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Abstract We present a suite of Bayes factor hypothesis
tests that allow researchers to grade the decisiveness of the
evidence that the data provide for the presence versus the
absence of a correlation between two variables. For con-
creteness, we apply our methods to the recent work of
Donnellan et al. (in press) who conducted nine replication
studies with over 3,000 participants and failed to replicate
the phenomenon that lonely people compensate for a lack
of social warmth by taking warmer baths or showers. We
show how the Bayes factor hypothesis test can quantify evi-
dence in favor of the null hypothesis, and how the prior
specification for the correlation coefficient can be used to
define a broad range of tests that address complementary
questions. Specifically, we show how the prior specification
can be adjusted to create a two-sided test, a one-sided test, a
sensitivity analysis, and a replication test.

Keywords Hypothesis test - Statistical evidence - Bayes
factor

After a Herculean effort involving a series of nine repli-
cation experiments, Donnellan et al. (in press) ultimately
failed to reject the null hypothesis that people do not use
warm showers and baths to compensate for a lack of social
warmth, contradicting an earlier claim by Bargh and Shalev
(2012). Unfortunately, the standard p value methodology
does not allow one to quantify evidence in favor of the
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null hypothesis (Gallistel, 2009; Rouder et al., 2009;
Wagenmakers, 2007). This is a major limitation, particu-
larly for replication studies in which there is an important
distinction between the statement “p > .05, the data are
uninformative” versus the statement “p > .05, the data are
informative and support the null hypothesis”.

It should be noted that the experiments from Donnellan
et al. (in press) featured a total of 3073 participants; for
such high-power experiments, one expects the outcome to
be diagnostic, and hence it may be tempting to conclude that
the non-significant p values reported by Donnellan et al.
(in press) do indicate support in favor of the null hypoth-
esis. However, this argument from power is insufficient,
for two reasons. First, power is a pre-experimental expec-
tation involving all possible outcomes, only one of which
is relevant after the data are observed. In other words, even
when conducting high-power experiments, researchers can
be unlucky and obtain uninformative outcomes. To make
this more concrete, consider an example featuring two urns
(Wagenmakers et al. in press). One urn, Ho, contains nine
green balls and one blue ball. The other urn, H, contains
nine green balls and one orange ball. You are presented with
one urn from which balls can be drawn with replacement,
and your task is to determine the urn’s identity. Unbe-
knownst to you, the selected urn is 7{;. Your power analysis
is based on the fact that a single draw has 10 % power, that
is, P(reject Ho|H1) = P(“draw orange ball”|H;) = 0.10.
Consequently, an experiment with 90 % power requires
that 22 balls are drawn (i.e., 1 — 0.9%%). You carry out the
experiment and you happen to draw 22 green balls: a com-
pletely uninformative result. This example demonstrates
that high-power experiments need not provide diagnostic
data. Second, even if the data could be argued to provide
support in favor of the null hypothesis, the quantitative
impact of this support remains unclear: are the observed
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data twice as likely under the null hypothesis Hg than under
the alternative hypothesis Hp, or 20 times, or perhaps 200
times?

Here we provide a series of Bayesian hypothesis tests
to grade the decisiveness of the evidence that the data
from Donnellan et al. (in press) provide in favor of the
null hypothesis that people do not use warm showers and
baths to compensate for a lack of social warmth. Through-
out this article, we display a suite of Bayesian hypothesis
tests: a default two-sided test for correlations (Jeffreys,
1961), a default one-sided test for correlations (Boekel
et al., in press), a sensitivity analysis, and a replication test
for correlations (extending the work by Verhagen and
Wagenmakers (2014)).

Our results show that although most p values from
Donnellan et al. (in press) are non-significant, the evidence
in favor of Hp—as quantified by the default two-sided
Bayesian hypothesis test—differs widely across the nine
replication attempts: for the least informative attempt, the
observed data are only two times more likely under H than
under H;; for the most informative attempt, the observed
data are 17 times more likely under #H( than under #;.
Overall, the combined data from studies 1-4 (i.e., near-exact
replications) and studies 5-9 (i.e., exact replications) are 16
and about 30 times more times more likely under o than
under H1, respectively.

The methods outlined here are general and they can
therefore be used equally well in other research domains
whenever one seeks to quantify evidence for the absence or
presence of a correlation. The relevant R code is illustrated
through online materials available on the Open Science
Framework at https://osf.io/cabmf/.

The Donnellan data

In their studies la and 1b, Bargh and Shalev (2012)
found that loneliness—as measured by the UCLA Loneli-
ness Scale—correlated positively with the “physical warmth
index”, a composite variable based on self-reported aver-
age frequency, duration, and temperature of showers and
baths (N = 51,r = .57, p < .0001; N = 41,r = .37,
p < .017). Based in part on these results, Bargh & Shalev
(2012, p. 155) hypothesized that people “self-regulate their
feelings of social warmth (connectedness to others) with
applications of physical warmth (through taking warm baths
or showers)”.

In this article, we reanalyze the data from the nine repli-
cation experiments conducted by Donnellan et al. (in press).
As explained by Donnellan et al. (in press), studies 14
were near-exact replications (e.g., using a UCLA Loneli-
ness Scale slightly different from the one used by Bargh
and Shalev (2012)) and studies 5-9 were exact replications.
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In all nine studies, the focus of our analysis is the statisti-
cal association between loneliness and the physical warmth
index used by Bargh and Shalev (2012).

The first step in analyzing correlations is to plot the data
and confirm that the assumption of a linear relation is appro-
priate (Anscombe, 1973). For instance, a zero correlation
between loneliness and the physical warmth index is mis-
leading when the empirical relation is U-shaped. Figure 1
shows the raw data and confirms the validity of a stan-
dard correlational analysis. Across the nine experiments, the
sample Pearson correlation values range from —.13 to +.13,
and the associated two-sided p values range from .03 to .77.

Posterior distributions

To quantify the evidence that the data provide for the pres-
ence and absence of a correlation p between loneliness and
the physical warmth index, we need to contrast two sta-
tistical models: the null hypothesis Hg : p = 0 and the
alternative hypothesis H; : p # 0. In Bayesian inference,
the complete specification of a statistical model requires
that its parameters be assigned prior distributions (Dienes,
2008; Lee and Wagenmakers, 2013; Lindley, 2014). For the
Pearson correlation, the data are assumed to come from a
bivariate normal, and this means that the model has five
parameters: parameters f, and of are the mean and vari-
ance of the first variable, u, and 03 are the mean and
variance of the second variable, and p is the correlation (see
Appendix for details).

We start the specification of 7; by assigning uninfor-
mative, widely spread-out prior distributions to parameters
Mxs My, 0)?, and ay2 (Jeffreys, 1961; Lee & Wagenmakers,
2013; Ly et al., 2015).! This leaves the specification of the
prior distribution for the parameter of interest, the correla-
tion p. At first we follow Jeffreys (1961) and assign p a
prior that is uniform from —1 to 1; this prior reflects the
belief that each value for p is equally likely before seeing
the data. Hence, the alternative hypothesis is specified as
Hi:p~UC-1,1).

Assume for the moment that 7 is true and that we do
not assign special status to the specific value p = 0; in
that case our prior knowledge about p is completely cap-
tured by its prior distribution p ~ U(—1, 1). When data d
arrive, this prior distribution p(p) is updated to a posterior
distribution p(p | d). The posterior distribution describes
all that we know about p after seeing the data (and ignoring
the fact that 71 may be false and p = 0 may deserve spe-
cial consideration). To provide an initial intuitive impression

IFor the correlation test outlined here, the prior distribution for these
nuisance parameters have no impact on the Bayes factor (Jeffreys,
1961; Ly et al., 2015).
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Fig. 1 Data for the nine replication experiments from Donnellan et al.
(in press). Scores for the loneliness scale are on the x-axis and scores
for the physical warmth index are on the y-axis. Each panel also

about what the Donnellan data tell us about the correlation
between loneliness and the physical warmth index, Fig. 2
shows prior and posterior distributions separately for each
of the nine experiments.>

As is evident from each panel in Fig. 2, the data are
informative in the sense that there is a substantial difference
between the prior distribution and the posterior distribution.
For studies 2, 7, and 8, the posterior distribution is approxi-
mately centered on p = 0; for studies 1, 4, and 9, most of the
posterior distribution is concentrated on negative values of
p; and for studies 3, 5, 6, most of the posterior distribution
is concentrated on positive values of p. Although useful, a
visual impression of the posterior distribution alone cannot
serve to quantify the evidence that the data provide for the
hypothesis that the correlation is present or absent, a topic
we turn to next.

Default Bayes factors

The Bayesian model selection and hypothesis testing
machinery works as follows (Jeffreys, 1961). Assume
for simplicity that there are only two models under

2A complete Bayesian analysis can update the posterior for p across
experiments. Here, we wish to provide an indication of the informa-
tiveness of each experiment separately.

shows the sample Pearson correlation coefficient r, the number of
observations N, and the two-sided p value

consideration, Hg : p = Oand H; : p ~ U(-1,1).
We start by assigning complementary prior probabilities to
both hypotheses, that is P(Ho) and P(H1) = 1 — P(Ho).
Dividing these probabilities yields the prior model odds. For
instance, a proponent of the relation between loneliness and
bathing habits may believe that P(Hp) = .10; hence, the
proponent’s prior model odds equal P(Ho)/P(H1) = 1/9.
Hence, this proponent believes that the presence of a corre-
lation between loneliness and bathing habits is a priori nine
times more plausible than its absence.

Of course, the specification of prior model odds is sub-
jective. In this case, a skeptic may well have prior odds
equal to P(Ho)/P(H1) = .99/.01 = 99, meaning that this
skeptic believes that the absence of a correlation between
loneliness and bathing habits is a priori 99 times more plau-
sible than its presence. In sum, the prior model odds can
be used to measure an individual’s initial enthusiasm or
skepticism regarding the hypotheses at hand.

Bayesian hypothesis testing, however, does not depend
on prior odds; instead, it concerns itself with the change in
prior odds brought about by the data. When the data d arrive,
the prior model odds are updated to posterior model odds.
Mathematically, the updating process proceeds as follows:

P(Hold) _ P(Ho) y P(d | Ho) 0
P(Hild) PH1)  Pd|H)
——— —— ———

Posterior odds Prior odds Bayes factor
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Fig. 2 Prior and posterior distributions for the correlation p between
loneliness and the physical warmth index across the nine replication
experiments from Donnellan et al. (in press). The statistical model is
defined as H; : p ~ U(—1, 1). The filled dots indicate the height

The Bayesian hypothesis test centers on the Bayes factor
BFy;: the extent to which the data change one’s belief about
the plausibility of the competing models (Jeffreys, 1961;
Kass and Raftery, 1995; Lee & Wagenmakers, 2013). Thus,
although proponent and skeptic may differ on their prior
model odds (and, consequently, on their posterior model
odds), as long as they agree on the model specification
Hi:p ~ U(—1,1) they will agree precisely on the extent
to which the data have changed their initial opinion. For
instance, when BFy; = 8.5 the observed data are 8.5 times
more likely under H( than under 1, and when BFy; = 0.2
the observed data are five times more likely under 7 than

@ Springer

of the prior and posterior distributions at p = 0; the ratio of these
heights equals the evidence that the data provide for H; versus Hg
(Wagenmakers et al., 2010)

under Hgp. Equation 1 shows that BFy; = 1/BFjq; because
the data from Donnellan et al. (in press) generally support
‘Ho, we prefer to report BFg; throughout, as odds larger than
one are easier to interpret.

Thus, in order to grade the decisiveness of the evidence
in the nine studies by Donnellan et al. (in press) we need
to compute the Bayes factor BFy; = p(d | Ho)/p(d |
Hi1). When H; : p ~ U(—1, 1), this Bayes factor can
be obtained easily (Jeffreys, 1961; see also the Appendix).
The BFg; column of Table 1 shows the result. As expected
from considering the posterior distributions shown in Fig. 2,
the evidence in favor of H is particularly high for studies
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Table 1 Results from different Bayes factor hypothesis tests for each of the nine experiments from Donnellan et al. (in press), as well as for the

data collapsed over studies 14 and studies 5-9

N r p BFo; BFo+ BFo; (rorig = .57) BFo; (rorig = .37)
Study 1 235 —0.06 0.35 7.90 22.59 16825.57 39.37
Study 2 480 —-0.01 0.90 17.36 19.24 17679.82 47.45
Study 3 210 0.13 0.06 2.09 1.08 50.25 1.15
Study 4 228 -0.10 0.15 4.21 28.58 21904.40 35.05
Study 5 494 0.10 0.03 1.67 0.85 134.72 1.32
Study 6 553 0.08 0.06 3.13 1.61 398.01 2.98
Study 7 311 0.02 0.72 13.21 10.32 4894.19 23.76
Study 8 365 0.02 0.77 14.60 11.84 7002.82 28.75
Study 9 197 -0.13 0.07 2.17 30.86 21755.50 28.25
Study 1-4 1153 -0.03 0.31 16.17 52.21 49671.92 70.00
Study 5-9 1920 0.01 0.56 29.53 20.53 31021.07 70.36

Note: N is the total number of participants, r is the sample Pearson correlation coefficient between loneliness and the physical warmth index, p
is the two-sided p value, BFy; is the two-sided default Bayes factor in favor of ¢, BFo is the one-sided default Bayes factor in favor of H,,
BFo:(.57) is the replication Bayes factor in favor of H based on study la from Bargh and Shalev (2012) (featuring undergraduate participants, as

in studies 1, 7, 8, and 9), and BF,(.37) is the replication Bayes factor in favor of ¢ based on study 1b from Bargh and Shalev (2012) (featuring

participants from community samples, as in studies 2—6)

2 (i.e., BFp; = 17.36), 7 (i.e., BFy; = 13.21), and 8 (i.e.,
BFy; = 14.60); each of these studies alone requires that
we adjust our beliefs about the presence of a correlation
between loneliness and the physical warmth index by more
than an order of magnitude.

To visualize the Bayes factor results, Fig. 2 uses filled
dots to indicate the height of the prior distribution versus the
height of the posterior distribution at p = 0, assuming
holds. An identity known as the Savage-Dickey density ratio
test (e.g., Dickey and Lientz (1970) and Wagenmakers et al.
(2010)) states that the ratio between these heights equals
BFy;. For instance, consider the study 2 panel in Fig. 2.
For that study, the data increased the plausibility of the
point p = 0 by a factor of 17.36, meaning that at p = 0
the posterior distribution is 17.36 times higher than the
prior distribution. This height ratio—obtained by consider-
ing only the prior and posterior distributions under #H{—is
identical to the Bayes factor BF(; between Hg and H.

In addition, the evidence for H is rather weak for those
studies in which the effect is in the predicted direction and
most of the posterior mass is concentrated on positive values
of p. Specifically, the results from studies 3 (i.e., BFy; =
2.09), 5 (i.e., BFp; = 1.67), and 6 (i.e., BFy; = 3.13)
do not necessitate a substantial adjustment of our beliefs
about the presence of a correlation between loneliness and
the physical warmth index, as can be confirmed by the
relative closeness of the dots on the distributions in the cor-
responding panels of Fig. 2. Note, however, that even for
these relatively uninformative studies the evidence favors
‘Ho, whereas the respective classical p values equal p = .06

(i.e., “marginally significant”), p = .03 (i.e., “significant,
reject Hoy”), and p = .06 (i.e., “marginally significant™).?
Finally, consider the evidence for the studies in which the
effect is in the opposite direction and most of the posterior
mass is concentrated on negative values of p. The results for
studies 1 (i.e., BFy; = 7.90), 4 (i.e., BFg; = 4.21), and 9
(i.e., BFg; = 2.17) yield somewhat more evidence for H
than did studies 3, 5, and 6, but the overall impression is less
compelling than one might expect. The main reason for this
is that our current Bayes factor is two-sided such that posi-
tive correlations constitute just as much evidence against H
as negative correlations. For this particular scenario, how-
ever, there are strong expectations about the direction of the
effect, and this warrants the application of a one-sided test.

The one-sided test

For the two-sided test discussed in the previous section, the
alternative hypothesis was specified as H; : p ~ U(—1, 1).
This model specification expresses the belief that every
value of the correlation p is equally likely a priori. However,
the hypothesis proposed by Bargh and Shalev (2012) and
tested by Donnellan et al. (in press) is clearly directional:
the assertion is that lonely people take showers and baths
that are warmer, not colder.

3Results such as these illustrate the strong statement by Edwards
(1965, p. 400): “Classical significance tests are violently biased against
the null hypothesis.” The bias originates from the fact that p values
only consider the extremeness of the data under Hg and disregard what
is expected under H; (e.g., Wagenmakers et al., in press).
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Within the Bayesian framework, it is conceptually
straightforward to account for the direction of the hypoth-
esis. Specifically, for the one-sided test the prior mass is
assigned only to positive values of p such that H4 : p ~
U (0, 1). The computation of the associated one-sided Bayes
factor BFy is provided in the appendix (see also Boekel
et al., in press; Morey and Wagenmakers, 2014). The BFy+
column of Table 1 shows the result.

A comparison between the two-sided Bayes factor BFy;
and the one-sided Bayes factor BF reveals three regular-
ities (see Table 1). The first regularity is that for the three
studies where the posterior distribution from Fig. 2 was
approximately symmetrical around p = O, the evidence
in favor of g is virtually unaffected; study 2: BFy; =
17.36 vs. BFo;+ = 19.24; study 7: BFy; = 13.21 vs.
BFop+ = 10.32; study 8: BFy; = 14.60 vs. BFpy = 11.84.
In fact, when the posterior distribution is perfectly sym-
metrical around zero, the two Bayes factors are identical
(Wagenmakers et al., 2010).

The second regularity is that for the studies where the
effect was in the predicted direction, the evidence is now
more favorable to H 4 than it was to H;; study 3: BFy; =
2.09 vs. BFg+ = 1.08; study 5: BFy; = 1.67 vs. BFg =
0.85; study 6: BFy; = 3.13 vs. BFpy = 1.61. Under the
one-sided test, the data from these studies have become
almost completely uninformative. The data from study 5
even favor Hi, although the strength of this support is so
small that it does not merit attention (i.e., the data are
1/0.85 ~ 1.18 times more likely under / than under ).
Thus, when the effect goes in the predicted direction the
one-sided test makes the alternative hypothesis look better,
but not by much. In fact, for a symmetrical prior a sign-
restriction cannot increase the Bayes factor in favor of the
alternative hypothesis more than two-fold (Klugkist et al.,
2005; Wagenmakers et al., 2010).

The third regularity is that for the studies where the effect
was in the opposite direction, the evidence is much less
favorable for 7 than it was for ; study 1: BFy; = 7.90
vs. BFoy = 22.59; study 4: BFg; = 4.21 vs. BFp; = 28.58;
study 9: BFg; = 2.17 vs. BFpy = 30.86. This is then the
major difference between specifying a two-sided alternative
hypothesis H; and a one-sided alternative hypothesis H:
when the effect goes in the direction opposite to the one that
was predicted, the evidence greatly favors Hg. This hap-
pens because the evidence quantified by the Bayes factor is
relative: when the observed effect is negative, this may be
unlikely under Hy, but it is even less likely under a model
‘H 4+ that stipulates the effect to be positive.

In sum, by changing the prior distribution on p we
can implement a one-sided Bayes factor that quantifies
the evidence that the data provide for a positive correla-
tion between loneliness and the physical warmth index.
This one-sided test is arguably a better reflection of the
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underlying directional hypothesis, which states that lonely
people take warmer—but not colder—showers and baths.
Application of the one-sided test showed that the out of the
nine replication experiments by Donnellan et al. (in press),
three were not very informative. The other six studies,
however, provided highly diagnostic information, each sep-
arately requiring a shift in belief towards Ho of more than
an order of magnitude.

Sensitivity analysis

The comparison between the two-sided and the one-sided
Bayes factor has highlighted how the prior distribution on
p can be used to specify different alternative hypotheses;
and when different hypotheses are put to the test, different
results will (and should) emerge. A persistent concern, how-
ever, is that the presented Bayes factor may be delicately
sensitive to the specification of the prior, and that by spec-
ifying the prior at will, researchers can obtain any desired
result. This concern can be addressed in more than one way.
The most general counterargument is that the prior is an
integral part of the model specification process—yes, one
can specify a highly implausible and idiosyncratic prior on
p to obtain a nonsensical result, but the specification of the
prior is subject to criticism just as the specification of a
highly implausible and idiosyncratic model structure (e.g.,
an exponential distribution for response times). In other
words, silly models (whether through silly priors or silly
structure) will lead to silly conclusions, but in many situ-
ations is it obvious when a model is silly and when it is
not.

A related counterargument is that for many models,
researchers can depend on default priors that are suitable
for a reference-style analysis. This analysis can be refined
if more knowledge is available, as was demonstrated above:
we started with a two-sided default prior H; : p ~
U(—1, 1) and then refined the prior to H4 : p ~ U (0, 1).
An extreme form of refinement will be demonstrated in
the next section. There, the prior distribution for the Bayes
factor analysis of the Donnellan et al. (in press) studies
is provided by the posterior distribution obtained from the
Bargh and Shalev (2012) studies.

In this section, we explore another counterargument,
namely to take the critique and evaluate it explicitly by
means of a sensitivity analysis (e.g., Wagenmakers et al.,
2011). In such an analysis, one calculates Bayes factors for
a wide range of plausible prior distributions. If the con-
clusions depend on the prior specification in an important
way, such that different plausible priors lead to qualitatively
different Bayes factors, then it should be acknowledged
that the data do not allow an unambiguous conclusion.
However, it may also happen that the conclusions are qual-
itatively robust across a wide range of prior distributions
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(e.g., Wagenmakers et al., 2011). In our experience, such
robustness is the rule rather than the exception.

For consistency with the two-sided tests carried out by
Bargh and Shalev (2012) and Donnellan et al. (in press),
we return to the two-sided Bayes factor BFy; that compares
Ho:p=0toH;:p~U(—1,1). One proposal for a sen-
sitivity analysis could define a set of models by smoothly
decreasing the range of the uniform distribution on p, such
that H; : p ~ U(—c, c), with ¢ € (0, 1). We prefer a sim-
ilar but more elegant solution, where we first rescale the
correlation to lie between 0 and 1, and then assign it a beta
distribution. Hence, p’ ~ beta(a, o), and a measure of the
spread of this distribution is y = 1/a. We then transform
the beta distribution back to the (—1, 1) scale and calculate
the Bayes factors as a function of . When y = 1, this cor-
responds to a uniform prior on the correlation coefficient,
as per our default analysis. When y = 0, which happens
when o grows very large, H; becomes indistinguishable
from Hy and consequently the Bayes factor is 1. Values of
y in between 0 and 1 define an continuous range of dif-
ferent alternative hypotheses that represent different beliefs
about the extent to which large values for the correlation are
plausible.

Figure 3 shows the result of the sensitivity analysis
for each of the nine experiments from Donnellan et al.

(in press). The y-axis shows the log of the Bayes factor
BFoi, such that when y = 0, all panels yield log BFy; =
log(1) = 0 and BFp; = 1, as predicted. In all panels, for
all reasonable values of y, the evidence supports the null
hypothesis. In addition, there is no value of y for which the
evidence supports the alternative hypothesis in compelling
fashion. Furthermore, for a large range of y the Bayes fac-
tor does not show large fluctuations. Overall, the sensitivity
analysis shows that, although different priors instantiate
different models and will therefore yield different Bayes
factors, it is not the case that any results whatsoever can be
obtained. Instead, the qualitative results are similar across a
range of plausible values for y: the data provide clear evi-
dence in favor of Hy, but some experiments provide stronger
evidence than others.

The same sensitivity analysis can be carried out after
collapsing the data in two classes: one based on studies 1—
4 and one based on studies 5-9. The studies within these
two classes were highly similar (Donnellan et al., in press).
Figure 4 shows the result. All values for y result in Bayes
factors that indicate support in favor of Hg. When H; is
defined so as to predicts larger effects (i.e., through larger
values of y), the evidence more strongly supports . Thus,
the more the models become distinguishable, the more the
Bayes factor prefers Hp.

Study 1 Study 2 Study 3
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log(30) BFo+ :{i Iog(30) N log(30)
log(10) log(10) log(10) BFp1=2
log(3) ///d log(3) log(3) N
log(1) log(1) log(1) //.
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Fig. 3 Sensitivity analysis for the Bayes factor BFg; across the nine
replication experiments from Donnellan et al. (in press). The log of
the Bayes factor BFy; is on the x-axis and the prior width y is on
the y-axis. When y = O the alternative hypothesis equals the null

hypothesis; when y = 1 the alternative hypothesis is p ~ U(—1, 1).
The Bayes factor is qualitatively robust in the sense that the evidence
favors the null hypothesis across a wide range of prior beliefs. See text
for details
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Studies 1 -4 Studies 5 -9
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Y Y

Fig. 4 Sensitivity analysis for the Bayes factor BFy;, collapsing data
across studies 1-4 (left panel) and across studies 5-9 (right panel)
from Donnellan et al. (in press). The log of the Bayes factor BFy is
on the x-axis and the prior width y is on the y-axis. When y = 0
the alternative hypothesis equals the null hypothesis; when y = 1 the
alternative hypothesis is p ~ U(—1, 1). See text for details

It is insightful to compare the Bayes factors for the col-
lapsed data from studies 1-4 (i.e., BFy; = 16.17) and
studies 5-9 (i.e., BFg; = 29.53) to those obtained by mul-
tiplying the Bayes factors from the individual experiments.
For studies 1-4, the multiplication yields 7.90 x 17.36 x
2.09 x 4.21 = 1207, for studies 5-9, the multiplication
yields 1.67 x 3.13 x 13.21 x 14.60 x 2.17 ~ 2188. The dis-
crepancy with the collapsed-data Bayes factors is large, and
this serves to demonstrate that when effect sizes are related
across studies—which is reasonable to assume— Bayes fac-
tors should not be multiplied (e.g., as was done by Bem
et al. (2011) in order to present evidence in favor of extra-
sensory perception). As explained by Jeffreys (1961, pp.
332-334), Bayes factors may only be multiplied when the
prior distributions are properly updated. To clarify, consider
two studies, E| and E;, and a fixed effect. When the two
experiments are analyzed simultaneously, the Bayes factor
can be denoted BF(E1, E3), and it is obtained by integrat-
ing the likelihood over the prior distribution (see appendix
for details). When the two experiments are analyzed sequen-
tially, the same end result should obtain, and this occurs with
a Bayes factor multiplication rule based on the definition of
conditional probability: BF(E1, E») = BF(E;) x BF(E; |
E1). Note that the latter term is BF(E> | E1), indicating that
it is obtained by integrating the likelihood over the posterior
distribution obtained after observing the first experiment.
Thus, multiplying Bayes factors across N related units (par-
ticipants or studies that show similar effects) is incorrect
because the prior is used N times instead of being updated.

@ Springer

Replication Bayes Factors

As outlined above, for replication studies there exists
another way to alleviate the concern over how to specify
the alternative hypothesis (Verhagen and Wagenmakers,
2014). Specifically, one can use the data from the original
study to obtain a posterior distribution, and then use that
posterior distribution to specify the alternative hypothesis
for the analysis of the replication studies. This “repli-
cation Bayes factor” therefore pits two models against
one another. The first model, Ho : p = 0, repre-
sents the belief of a skeptic, and the second model, H; :
p ~ “posterior distribution from original study”, represents
the idealized belief of a proponent. As pointed out by
Verhagen & Wagenmakers (2014, p. 1459), “(...) the default
test addresses the question, “Given that we know rela-
tively little about the expected effect size beforehand, is the
effect present or absent in the replication attempt?”’; our
test addresses the question, “Is the effect similar to what
was found before, or is it absent?”. The two tests there-
fore represent extremes on a continuum of sensitivity to past
research; the default test completely ignores the outcomes
of an earlier experiment, whereas the replication test takes
these outcomes fully into account.”

The replication Bayes factor was developed by Verhagen
and Wagenmakers (2014) for the ¢ test; here we extend that
work to the Pearson correlation coefficient (for an applica-
tion see Boekel et al. (in press); for mathematical details see
the Appendix). Table 1 shows the results for two replication
Bayes factors; the first, BF:(.57), is based on study la from
Bargh and Shalev (2012), featuring undergraduate partici-
pants and yielding roig = .57 with neg = 51; the second,
BF(.37), is based on study 1b from Bargh and Shalev
(2012), featuring a community sample of participants and
yielding rorg = .37 with ngg = 41.

The BFq:(.57) column of Table 1 shows that, across
all studies, the data are much more likely under the skep-
tic’s Ho than under the proponent’s H, based on study la
from Bargh and Shalev (2012). Even for the least com-
pelling study, the data are 50.25 times more likely under
‘Ho than under ;. When the proponent’s belief is based on
study 1b from Bargh and Shalev (2012), the results are less
extreme: the results for study 3 (BFo(.37) = 1.15), study 5
(BFo:(.37) = 1.32), and study 6 (BFy:(.37) = 2.98) are rel-
atively uninformative: the data are almost as likely under the
skeptic’s H than under the proponent’s H,. For the remain-
ing studies, however, the results show compelling support
for the skeptic’s Ho, with Bayes factors ranging from about
23 to about 47.

Figure 5 visualizes the results using the Savage-Dickey
density ratio. In each panel, the dotted line indicates the
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Fig. 5 Prior and posterior distributions for the correlation p between
loneliness and the physical warmth index across the nine replication
experiments from Donnellan et al. (in press). The statistical model is
defined as H; : p ~ “posterior distribution from original study”. The

idealized belief of a proponent, that is, the posterior distri-
bution from the original study by Bargh and Shalev (2012).*
Studies 1, 7, 8, and 9 featured undergraduate participants,
and hence the dotted lines in the corresponding panels
are based on study la by Bargh and Shalev (2012) (i.e.,
Yorig = .57, norig = 51); in contrast, studies 2—6 featured
community samples of participants, and hence the dotted
lines are based on study 1b by Bargh and Shalev (2012)
(i.e., rorig = .37, norig = 41). In each panel, the solid line
indicates the posterior distribution that was obtained after

“In order to obtain the posterior distribution from the original exper-
iment we still require a prior. However, even for relatively small data
sets the shape of the posterior distribution is not much affected by
the choice of prior distribution, as expressed by the adage “the data
overwhelm the prior”.

Correlation p

Correlation p

filled dots indicate the height of the prior and posterior distributions
at p = 0; the ratio of these heights equals the evidence that the data
provide for the proponent’s H, versus the skeptic’s Ho (Wagenmakers
et al., 2010)

updating the beliefs based on the original study (i.e., the
dotted distribution) with the data from the replication study.

As before, the Bayes factor BF, is given by the ratio of
the height of the prior and posterior distribution at p = 0.
For instance, the panel for study 1 shows that the value p =
0 is much more plausible after having seen the data from the
replication study than before. In fact, the ratio of the prior
and posterior density at p = 0 equals 16,825.57, which is
equal to the replication Bayes factor BFq.(.57).

Similarly, the panel for study 3 shows that the data from
the replication study have hardly altered the plausibility of
the value p = 0 at all; hence the dot that indicates the height
of the prior at p = 0 overlaps with the dot that indicates the
height of the posterior at p = 0, and the replication Bayes
factor equals BF(.37) = 1.15.
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Concluding comments

In this article we illustrated a suite of Bayesian hypothe-
sis testing techniques that allow researchers to grade the
decisiveness of the evidence that the data provide for the
presence versus the absence of a correlation between two
dependent variables. This approach is fundamentally dif-
ferent from Fisher’s p value methodology, which does not
acknowledge the existence of an alternative hypothesis,
and it is also fundamentally different from Neyman and
Pearson’s frequentist tool for making decisions. As stated
eloquently by Rozeboom (1960, pp. 422-423): “The null-
hypothesis significance test treats ‘acceptance’ or ‘rejec-
tion’ of a hypothesis as though these were decisions one
makes. But a hypothesis is not something, like a piece of
pie offered for dessert, which can be accepted or rejected
by a voluntary physical action. Acceptance or rejection of
a hypothesis is a cognitive process, a degree of believing or
disbelieving which, if rational, is not a matter of choice but
determined solely by how likely it is, given the evidence,
that the hypothesis is true.”

What, then, are the practical advantages of the Bayes fac-
tor hypothesis test over its classical counterpart? Among
the most salient are the following: (1) Bayes factors allow
researchers to claim evidence in favor of the null hypoth-
esis (Gallistel, 2009; Rouder et al., 2009; Wagenmakers,
2007), an advantage that is particularly prominent in repli-
cation research such as that conducted by Donnellan et al.
(in press); (2) Bayes factors allow researchers to quantify
the above claim, so that we may know whether the data are
more likely under Hg by a factor of 2, by a factor of 20, or
by a factor of 200; (3) Bayes factors allow researchers to
monitor the “evidential flow” as the data come in and stop
data collection whenever this is deemed desirable, without
the need for corrections depending on the intent with which
the data were collected (Rouder, 2014; Wagenmakers et al.,
2012). This flexibility is a direct consequence of the Stop-
ping Rule Principle (Berger and Wolpert, 1988), a principle
that all Bayesian analyses respect.

One may be tempted to argue that sensible conclusions
can be reached using classical statistics when, in addi-
tion to the p value, the concept of power is taken into
account. However, as alluded to in the introduction, power
is a pre-experimental concept that entails averaging across
all possible data sets, only one of which ends up being
observed. It is therefore entirely possible that an uninforma-
tive result is obtained even after conducting a high-power
experiment. For instance, consider studies 3, 5, and 6 from
Donnellan et al. (in press); all our Bayes factor hypothesis

5To the best of our knowledge, this term was introduced in the blog of
Eliezer Yudkowsky.
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tests indicated that these studies were virtually uninforma-
tive. Nevertheless, these studies featured 210, 494, and 553
participants, respectively. It is hard to argue that the uninfor-
mativeness of these data is due to a lack of power (see also
Wagenmakers et al., in press).

Another tempting argument is that p values can quantify
evidence for the null hypothesis when they are defined in a
different manner. For instance, in equivalence testing (e.g.,
Rogers et al., 1993; Rogers et al., 1976) the null hypothesis
is that an effect exists; when this hypothesis is rejected one
accepts the hypothesis of equivalence. A similar method is
to define a small effect, and use p values to test whether
the observed effect is smaller than this small effect (Hodges
and Lehmann, 1954; Simonsohn, in press); the lower the p
value, the more evidence there is in favor of the null hypoth-
esis. Yet another method is based on confidence intervals;
when confidence intervals are tightly centered on the value
under scrutiny, this is felt to be evidence for the null hypoth-
esis. These methods, however ingenious or intuitive, all
suffer from two main limitations. First, they focus on a
single hypothesis (for equivalence testing: the null hypothe-
sis; for confidence intervals: the alternative hypothesis) and
ignore what can be expected under the competing hypothe-
sis. Second, they are unable to quantify evidence in a formal
sense, and any evaluation of the end result remains to some
extent based on an intuitive translation; consequently, these
classical methods appear to be better suited for all-or-none
decisions rather than for an assessment of the extent to
which the data support one hypothesis over the other.

Some psychologists and statisticians object to hypothe-
sis testing on the grounds that a point null hypothesis (e.g.,
p = 0 exactly) is known to be false from the outset (e.g.,
Cohen, 1994; Meehl, 1978). We disagree with this claim
on principle (e.g., Iverson et al., 2010), but, more impor-
tantly, even if the claim were true it would not detract from
the usefulness of hypothesis testing—instead, if could mean
only that Hp needs to be specified with more care. For
instance, for a test of the Pearson correlation coefficient one
may replace Ho : p = 0 with 7—[(’) :p ~ U(-.01,.01).
After specifying such an interval null hypothesis (Morey
& Rouder, 2011), the same methods outlined in this article
may then be applied, with virtually identical results. That
is, “(...) the assignment of a lump of prior probability to
the simple hypothesis is strictly a mathematical convenience
and not at all fundamental.” (Cornfield, 1969, p. 637).

What fundamentally distinguishes Bayes factors from
alternative methods, such as those that are based on con-
fidence or credible intervals, is that Bayes factors assign
separate prior plausibility to Ho. This stems from the epis-
temic argument, originally put forward by Wrinch and
Jeffreys, that such assignment is essential in order to be able
to obtain inductive evidence in favor of an invariance or a
general law (e.g., Wrinch & Jeffreys 1919, 1921, 1923; see
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also Jeffreys, 1980; Ly et al., 2015; Rouder et al., 2009).
In the present work, the emphasis was on the ability of the
Bayes factor to quantify evidence in favor of an invariance;
here, the absence of a correlation. However, the method can
be used more generally, to quantify evidence for or against
an invariance—the Bayes factor does not assign special
status to either Hq or H.

Throughout this article we have demonstrated that the
prior distribution fulfills a pivotal and useful role in Bayes
factor hypothesis testing. When the prior on the correla-
tion coefficient is uniform from —1 to 1, we obtain Jef-
freys’ default test (for alternative Bayes factor tests on the
correlation coefficient, see Dienes, 2014, and Wetzels &
Wagenmakers, 2012); when this prior excludes negative val-
ues, we obtain a one-sided version of Jeffreys’ test that
respects the directional nature of the hypothesis at hand. The
robustness of the conclusions to alternative, plausible spec-
ifications of the prior distribution can be assessed with a
sensitivity analysis in which the shape of the prior is var-
ied in systematic fashion. Finally, the prior distribution can
be based entirely on earlier results, that is, on the posterior
distribution from the original experiment. By changing the
prior distribution, one changes the specification of 1, and
thereby the outcome of the Bayes factor. This underscores
the fact that the Bayes factor is a relative measure, as it
compares the support for Hg versus a specific H1. We view
our results as a vivid and concrete demonstration of what
Jeffreys himself hoped his work would accomplish, namely
that “(...) more attention will be paid to the precise state-
ment of the alternatives involved in the questions asked. It
is sometimes considered a paradox that the answer depends
not only on the observations but on the question; it should
be a platitude.” (Jeffreys, 1961, p. x).

Finally, it should be acknowledged that, in many cases,
the data pass the interocular traumatic test (i.e., when the
data hit you right between the eyes; (Edwards et al., 1963))
and it does not matter whether one carries out a classical
analysis, a Bayesian analysis, or no analysis at all. This
argument loses some of its force, however, when the data
appear to support the null hypothesis and an intuitive assess-
ment of evidential strength becomes non-trivial. At any rate,
one purpose of statistics is to make our intuitive judgement
precise and quantitative. We hope that the methods outlined
in this article will help contribute to that purpose.
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Appendix: Statistical details
The likelihood

In Bargh and Shalev (2012), the Pearson’s correlation coef-
ficient is used to measure the linear association between
loneliness and the physical warmth index, which we denote
by X and Y, respectively. The Pearson’s population correla-
tion coefficient is defined as follows:

Cov(X,Y) .
p = ——— or equivalently
0x0y

= () (50)

where X is taken to be normally distributed with population
mean i, and population standard deviation o,. Similarly,
Y is also assumed to be normally distributed such that
Y ~ N (;Ly,ayz). Assume that H; holds and that there
exists a correlation between X and Y. In order to describe
the pair X, Y simultaneously, we then require five parame-
ters, the normality parameters [y, [y, Oy, 0y and the linear
association p, resulting in the following likelihood:

n
1
LH|d) = | ————— 3)
2700y 1 — p?
1 S — p)?
X exp _2(1_'02)2[ 0’3
i=1
i — 1y)? 2p(xi — ) (i — hy)
+ 5 + ,
oy 00y
where we have written H1 = (iy, iy, Ox, 0y, p) for the
five parameters and d for the observed data with d =
()VC:), o (’ycz) and (;j) being the reported loneliness and

physical warmth index of participant i.

When the null hypothesis of no linear association
between X and Y holds true, this means that p is fixed
at zero. Consequently, this yields a model with only four
free parameters, Ho = (ux, Ly, Ox, 0y). More precisely, the
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likelihood for the null model given the observations d then
depends on the four parameters as follows:

1 n
L(Ho|d) = (2M - )
xOy

I ¢ P — )’ P — 1y’
exp(—zZ[(x el ]) @
i=1 x

y

Note that Eq. 4 is simply Eq. 3 with p = 0.
The Bayes factor test proposed by Sir Harold Jeffreys

To test whether the population correlation p is zero, we
compare Eq. 4 to Eq. 3. Although the true values of the
parameters are unknown, we can quantify our degree of
belief about the true values by means of prior distribu-
tions. These prior distributions act as weighting functions
for the likelihood. Sir Harold Jeffreys proposed that for H),
we weight the likelihood Eq. 4 with respect to the popu-
lation means p, and wy proportional to 1, mathematically,
p(uyx) o< 1 and p(uy) o< 1. Furthermore, the standard
deviations are weighted proportional to their inverse, that is,
p(ox) &« 1/oy and p(oy) o 1/0y. These weighting func-
tions then fully specify the marginal or average likelihood
for Hy. To obtain the marginal likelihood for 7; we use the
same weighting functions for the common parameters and
we weight the effects of p uniformly over (—1, 1), that is,
p(p) = 1/2. Hence, the two marginal likelihoods are given
by the following integrals (i.e., averages):

P(d| Ho) EQ////L(MX,uy,ax,aym)

1
><1duxlduv d —day, %)

P(d|H) E“/ffffuux,uy,ox,ay, d)

x 1dpy Idpey —dax d dp (6)

The ratio of these two marginal likelihoods yields the Bayes
factor BFy; = ?EZ { z‘l); that allows us to compare the two
models as discussed in the main text.

The above equations suggest that we have to compute
nine intensive integrals in order to obtain the Bayes fac-
tor. Fortunately, this is unnecessary, as Jeffreys (1961)
showed that contributions due to the nuisance parameters
Mx, Oy, [y, Oy are the same in the two models Ho, # and,
therefore, drop out of BFy; making the Bayes factor only

dependent on p as

1 a-p)'T
BFo; = 1/BFj9, where BF g = = ———dp,
2)1(1 - pr)*E
@)

@ Springer

where r refers to the sample correlation r that is defined as:

Zz 1(-xl )i —y)
\/Zl 1 (xi —¥)? Zl 1 i —y)

®)

The one-sided extension

It is straightforward to extend Jeffreys’ result to a one-sided
test of the null hypothesis Hp that p = O versus the direc-
tional restriction p > 0, which we denote by H. The
extension only requires us to change the uniform prior of p
from on (—1, 1) to a uniform prior on (0, 1), which yields:

- p?)'T
2n—3
0 (1-pr)T

BFy;+ = 1/BF4, where BF, o = dp. (9)

The integrals Eqgs. 7, 9 are evaluated explicitly by Eqgs. 11
and 12 respectively with o = 1.

Sensitivity analysis

Equation 7 shows how the Bayes factor BFjy depends on
the choice of prior p(p), which was set to the uniform prior
yielding p(p) = 1/2 for every p in (—1, 1). To study how
sensitive the Bayes factor is to this prior choice, we con-
sider the uniform distribution as a member of the following
class of priors that we refer to as the symmetric scaled beta
distributions

12«

B(a, @)

P o) = (1-0)"" (10)

where B(«, @) is a beta function. Each @ > 0 yields a candi-
date prior and we define y = 1/« as a measure of the spread
of this distribution. When y = 1, this corresponds to a uni-
form prior on the correlation coefficient, as per our default
analysis. When y = 0, which happens when a grows very
large, 7| becomes indistinguishable from 7y and conse-
quently the Bayes factor is 1. Values of y in between 0 and 1
define an continuous range of different alternative hypothe-
ses that represent different beliefs about the extent to which
large values for the correlation are plausible. The Bayes fac-
tor depending on « is then given by BFy; (o) = 1/BFjo(«)
where

5i- 2“f (n 1+2a)
B(o, a) F(%)

<2n—3 2n —1 n+2cx
X2 Fi

BFjo(a) =

4 T4 2

) an
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and where ,F; denotes Gauss’ hypergeometric func-
tion (Oberhettinger, 1972, section 15). Similarly, we get
BFo+ (o) = 1/BF¢(«), where

217202 — 3)r
n—142a)B(x, a)

2n—1 2 1 3 2 1
3By (1,2 2L 2 et ) ()
4 4 2 2

BFo(a)=BFjo(a)+

The replication Bayes factor

A replication Bayes factor (Verhagen and Wagenmakers,
2014) answers the question: “Is the effect from the replica-
tion attempt comparable to what was found before, or is it
absent?” The Bayes factor BFy; extracts the evidence within
the data from the replication study, dyep, and compares the
null hypothesis of no effect, o : p = 0, against the alter-
native hypothesis H; that the correlation is equal to what is
found in the original study.

As a prior on p for H;, we use the posterior den-
sity porig(p) conditioned on the original data. This den-
sity porig(p) summarizes the finding of the original study
(Jeffreys, 1961, p. 175, equation 9) and simplifies to:

"orig_l

(1-p?
2"orig_3

(I = prorig) ™~ 2

o (L L 2o =L LT N 3
2I 37 5 "5 2or1g,0 )

Porig(P) = p(p | dorig) x

where rorig, Norig are the sample correlation coefficient and
sample size of the original study (see also the suggestion in
Robert et al. (2009), and the integral shown in Gradshteyn
and Ryzhik, 2007, Eq. 3.197.3, p. 317).

The replication Bayes factor BFy; in favor of the null
against a replication of the original result boils down to the
ratio of the posterior divided by the prior porig(p) at the
point of interest, that is, p = 0 (e.g.; Wagenmakers et al.,
2010). Hence,

P
BFy, = (LWO) (14)
P (drep | Hr)
— porig(p = O | drep) (15)
Porig(p = 0)

where porig (0 | drep) denotes the posterior given the data in
the replication study, that is,

nrep—1
1 (=pH) 7
Porig(0 | drep) = — —————5—— Porig(P), (16)
C rep
(11— prrep) 2

where rpep, nrep refer to the sample correlation coefficient
and sample size of the replication study respectively, and we
have written C for the normalization constant

nrepfl

1 2
1—=p9 2
€= / T g Porig(P)dp a7
—1 (1 — prrep) )

which can be computed by numerical integration.

The above equations are implemented in R code and
available on the Open Science Framework at https://osf.io/
cabmf/. Some of the functionality of this R code will also be
available in the JASP 0.6 release (jasp-stats.org).
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