the optimization, the value of 

energy function was not guaranteed to monotonically decrease with iterations. Accordingly, 

the iterations were stopped when either the incremental change in segmented region area 

between two successive iterations was smaller than 4 mm2, or the number of iterations 

exceeded 8. These threshold values were determined heuristically. Figure 2(b) shows value 

of Bhattacharyya distance metric as a function of iteration number for an example 

segmentation.

D. Reconstruction of the 3D Infarct Geometry

To represent the LV infarct geometry in patient specific models of ventricular 

electrophysiology, the segmentation of the infarct from 2D LGE-CMR images needs to 

transformed into a 3D reconstruction [5], [32]. We have recently developed a technique 

called LogOdds method for this reconstruction [33]. The LogOdds method was shown to be 

significantly more accurate than several alternatives, including variational implicit, shape-

based interpolation, and nearest neighbor methods [33]. LogOdds is an example of a class of 

functions that can be used to map binary image slices into the Euclidean space [34]. The 
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mapped image slices can then be interpolated using linear combinations. Mathematically, let 

 be the probability that a voxel is assigned to a particular anatomical structure. Then, 

the LogOdds of p, denoted as logit(p), is the logarithm of the ratio between p and its 

complement. i.e., . Let , and , the 

inverse of logit(p). The functions logit(p) and P (t) make up a structure-preserving map 

between  and  [34]. Let s be the number of slices in the image, n the number of pixels per 

slice, and m the number of voxels in the interpolated image. The discrete probability maps 

, where , are obtained from discrete label maps  of 

segmentation. LogOdds maps  are created from discrete probability maps using 

logit(.) function.

In this study, we used smoothing by spatial Gaussians with a standard deviation of two 

pixels, to convert binary image slices containing the infarct segmentations into probability 

maps. When a binary image slice representing the segmentation of an infarct region was 

smoothed using the Gaussian kernel, each pixel was assigned a value in the interval [0, 1], 

which we interpreted as the probability of that pixel belonging to the infarct region. 

Similarly to Pohl et al. [34] we used a probability value of 0.5, which maps to a LogOdds 

value to 0, to define the object boundary. The 2D probability maps resulting from Gaussian 

smoothing were converted into LogOdds maps using the logit(.) function. A cubic spline 

method was then used in the interpolation , of the stack of 2D LogOdds maps into 

a 3D image. A 3D probability map  was generated from the interpolated image 

via logistic transformation. Finally, the 3D probability map was thresholded to generate a 3D 

reconstruction of the infarct region.

Even when the infarct segmentation is performed in 3D, the segmented regions need to be 

interpolated to obtain the final reconstruction. This is because the voxel size of the 

segmented image produced by CMF3D was 1.5–2.4 mm, which was coarser than the 

element size of 0.4 mm needed to resolve the electrical activation wavefront [32].

E. Data Acquisition

The data we utilized to train and evaluate the CMF method comprised of clinical LGE-CMR 

images of 61 patients with ischemic cardiomyopathy and LV dysfunction (LV ejection 

fraction ≤ 35%), randomly selected from the CMR arm of the PROSE-ICD study [35]. The 

images were acquired with an inversion recovery fast gradient echo pulse sequence, 15 to 30 

minutes after a total injection of 0.2 mmol/kg gadodiamide (Omniscan, GE Healthcare 

Technologies). The patients were scanned in the SAX plane with a 1.5 Tesla whole-body 

scanner (Signa CV/I, GE Healthcare, Milwaukee, Wisconsin; or Siemens Avanto, Erlangen, 

Germany). The imaging parameters were as follows: TR 5.4 ms, echo time 1.3 ms, inversion 

time (TI) 175 to 250 ms, 2 excitations, 1 R-R interval imaging, flip angle 20, 350-ms time 

delay after the R wave, and 24 views per segment. In-plane resolution of the images was 

1.5–2.4 mm, and the slice thickness was 8-10 mm, with 0-2 mm slice gap. The study 

protocol was approved by the Johns Hopkins Hospital Institutional Review Board, and all 

patients gave written informed consent. The LV myocardium and infarct were manually 

contoured by an expert in all images.
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The data were divided into a training set and a testing set, consisting of 10 and 51 LGE-

CMR images, respectively. The training dataset comprising of a total of 48 slices was used 

for sequentially optimizing the parameters of the CMF method (i.e., λ1, λ2, and λ3), and 

generating the target intensity histograms. The testing dataset consisting of a total of 326 

slices was used for evaluating the method. Note that, to maximize the testing set size, only a 

small subset of the data was used to form the training set.

F. Evaluation of Accuracy of Infarct Segmentation based on Outcomes of 
Electrophysiological Simulations

The block diagram for the evaluation of our infarct segmentation methodology based on 

outcomes of electrophysiological simulations is shown in Fig. 3. Simulations of both normal 

and abnormal cardiac function, in which cardiac electrical activity was modeled from ionic 

channels to the whole organ, were performed. As these multiscale simulation experiments 

were computationally very expensive, they were conducted with models generated from only 

a subset of 7 LGE-CMR images randomly chosen from our testing set. For each of these 7 

images, the RV boundaries were also manually contoured in each 2D slice using the ImageJ 

software program (National Institutes of Health, Bethesda, MD), to incorporate the RV 

geometry in the ventricular models. Ventricular geometry was then reconstructed from the 

myocardial boundaries at an isotropic resolution of 0.4 mm using an interpolation method 

based on variational implicit functions [36]. The infarct region was segmented from the 

image using the CMF method, in addition to expert manual segmentation. Infarct tissue is 

known to comprise of scar (also referred to as infarct core zone) and semi-viable 

myocardium (or border zone) [35], and the two zones have different electrophysiological 

properties. Accordingly, we divided the infarct regions in the segmented image slices into 

the two zones, using a FWHM technique [35]. Three-dimensional geometry of the total 

infarct region and core zone were first reconstructed using the LogOdds method. The 

reconstruction for the border zone was then obtained as the relative complement of the 

infarct core, where total infarct reconstruction was considered as the union. Note that, the 

border zone geometry was not directly reconstructed from binary segmentations, because of 

larger errors encountered in this reconstruction than those in our approach [37]. These larger 

errors may be because the border zone is typically more complex in topology than the total 

infarct and core. Using the ventricular reconstruction, and the infarct reconstructions, two 

finite element models, one incorporating infarct zone geometries reconstructed from the 

manual segmentation, and the other with infarct zone geometries built from the computed 

segmentation, were created [38]. In this process, the 3D finite element meshes were 

generated from the reconstructions as described previously [39]. The fiber orientations for 

the models were estimated using a rule-based method [40]. The two models were identical 

except for the differences in tissue labels of some of the elements that reflected the 

differences in the infarct segmentations.

Electrical propagation was modeled using the monodomain formulation [32], which involves 

the solution of a reaction-diffusion equation coupled to a system of ordinary differential 

equations describing membrane kinetics. The governing equations were
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and

where σi is the intracellular conductivity tensor; Vm is the transmembrane potential; Cm is 

the membrane specific capacitance; and Iion is the density of the transmembrane current, 

which in turn depends on Vm and on a set of state variables μ describing the dynamics of 

ionic fluxes across the membrane. Intracellular conductivity σi assigned in the normal 

myocardium were such that the resulting conduction velocities matched those recorded in 

human ventricular experiments [41]. In the remodeled border zone, the transverse 

conductivity was decreased by 90% to represent connexin 43 remodeling and lateralization, 

which resulted in increased tissue anisotropy [42]. The infarct core was modeled as passive 

tissue with zero conductivity. The Ten Tusscher human ventricular action potential model 

was used to represent the membrane kinetics in the healthy myocardium [43]. For the border 

zone, this action potential model was modified to represent electrophysiological changes that 

have been observed experimentally [44], [45], [46]. These modifications resulted in a border 

zone action potential morphology that had decreased upstroke velocity, decreased amplitude, 

and increased duration, consistent with experimental recordings.

Sinus rhythm was simulated in all models by replicating activation originating from the 

Purkinje network. The models were activated at six locations on the endocardium by stimuli 

with a cycle length of 600 ms [47], [48]. The six locations included one on the RV free wall, 

three on the LV septum, and two on the LV free wall. Appropriate timings of the stimuli 

were chosen such that the resultant electrical propagation matched experimental data [49]. 

Since the electrophysiological remodeling within infarct tissue plays a crucial role in the 

initiation and sustenance of arrhythmias [45], [6], we expected the differences in infarct 

segmentations to affect the outcomes of simulations of abnormal cardiac function to a higher 

degree than those of simulations of normal electrical activity. As such, simulations of VT 

induction were conducted by applying, at the RV apex and the outflow tract in all models, a 

programmed electrical stimulation (PES) similar to that used in the clinic [50]. Our PES 

protocol consisted of 6 stimuli with a coupling interval of 350 ms, which were followed by a 

premature stimulus whose cycle length was shortened until sustained VT was initiated or the 

last stimulus failed to capture. If needed, two additional extrastimuli were delivered to 

attempt arrhythmia induction. An arrhythmia was classified as sustained if it persisted for at 

least 2 seconds. Pseudo-ECGs [51] were generated in all simulations by taking the 

difference between the extracellular potentials calculated at two points in an isotropic 

conductive medium surrounding the heart [49]. The activation maps in simulations were 

derived by determining, at each node of the finite element meshes, the instant in time at 

which the upstroke of the action potential at that node reached a threshold of 0 mV. All 
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simulations were performed using the software package CARP (CardioSolv, LLC) [52], [53] 

on a parallel computing platform.

G. Metrics for Assessment of Infarct Segmentation Accuracy

The CMF method was evaluated using metrics based on infarct geometry as well as 

outcomes of individualized simulations of cardiac electrophysiology. The evaluation using 

the geometry-based metrics was done in two ways. First, the 2D infarct segmentations 

computed by the CMF method was compared to expert manual delineations, using metrics 

based on region overlap, boundary distance, and area. As the region overlap-based metric, 

we used the Dice similarity coefficient, DSC = 2∣RA ∩ RM∣/(∣RA∣ + ∣RM∣), where RA and 

RM, denote regions enclosed by computed and manual segmentations, respectively, and ∣.∣ 

denotes the volume of a region. The boundary distance-based metric was root meat square 

error (RMSE), calculated as the RMS of the shortest distance from each point on the 

boundary of the computed segmentation to the boundary of the manual delineation. Absolute 

area difference, δA = ∣AA − AM∣/AM, where AA and AM are the areas of computed and 

manual segmentations, was used as the area-based metric. Second, we compared the 3D 

infarct reconstructions built from the segmentation by the CMF method to the ones 

generated from the manual delineations, using metrics based on region-overlap, boundary 

distance, volume, surface area, and topology. Note that these 3D metrics were important 

because they evaluated the performance of the segmentation methods in the estimation of 

indices such as infarct volume and surface area, which have shown to be predictive of 

clinical outcomes [35], [2]. Further, the generation of patient-specific models, for which the 

CMF method was developed, utilized the 3D infarct reconstructions. The boundary distance 

error in the 3D scenario was defined similarly to the 2D case, except that the calculation in 

the former was based on surfaces. As volume- and surface area-based metrics, we used 

volume difference (δVsgn), absolute volume difference (δV), and surface area difference 

(δSA), expressed as a percentage of the volume or surface area of the infarct reconstructions 

built from the manual segmentation. The topology-based metric we employed was the 

absolute difference in Euler characteristic (δχ) between the infarct reconstructions built from 

segmentations by the CMF method and the manual segmentation.

The difference in pseudo-ECGs between simulations with models incorporating infarct 

reconstructions from segmentation by the CMF method and by manual delineation was 

calculated using RMSE, mean absolute deviation (MAD), and correlation coefficient 

(CORR) metrics. Note that the MAD and CORR metrics have been applied in prior clinical 

studies to compare ECGs of reentrant activity [54]. The MAD metric is defined as

(7)

where X and Y are two waveforms with length ns [54]. The MAD metric varies between 0% 

and 100% corresponding to identical and completely different waveforms, respectively.
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The difference in activation maps between simulations with models incorporating infarct 

reconstructions from segmentation by the CMF method and manual delineations were 

assessed as activation time difference, , where nn is the number 

of nodes in the finite element meshes of the models, and  and , respectively, are the 

activation times of node i in simulations with models incorporating infarct reconstructions 

from segmentations by the CMF method and manual delineation. The infarct core zone was 

excluded from ATD calculations, as the core was modeled as an insulator and did not 

activate. All metrics based on outcomes of electrophysiological simulations were computed 

in the steady state, when activation from beat to beat was stable.

H. Comparison of the CMF method with Existing Infarct Segmentation Methods

The CMF method was compared to several existing infarct segmentation techniques, 

including the FWHM method, the STRM approach with standard deviations one (STRM1), 

two (STRM2) and three (STRM3) from the reference mean, and the region growing (RG) 

algorithm. These methods were chosen due to their wide popularity in the clinical [35], [55], 

[56], [57] and modeling [6], [58] research communities. Also, previous studies have 

established high reproducibility and accuracy in infarct segmentation by the FWHM [15], 

[59], [60] and STRM methods [59]. In all the existing methods, the LV myocardium 

segmentation was used to constrain the infarct segmentation. The enhanced intensity region 

of the myocardium, normal region of the myocardium, and a seed point in the infarct region, 

for the FWHM, STRM, and RG methods respectively, were identified by an expert. To test 

whether incorporating a smoothing step into the threshold-based methods increased their 

accuracy, we re-evaluated these methods after applying connectivity filtering [18] to the 

infarct segmentations by these methods. The accuracy of the infarct segmentations by the 

existing methods was evaluated using metrics based on geometry, as in Fig. 1, and the results 

were compared to those of the CMF algorithm. Note that, in the evaluation of the various 

methods, the CMF method did not require any user inputs apart from the delineation of the 

LV myocardium, but the other methods did. Wilcoxon signed rank sum tests were performed 

to identify the statistically significant differences in DSC between the CMF method and the 

others. Paired t-tests were conducted to examine statistically significant difference between 

the log-transformed volumes of the infarct reconstructions built from segmentations by the 

CMF method and those by the existing approaches. All statistical analyses were performed 

using GraphPad Prism 6.2 (GraphPad Software Inc., CA), and an α of 0.05 was used as the 

level of significance.

To evaluate whether the poorer performance of an infarct segmentation method in geometry-

based evaluations leads to inferiority in its performance in evaluations based on outcomes of 

simulations, we selected one representative method from the existing techniques, and 

evaluated its accuracy based on outcomes of electrophysiological simulations, as in Fig. 3. 

The representative method we chose was the best alternative approach in terms of DSC, 

which is widely regarded in the image processing community as an effective metric in 

evaluating 3D geometries. Note that, we used the same interpolation method, i.e., the 

LogOdds method, to reconstruct the 3D infarct geometry, regardless of the approach used to 

segment the infarct from the 2D images.
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III. Results

A. Assessment of Infarct Segmentation Accuracies with Geometry-based Metrics

The optimal values of the parameters λ1, λ2, and λ3 of the CMF method, obtained after the 

training, were 0.3, 0.1, and 10, respectively. For the CMF3D method, the optimal values of 

these parameters were 0.4, 0.3, and 5, respectively. The mean computation time for the 

execution of the CMF method was 0.8 ±0.3 s for a single slice, and 4.3±1.3 s for an LGE-

CMR image. The CMF method converged within two iterations for a single slice. Results of 

the various infarct segmentation methods applied to an example LGE-CMR image are 

shown in Fig. 4. Qualitatively, between the various methods, infarct segmentations by the 

CMF method matched most closely with the manual delineations. Evidently, the 

segmentations by the CMF method had a substantially smaller number of isolated regions 

than those by the image intensity threshold-based techniques.

The summary of quantitative evaluation of the different infarct segmentation methods using 

2D geometry-based metrics is shown in Table I. The CMF method outperformed all 

alternatives, in all accuracy metrics. In particular, mean DSC of the CMF method was 

significantly higher than those of alternatives. Among the existing methods, the STRM2 

approach had the highest mean DSC. The summary of evaluation results for the core and 

border zones were reported separately in Table II. Between the infarct border zone and core, 

all the methods reported substantially higher accuracy in DSC for the latter. Compared to all 

the alternatives, the CMF method yielded significantly higher accuracy for the border zone. 

While the addition of connectivity filtering to the existing methods reduced the number of 

noise-induced false positive regions, and increased the DSC metrics of these methods by up 

to 2%, this improvement was not sufficient enough to make the threshold-based methods 

perform comparably to the CMF method.

The surfaces of total infarct reconstructions generated from the segmentations of three 

example LGE-CMR images by the various methods are shown in Fig. 5. Qualitatively, 

between the various infarct segmentation methods, the reconstruction corresponding to the 

CMF method most closely resembled the one based on manual segmentation. Summary of 

the quantitative evaluation of the different infarct segmentation methods with metrics based 

on the 3D reconstructions is shown in Table III. Similarly to the results in Table I, the CMF 

method outperformed all alternatives, in all metrics. Particularly, the CMF method yielded 

significantly higher DSC, and significantly smaller volume errors than the existing 

techniques. On average, the CMF method underestimated the volume, as indicated by a 

δVsgn of −8.5%. Note that, the ranking of different methods according to their DSC values 

was the same, regardless of whether the evaluation was done in 2D (Table I) or 3D (Table 

III).

B. Assessment of Infarct Segmentation Accuracy with Metrics based on Outcomes of 
Electrophysiological Simulations

Since STRM2 was the existing method with the highest DSC, it was chosen as the 

representative alternative method for comparison with the CMF method in our 

electrophysiological simulation studies. The mean edge length of the finite element meshes 
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generated for our ventricular models was 0.37 mm. Fig. 6 illustrates the activation maps, and 

corresponding pseudo-ECGs, from one beat of sinus rhythm simulated for three patient 

hearts. Visually, for a given patient heart, the activation maps simulated with models that 

incorporated infarct reconstructions built from manual and computed segmentations matched 

closely. However, between the pseudo-ECGs corresponding to the CMF and STRM2 

methods, the former matched more closely with pseudo-ECGs corresponding to the manual 

segmentation. The summary of quantitative evaluation of the CMF and STRM2 methods 

based on outcomes of the sinus rhythm simulations are shown in Table IV. It was evident in 

the quantitative evaluation that, between the CMF and STRM2 methods, the outcomes of 

simulations corresponding to the former matched more closely with the ones corresponding 

to the manual segmentation.

Table V presents the types of VTs initiated in our simulations of arrhythmia induction 

performed on all generated models. Between the CMF and STRM2 methods, the type of VT 

induced in models incorporating infarct segmentations with only the former perfectly 

matched those induced with models incorporating manual segmentations. Of the seven LGE-

CMR images used in our simulation studies, VT was induced in models built from only 

three, for all three types of infarct segmentations. The infarct border zones delineated from 

these three images were larger than those from the rest, which is a major criterion for VT 

inducibility [45]. Thus, we were able to induce VT in the nine models regardless of the 

infarct segmentation method. Fig. 7 presents the simulated activation maps, and 

corresponding pseudo-ECGs, from one cycle of VTs simulated with models built from the 

three images. The activation maps of VT simulations matched closely across all three infarct 

segmentation methodologies in Patient 1. In VT simulations performed for Patient 2, 

between the activation maps corresponding to the STRM2 and manual segmentation 

methods, the activation map corresponding to the CMF method matched the former more 

closely. Although the direction of the simulated reentry circuit corresponding to the CMF 

method is opposite of that of the manual method in Patient 2, the simulations based on the 

CMF method will still be helpful in locating the organizing center of the reentrant circuit, for 

identifying target locations for catheter ablations in post-infarction patients, and stratifying 

the patient risk for ventricular arrhythmias post-infarct. For Patient 3, the VT simulated 

using the model incorporating segmentations by the STRM2 method was polymorphic, 

where the propagation pattern in the activation map shifted throughout the reentry period. In 

contrast, in simulations for Patient 3 with models incorporating CMF or manual 

segmentation, the VT was monomorphic. The pseudo-ECG corresponding to Patient 3 and 

STRM2 method illustrates that the morphology of the underlying VT was polymorphic, as 

listed in Table V. The RMSE, MAD, and CORR corresponding to the CMF method were 

0.26 ± 0.11 mV, 33.1 ± 11.6%, and 0.69 ± 0.09, respectively. The values for the same 

metrics corresponding to the STRM2 were 0.36 ± 0.08 mV, 60.6 ± 8.6%, and 0.32 ± 0.24. 

Note that the differences in the RMSE, MAD, and CORR values between the CMF and 

STRM2 methods were 100 μV, 27.5%, and 0.37, respectively, in VT simulations. These 

differences were substantially larger than their corresponding values of 12 μV, 9.3%, and 

0.05 in sinus rhythm simulations, underscoring the importance of employing accurate model 

reconstruction methodologies for individualized simulations of arrhythmia in patient hearts.
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IV. Discussion

The objective of this study was to develop and thoroughly evaluate a method for the 

segmentation of LV infarct from clinical LGE-CMR images, for patient-specific simulations 

of ventricular electrophysiology, and in particular, infarct-related VT. The CMF method we 

developed outperformed all alternative segmentation techniques, in terms of accuracy 

metrics based on geometry as well as outcomes of electrophysiological simulations. To our 

knowledge, this study is the first to evaluate the effect of inaccuracies in infarct 

segmentation on outcomes of simulations of cardiac function. Our study shows that 

inaccuracy in infarct segmentation affects the outcomes of VT simulations to a substantially 

higher degree than those of sinus rhythm simulations, and thereby underscores the 

significance of using accurate infarct segmentations in image-based simulations of infarct-

related cardiac arrhythmia. The development of the CMF method, and its comprehensive 

evaluation constitute an important step in advancing clinical applications of image-based, 

patient-specific simulations of cardiac function. Additionally, the CMF algorithm is 

expected to improve automated, image-based measurements of infarct volume [35], surface 

area [2], spatial distribution [61], and transmurality [62], which have been shown to be 

predictive of clinical outcomes, including ventricular arrhythmia and sudden cardiac death.

To address the challenge of image intensity overlap between the infarct and the areas 

surrounding the myocardium, especially the blood pool, the CMF method, similarly to prior 

approaches, used a manual delineation of myocardial boundaries to define a region of 

interest [35], [15], [14]. However, unlike the existing infarct segmentation techniques 

implemented in this study, the CMF method performed the segmentation via an iterative 

minimization of an energy function, which comprised of an image gradient weighted-spatial 

regularization term, and a regional intensity histogram matching term. Due to the 

incorporation of this regularization term, infarct segmentation by the CMF method, in 

comparison with those by the existing approaches, were affected less by image noise, and 

resulted in fewer isolated regions.

Our methodology utilized intensity histogram matching based on the Bhattacharyya distance 

metric for contour evolution. Such an approach has been demonstrated to be robust by 

numerous previous studies. Freedman and Zhang [27] were the first to demonstrate that 

objects can be tracked in a level set framework using histogram matching with 

Bhattacharyya distance metric, and optimize the energy function using a first-order 

approximation. Although first-order approximations such as the one used in our study, do 

not guarantee convergence to global optimum, such approximations can yield accurate 

segmentations when a good initial solution is provided. More recently, several studies [63], 

[64] described histogram matching with Bhattacharyya metric for convex optimization. For 

instance, Punithakumar et al. [63] proposed a bound optimization scheme to optimize the 

highly nonlinear Bhattacharyya metric under a sequential convex/dual optimization 

perspective, which guarantees that the value of energy function monotonically decreases 

with each iteration. Within cardiac imaging, several recent studies have used a similar bound 

on the Bhattacharyya metric within a max-flow framework for automated segmentation [65], 

[66]. In particular, Nambakhsh et al. [65] described a method for LV segmentation from 

cardiac cine MR images based on a bound optimization scheme, which maximizes the 
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Bhattacharyya distance metric between the estimated and model distributions of intensity 

and shape.

Preservation of the boundary between the border zone and the rest of the tissue is important 

for VT simulations. While some amount of detail in the border zone geometry will be lost 

due to the smoothing in the CMF method, our results demonstrated that the benefits of 

smoothing, e.g., minimizing the effects from noise, outweigh its limitations. Note that parts 

of the border zone boundary that coincide with the core zone boundary will not be affected 

by the smoothing in the CMF method. A potential alternative to our approach is to directly 

segment all three regions (i.e., normal myocardium, infarct core, and border zone) using a 

multi-region segmentation method based on energy minimization [24]. However, the 

drawback of multi-region segmentation methods is twofold: they may produce 

segmentations with artificial gaps between the core and border zone; and segmentation 

methods based on energy minimization suffer from shrinking bias, which may lead to 

shrinking of the relatively small border zone. In contrast with the multi-region segmentation 

methods, the developed two-step approach (i.e., binary segmentation based on energy 

minimization followed by thresholding) does not suffer from the above limitations, and is 

also simpler to implement. Out of the two implementations of the CMF method, the 2D 

approach outperformed the CMF3D. The decreased accuracy for the CMF3D method may 

be due to misalignment of slices during image acquisition, or artifacts introduced by the 

image interpolation method employed prior to 3D segmentation.

In our electrophysiological simulation studies, we observed that, irrespective of the infarct 

segmentation method, the same error in segmentation affected the outcomes of VT 

simulations to a substantially higher degree than those of sinus rhythm simulations. This was 

because, in VT, the morphology of the infarct zone largely determines the reentrant circuits 

that drive the pattern of wavefront propagation throughout the ventricles [45], [6]. Between 

the CMF and STRM2 methods, the outcomes of the simulations with models incorporating 

reconstructions built from infarct segmentations by the former were more similar to those 

with models generated using manual infarct segmentations. Thus, the inferior performance 

of the STRM2 approach compared to the CMF method in evaluations based on geometry 

translated into poorer performance of the former in evaluations based on simulations. 

Notably, between the CMF and STRM2 methods, the types of VTs induced with models 

built using infarct segmentations with only the former perfectly matched those induced with 

models generated using manual infarct segmentations. Since the STRM2 was the best 

among the existing methods in terms of DSC, we expect the CMF method to be more 

accurate in simulations than all the alternative methods used in our evaluation. All in all, our 

results indicate that the infarct segmentations by the CMF method, in comparison with those 

by the existing approaches, will be a better surrogate for manual infarct segmentations in the 

creation of patient specific models of ventricular electrophysiology that may be used to 

guide clinicians in therapeutic planning, and risk stratification [10], [6].

A limitation of our study is that the CMF methodology relied on manual delineation of 

myocardium to constrain the infarct segmentation. However, the amount of manual labor 

needed for the CMF method can be significantly decreased by utilizing myocardial 

boundaries segmented semi-automatically, either directly from the LGE-CMR images [16], 
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[19] or from co-registered cinematic CMR images, as done previously [23], [20], [18]. As 

clinical LGE-CMR images are typically acquired with a large slice thickness, the data used 

in this study contain artifacts from partial volume averaging. As such, an improvement on 

the present study can be made in the future by utilizing data from high-resolution LGE-

CMR methods [24].

V. Conclusion

We have developed a novel, semi-automated methodology for segmentation of LV infarct 

from clinical LGE-CMR images. The developed method has outperformed several 

alternative approaches in reproducing expert manual infarct segmentations, and in 

simulations of normal and abnormal ventricular electrophysiology. This study is the first that 

has evaluated a methodology for myocardial infarct segmentation based on outcomes of 

simulations of cardiac (dys)function, and constitutes an important step in advancing clinical 

applications of image-based, patient-specific simulations of ventricular electrophysiology.
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Fig. 1. 
Block diagram of our processing pipeline to segment and reconstruct LV myocardial infarct 

from multi-slice clinical LGE-CMR images. The letter(s) in parenthesis in a block refer(s) to 

the corresponding subsection(s) of Section II, where the processing in the block is described. 

The pipeline involves delineation of the LV myocardium in 2D by an expert, segmentation 

of the infarct in 2D using the CMF algorithm, and reconstruction of 3D infarct geometry 

from the segmented slices using the LogOdds method.
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Fig. 2. 
(a) Region changes arising from the evolution of the segmentation contour using the first-

order approximation of the distribution matching based on Bhattacharyya distance metric. 

(b) Value of Bhattacharyya distance metric as a function of iteration number for an example 

segmentation.
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Fig. 3. 
Block diagram of model generation, and execution of electrophysiological simulations, for 

the evaluation of our infarct segmentation method. the letter(s) in parenthesis in a block 

refer(s) to the corresponding subsection(s), of Section II, where the processing in the block 

is described. From each LGE-CMR image, two ventricular models, one incorporating infarct 

geometry reconstructed from manual segmentation, and the other with infarct geometry 

reconstructed from computed segmentation, were generated. Outcomes of 

electrophysiological simulations with the two models were then compared.
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Fig. 4. 
Exemplary results of the different infarct segmentation methods applied for two LGE-CMR 

images. Rows 1–3 correspond to the slices from the first image, rows 4–6 correspond to the 

slices from the second image, and columns correspond to the various methods. The expert 

manual delineation of the infarct in each of the slices is shown in yellow, and the contours 

computed by the different methods are displayed in cyan.
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Fig. 5. 
Surfaces of total infarct reconstructions generated from the segmentations of four example 

LGE-CMR images using the various methods. Rows correspond to the images, and columns 

correspond to the various methods.
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Fig. 6. 
Activation maps and pseudo-ECGs from one beat of sinus rhythm simulated for three patient 

hearts, with models that incorporated infarct reconstructions built from segmentations by 

different methods. The activation maps are displayed in anterior views of the ventricles.
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Fig. 7. 
Activation maps and pseudo-ECGs from one beat of VTs simulated for three patient hearts, 

with models that incorporated infarct reconstructions built from segmentations by the 

different methods. The hearts are numbered the same way as they are in Table V. Activation 

maps are shown in anterior views of the ventricles for Patient 1 and 2, and in superior view 

of the ventricle for Patient 3. The VTs were monomorphic except for the one corresponding 

to Patient 3 and the STRM2 method.
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TABLE I

Summary of quantitative evaluation of accuracies of the various methods in segmenting the total LV INFARCT, 

USING 2D GEOMETRY-BASED METRICS. SIGNIFICANT DIFFERENCES BETWEEN THE DSC OF CMF and those of other 

methods are indicated by asterisks.

Method DSC (%) RMSE (mm) δA (%)

CMF 76.67±5.84 9.10±10.7 18.53±10.62

CMF3D *73.21±10.04 11.07±8.77 33.45±29.23

FWHM *63.57±10.38 13.6±14.4 43.41±24.14

STRM1 *65.63±10.04 18.03±12.05 61.7±54.00

STRM2 *67.40±12.64 14.3±14.6 34.92±34.92

STRM3 *65.88±15.61 13.64±13.7 25.32±24.04

RG *43.92±14.23 11.88±19.6 97.217±119.8
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TABLE II

Summary of quantitative evaluation of the various methods for the infarct core and border zone segmentation 

using the DSC. SIGNIFICANT DIFFERENCES BETWEEN THE DSC OF CMF and those of other methods are indicated by 

asterisks.

Method
Infarct Core

DSC (%)
Border Zone

DSC (%)

CMF 87.98±7.65 65.31±8.46

CMF3D *85.92±10.51 *61.34±14.12

FWHM 88.13±8.54 *46.22±8.05

STRM1 87.60±8.61 *58.03±10.44

STRM2 *86.17±9.71 *58.64±12.8

STRM3 *83.99±11.95 *56.51±14.69

RG *53.15±14.94 *14.96±13.68
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TABLE III

Summary of quantitative evaluation of the various methods in segmenting the LV INFARCT, USING 3D GEOMETRY-

BASED METRICS. SIGNIFICANT DIFFERENCES BETWEEEN THE DSC AND δV OF CMF and those of other methods are 

indicated by asterisks.

Method DSC (%) δV (%) δVsgn (%) RMSE (mm) δSA (%) Euler δχ

CMF 76.4±6.3 18.17±11.3 −8.5±20.4 2.22±2.55 17.1±11.8 6.2±4.8

CMF3D 72.7±11.3 22.31±18.4 2.5±43.7 3.76±3.10 25.6±29.3 8.3±10.5

FWHM *62.6±12.1 *45.1±25.3 −31.6±41.1 3.10±2.96 33.3±24.8 13.3±11.8

STRM1 *67.1±9.75 *55.5±46.7 50.8±51.8 6.65±3.89 31.6±28.9 20.7±19.0

STRM2 *69.6±11.5 *30.8±26.3 14.5±38.06 5.21±3.44 33.1±27.3 15.7±13.6

STRM3 *68.9±15.1 *25.3±21.5 −8.8±32.2 4.09±3.03 36.5±29.7 16.1±13.1

RG *45.8±15.4 *69.6±49.1 −37.7±76.8 6.22±3.58 51.3±23.9 7.2±6.1
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TABLE IV

Summary of quantitative evaluation of accuracies of the CMF AND STRM2 infarct segmentation methods, 

based on outcomes of sinus rhythm simulations.

Method RMSE (mV) MAD (%) CORR ATD (ms)

CMF 0.031±0.027 14.3±7.3 0.95±0.06 3.95±2.35

STRM2 0.043±0.029 23.6±14.7 0.90±0.08 6.14±2.9

IEEE Trans Med Imaging. Author manuscript; available in PMC 2016 June 03.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ukwatta et al. Page 31

TABLE V

TYPES OF VTs initiated in our simulations of arrhythmia induction performed on all generated models. MVT, 

PVT, AND _DENOTE MONOMORPHIC VT, POLYMORPHIC VT, AND NO VT INDUCED, RESPECTIVELY.

Patient # Manual CMF STRM2

1 MVT MVT MVT

2 MVT MVT MVT

3 MVT MVT PVT

4 _ _ _

5 MVT MVT _

6 _ _ _

7 _ _ MVT
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