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Abstract

Decisions take time, and as a rule more difficult decisions take more time. But this only raises the 

question of what consumes the time. For decisions informed by a sequence of samples of 

evidence, the answer is straightforward: more samples are available with more time. Indeed the 

speed and accuracy of such decisions are explained by the accumulation of evidence to a threshold 

or bound. However, the same framework seems to apply to decisions that are not obviously 

informed by sequences of evidence samples. Here we proffer the hypothesis that the sequential 

character of such tasks involves retrieval of evidence from memory. We explore this hypothesis by 

focusing on value-based decisions and argue that mnemonic processes can account for regularities 

in choice and decision time. We speculate on the neural mechanisms that link sampling of 

evidence from memory to circuits that represent the accumulated evidence bearing on a choice. 

We propose that memory processes may contribute to a wider class of decisions that conform to 

the regularities of choice-reaction time predicted by the sequential sampling framework.

Introduction

Most decisions necessitate deliberation over samples of evidence, leading to commitment to 

a proposition. Often the deliberation adopts the form of integration or accumulation, and the 

commitment is simply a threshold applied to the neural representation of cumulative 

evidence, generically termed sequential sampling with optional stopping. This simple idea 

explains the tradeoff between decision speed and accuracy, and a variety of other regularities 

in perceptual decisions (e.g. confidence, Gold and Shadlen, 2007; Kiani et al., 2014; Smith 

and Ratcliff, 2004).

For some perceptual decisions, such as the direction of motion of dots on a screen, the 

source of the evidence that is integrated is well established: a stream of noisy data (moving 

dots) represented by neurons in the visual cortex. However, many decisions involve more 
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complex evaluation of preferences, reward, or memories. Interestingly, many such decisions 

also conform to the regularities of sequential sampling models (Bogacz and Gurney, 2007; 
Krajbich et al., 2010; Krajbich et al., 2012; Krajbich and Rangel, 2011; Polanía et al., 2014; 
Ratcliff, 1978; Wiecki and Frank, 2013). Yet, for these decisions, the evidence samples are 

mysterious. This is especially patent in decisions that involve choices which are presumed to 

be made based on internal evidence about the options, such as their value. In that case, one 

must ask, what constitutes the samples of evidence about value, and why would they be 

accumulated?

We propose that in many value-based decisions, samples are derived by querying memory 

for past experiences and by leveraging memory for the past to engage in prospective 

reasoning processes to provide evidence to inform the decision. The central hypothesis is 

that sequential memory retrieval enters decision making in the same way that motion 

transduction provides the information for integration in association areas toward a perceptual 

decision.

Here we will review the evidence supporting this hypothesis. We first review existing data 

regarding the accuracy and timing of perceptual decisions, and then value-based decisions. 

Next, we review existing evidence pointing to a role for memory in value-based decisions in 

general. Finally, we discuss a working framework for neurobiological mechanisms 

supporting circuit-level interactions by which sampled evidence from memory can influence 

value-based decisions and actions. Our speculations are at most rudimentary, but they begin 

to expose the sequential character of the operation and suggest putative neural mechanisms.

Evidence accumulation in perceptual decisions

The speed and accuracy of some perceptual decisions suggest that a decision is made when 

an accumulation of evidence reaches a threshold level in support of one of the alternatives 

(Gold and Shadlen, 2007; Smith and Ratcliff, 2004). A well studied example solicits a 

binary decision about the net direction of dynamic random dots (Figure 1). The task itself 

must be solved by integrating, as a function of space and time, low-level sensory information 

whose impact on sensory neurons is known.

In the random dot motion task, it is known that the firing rates of direction selective neurons 

in the visual cortex (area MT/V5) exhibit a roughly linear increase (or decrease) as a 

function of the strength of motion in their preferred (or anti-preferred) direction. The 

average firing rate from a pool of neurons sharing similar direction preferences provides a 

time varying signal that can be compared to an average of another, opposing pool. This 

difference can be positive or negative, reflecting the momentary evidence in favor of one 

direction and against the other. The idea is that neurons downstream of these sensory 

neurons represent in their firing rate a constant plus the accumulation—or time integral—of 

the noisy momentary evidence. This neural signal is referred to as a decision variable, 

because application of a simple threshold serves as a criterion to terminate the decision 

process and declare the choice (e.g., right or left). When a monkey indicates its decision 

with an eye movement, a neural representation of the decision variable is evident in the 
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lateral intraparietal area (LIP) and other oculomotor association areas (for reviews see Gold 

and Shadlen, 2007; Shadlen and Kiani, 2013).

The explanatory power of bounded evidence accumulation and its consilience with neural 

mechanisms is remarkable. However, it is important to acknowledge certain amenable but 

contrived features of this task, which challenge simple application or extrapolation to other 

decisions. First, unlike most perceptual decisions, the motion task can only be solved by 

integration of a sequence of independent samples. Many perceptual tasks might benefit from 

integration of evidence across space, but the evidence does not arrive as a temporal stream 

(e.g., is one segment of a curve connected another). One can entertain the notion that spatial 

integration takes time (e.g., a dynamic process), but there is no reason, a priori, to believe 

that the process would involve the accumulation of sequential samples that arrive over many 

tenths of seconds (but see Zylberberg et al., 2010). Second, as we discuss next, for non-

perceptual decisions, the source of evidence is much more diverse; thus, not only is it 

questionable why such decisions should require temporal integration, but indeed the very 

definition of momentary evidence, and where it comes from, is unknown.

Accuracy and timing of value-based decisions

Many decisions we encounter do not involve evidence about the state of a percept or a 

proposition but require a choice between options that differ in their potential value, for 

example, deciding which stock to purchase or which snack to choose. In a typical value-

based decision task, participants are first asked to rate their preference for a series of items, 

such as snacks, and then asked to make a series of decisions between pairs of snacks. Unlike 

perceptual decisions, value-based decisions often do not pose a choice between an 

objectively correct versus incorrect option, nor do they require integration over time in any 

obvious way. Instead, the decision rests on subjective preferences and predictions about the 

subjective value of each option—which stock is predicted to be most lucrative, which snack 

item is likely to be more enjoyable—rather than the objective data bearing on a proposition 

about a sensory feature.

Yet, despite these differences, recent studies suggest that the process of comparing internal 

subjective value representation also conforms to bounded evidence accumulation framework 

(Chau et al., 2014; Hunt et al., 2012; Krajbich et al., 2010; Krajbich et al., 2012; Krajbich 

and Rangel, 2011; Polanía et al., 2014). Both accuracy and reaction time are explained by a 

common mechanism that accumulates evidence favoring the relative value of one item 

versus the other and terminates at a criterion level. Thus, there are intriguing parallels 

between perceptual and value-based decisions, which appear consistent with the bounded 

accumulation of samples of evidence (Figure 2). These parallels also raise a critical open 

question: why should any evidence require accumulation if there is a simple mapping 

between highly discriminable options and their subjective values? In perceptual decisions 

that support evidence-accumulation accounts, the stimulus itself supplies a stream of 

evidence, and even then integration for over a tenth of a second is only observed with 

difficult (e.g., near threshold) decisions.
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For value-based decisions, neither the identity of the sequence of samples of value 

(momentary evidence) nor how (or why) they are accumulated into a decision variable is 

clear. We hypothesize that the momentary evidence derives from memory and that the reason 

that accuracy and reaction time in even simple value-based decisions conforms to sequential 

sampling models is because it depends on the retrieval of relevant samples from memory to 

make predictions about the outcome of each option. These predictions bear on the relative 

value of the options and thus yield momentary evidence bearing on the decision. Crucially, 

as explained below, there are reasons to think that these retrievals must update a decision 

variable sequentially.

Memory and value based decisions

Building on past events to make predictions about possible future outcomes is, arguably, 

exactly what memory is for. Indeed, emerging evidence indicates that memory plays an 

essential role in at least some kinds of value-based decisions, particularly those that rely on 

the integration of information across distinct past events or those that depend on prospection 

about multi-step events leading to outcomes (Barron et al., 2013; Bornstein and Daw, 2013; 
Doll et al., 2015; Shohamy and Daw, 2015; Wimmer and Shohamy, 2012).

For example, having experienced that A is more valuable than B and, separately, that B is 

more valuable than C, animals and humans tend to choose A over C, even if they hadn’t 

previously experienced this precise combination of choice options before. Decisions on this 

transitive inference task (Dusek and Eichenbaum, 1997; Eichenbaum, 2000; Greene et al., 

2006; Heckers et al., 2004; Preston et al., 2004) and others like it, such as acquired 

equivalence (Grice and Davis, 1960; Shohamy and Wagner, 2008) or sensory 

preconditioning (Brogden, 1939; Brogden, 1947; Wimmer and Shohamy, 2012), require the 

integration of distinct past episodes. Another example of the role of memory in integration 

comes from studies asking people to make choices about new, never-experienced foods, 

which are made up of combinations of familiar foods (e.g. “tea-jelly” or “avocado-

milkshake”; Barron et al., 2013).

In all these tasks, decisions about novel choice options depend on the integration of past 

memories. Moreover, such choices involve memory mechanisms in the hippocampus (Figure 

3) and the ventromedial prefrontal cortex (vmPFC) (Barron et al., 2013; Camille et al., 2011; 
Gerraty et al., 2014; Rudebeck and Murray, 2011; Zeithamova et al., 2012). Interestingly, 

patients with anterograde amnesia, who have difficulty forming new memories, also have 

difficulty imagining future events (Hassabis et al., 2007) and learning to predict rewarding 

outcomes (Foerde et al., 2013; Hopkins et al., 2004; Palombo et al., 2015). These 

observations suggest that in addition to its central role in episodic memory, the hippocampus 

also contributes to value-based decisions.

In addition to its role in memory, the hippocampus also plays a role in predicting outcomes, 

via simulation of future events. For example, when rats perform maze-navigation tasks, 

hippocampal neuronal activity at key decision points appears to encode future positions en 

route to food reward (Johnson and Redish, 2007; Olafsdottir et al., 2015; Pfeiffer and Foster, 

2013). This implies that such decisions involve prospection about the expected outcome. 
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This sort of neuronal “preplay” activity is associated with a pattern of hippocampal activity 

known as sharp wave ripples, a rapid sequence of firing that appears to reflect both 

reactivation of previous trajectories (Buzsaki, 1986, 2007; Foster and Wilson, 2006; Lee and 

Wilson, 2002), as well as memory-based prospection of future trajectories (Pfeiffer and 

Foster, 2013; Singer et al., 2013; see Yu and Frank, 2015 for review). Similar anticipatory 

representations have been shown with fMRI in humans during statistical learning tasks 

(Schapiro et al., 2012), as well as in reward-based decision tasks (Doll et al., 2015). In 

humans, the hippocampus appears to be involved in decisions that involve “episodic future 

thinking” (Addis et al., 2007; Hassabis et al., 2007; Schacter et al., 2007; Schacter et al., 

2012), which includes imagining a specific future reward-related episode (Palombo et al., 

2015; Peters and Buchel, 2010).

A recent study provided a more direct test of the link between memory retrieval, evidence 

accumulation, and value-based decisions. Gluth and colleagues (2015) studied value based 

decisions that depended on associative memory between a valued snack item and a spatial 

location on the screen. These memory guided decisions were associated with BOLD activity 

in the hippocampus and the vmPFC, suggesting cooperative engagement of memory and 

value regions in the brain. Moreover, reaction time and accuracy on this task conform to 

models of bounded evidence accumulation, thus providing evidence for a link between 

memory, value-based decisions and bounded evidence accumulation.

Together, these studies indicate that memory contributes to value-based decisions. Our 

hypothesis is that recall of a memory leads to the assignment of value, which in turn 

furnishes the momentary evidence for a value based decision. But if memories are indeed 

retrieved to provide evidence towards a decision, why should the process ensue sequentially, 

and how does the process result in a change in a decision variable? We believe these 

questions are one and the same. We can begin to glimpse an answer by looking at a variation 

of a perceptual decision involving reasoning from a sequence of symbols. This is a 

convenient example because it shares features of the random dot motion task while inviting 

consideration of value-based associations and the use of memory retrieval as an update of a 

decision variable.

Linking memory to sequential sampling

In the “symbols” task (Kira et al., 2015), a sequence of highly discriminable shapes appear 

and disappear until the decision maker—a rhesus monkey—terminates the decision with an 

eye movement to a choice target (Figure 1B). The shapes have symbolic meaning because 

each confers a unique weight of evidence bearing on which choice is rewarded. By design, 

these weights are spaced linearly in units of log likelihood ratio (logLR), and the monkeys 

appear to learn these assignments approximately. The choices and reaction times conform to 

the predictions of bounded evidence accumulation, and the firing rates of neurons in area 

LIP reflect the running accumulation of evidence for and against the choice target in the 

neuron’s response field. Moreover, as in the motion task, the decision process appears to 

terminate when a critical level of firing rate is achieved, suggesting application of a 

threshold (or bound) by downstream circuits (see Kira et al., 2015). The similarity to the 

random dot motion task is contrived by imposing a sequential structure to the task and by 
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associating the outcome of the decision with an eye movement. This is why the 

representation of accumulating evidence (i.e., a decision variable) in LIP is analogous in the 

two tasks.

The analogy breaks down, however, when contemplating the momentary evidence. In the 

symbols task, the momentary evidence derives from the identity of the shapes, which, like 

visual motion, undergo processing in extrastriate visual cortex (e.g., areas V4 and IT). This 

processing is presumably responsible for differentiating the pentagon, say, from the other 

shapes, but the momentary evidence we seek is a quantity suitable to update a decision 

variable bearing on the choice-target alternatives. This step is effectively a memory retrieval, 

in the sense that it must depend on a pre-learned association between the shape and its 

assigned weight. The monkey has learned to associate each shape with a positive or negative 

“weight of evidence” such that when a shape appears, it leads to an incremental change in 

the firing rate of LIP neurons that represent the cumulative logLR in favor of the target in its 

response field. The memory retrieval is, in essence, the update of a decision variable based 

on the associated cue.

Viewed from this perspective, the symbols task (Figure 2C) supplies a conceptual bridge 

between perceptual and value based decisions. It involves an update of a decision variable, 

not from an operation on the visual representation but from a learned association between a 

cue and the likelihood that a choice will be rewarded, as if instructing LIP neurons to 

increment or decrement their discharge by an amount (ΔFiringRate) associated with a shape. 

We are suggesting that a similar operation occurs in value-based decisions. Value-based 

decisions also involve choices between symbolic stimuli and also necessitate memory 

retrieval to update a decision variable. However, memory retrieval in the service of value-

based decisions need not be restricted to simple associative memories but is likely to also 

involve episodic memory retrieval and prospection.

Putative neural mechanisms

We next speculate on the neural mechanisms whereby evidence sampled from memory 

might update a decision variable. We will attempt to draw an analogy between the symbols 

task and a value based decision between snack items (Figure 4). For concreteness, we 

assume that the choice is to be communicated by a simple action, such as an eye movement 

to one or another target. In both tasks, the visual system leads to recognition of the objects, 

be it a shape or the two snack items, and in both cases, this information must lead to a 

ΔFiringRate instruction to update a decision variable—the cumulative evidence in favor of 

choosing the left or right choice target. Moreover, in both cases, the visual representations 

are insufficient for the decisions. Instead the value associated with the objects must be 

retrieved.

The striatum is likely to play a prominent role in both tasks. The striatum has been 

implicated in the association between objects and value in the service of action selection 

(Hikosaka et al., 2014). More broadly, the striatum is thought to play an important role in the 

integration of evidence to guide behavior (Bogacz and Gurney, 2007; Ding, 2015; Wiecki 

and Frank, 2013; Yu and Frank, 2015). Recent studies also highlight a role for the striatum 
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in the retrieval of episodic memories, especially when they bear on a goal (Badre et al., 

2014; Clos et al., 2015; Scimeca and Badre, 2012; Speer et al., 2014). The striatum is also 

well known to support the incremental updating of value representations that is essential for 

more habitual (rather than episodic) forms of learning (Daw et al., 2006; Eichenbaum and 

Cohen, 2001; Foerde and Shohamy, 2011; Glimcher and Fehr, 2013; Shohamy, 2011). Thus, 

the striatum is ideally positioned to funnel value-relevant information from memory to 

update cortical regions controlling decisions and actions (Kemp and Powell, 1971; Lee et al., 

2015; Znamenskiy and Zador, 2013).

For simple, highly learned associations, the striatum may well be the site where a visual 

representation is converted to a ΔFiringRate instruction. This is an attractive idea for the 

symbols task in monkeys, which requires many tens of thousands of trials to learn. For that 

matter, even the motion task could exploit the striatum to convert activity of direction 

selective neurons to ΔFiringRate (Ding and Gold, 2012, 2013). In monkeys, simple 

associations between a food object and its rewarding value are thought to be mediated via an 

interaction between the rhinal cortices and the vmPFC/OFC (Clark et al., 2013; Eldridge et 

al., 2016), and this representation of value could exploit the striatum for conversion to a 

ΔFiringRate instruction.

However, in the snacks task—and in value based decisions in general—we hypothesize a 

role for more sophisticated memory systems involved in the retrieval of episodic information 

and in using episodic memory to prospect about the future. Humans (and perhaps monkeys 

too) are likely to think about the food items, remembering a variety of features, guided 

perhaps by the particular comparison (Constantino and Daw, 2010). For example, they might 

recall calorie content, which, depending on satiety, might favor one of the items; or they 

might play out scenarios in which the items were last consumed or imagine the near future 

based on those past memories. Some of these memories might be prompted by the particular 

comparison (e.g., freshness, time of year) or the absence of contrast on another dimension 

(e.g., similar sweetness). Retrieval of such memories depends on the hippocampus, 

surrounding medial temporal lobe (MTL) cortex, and interactions between the MTL and 

prefrontal cortical mechanisms (Cohen et al., 1993; Davachi, 2006; Eichenbaum and Cohen, 

2001; Gordon et al., 2014; Hutchinson et al., 2015; Hutchinson et al., 2014; King et al., 

2015; Mitchell and Johnson, 2009; Rissman and Wagner, 2012; Rugg and Vilberg, 2013) 

Indeed, these circuits are well positioned to link memory to decisions. BOLD activity in 

these regions has been shown to relate to trial-by-trial variability in RT and memory 

accuracy, and to support cortical reinstatement as a putative source of evidence during 

episodic memory guided decisions (e.g., Gordon et al., 2014; Kahn et al., 2004; Nyberg et 

al., 2000; Wheeler et al., 2000). Thus, memory retrieval can furnish information to guide 

many sorts of decisions, including decisions about memory itself (a topic we return to later). 

In the case of value-based decisions, we speculate that this process leads to the retrieval of 

information that bears on value.

The updating of value via retrieved memories is likely to involve the vmPFC and OFC. 

Although the precise contributions of these regions remains controversial, converging 

evidence suggests that both areas construct representations that guide value-based decisions 

(Camille et al., 2011; Jones et al., 2012; Kable and Glimcher, 2009; Padoa-Schioppa and 
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Assad, 2006; Rangel et al., 2008; Rudebeck and Murray, 2011; Strait et al., 2014; Wilson et 

al., 2014). In human neuroimaging, BOLD activity in the vmPFC is related to subjective 

value and to choice behavior across many domains, including food, money, and social 

stimuli (Bartra et al., 2013; Clithero and Rangel, 2014; Hare et al., 2008; Hare et al., 2011; 
Kable and Glimcher, 2007; Krajbich et al., 2010; Krajbich et al., 2015). Of particular interest 

for considering the role of memory retrieval, it has been suggested that OFC represents not 

just reward value but also the identity of a specific reward (Klein-Flugge et al., 2013).

At the resolution of single neuron recordings in primates, there appear to be a variety of 

intermingled representations in the OFC, including representation of the item after it has 

been chosen, the relative value of the chosen item and the relative value of items offered 

(Padoa-Schioppa, 2011; Padoa-Schioppa and Assad, 2006). These last “offered value” 

neurons appear to represent momentary evidence (Conen and Padoa-Schioppa, 2015), 

because their firing rates modulate transiently and in a graded fashion as a function of the 

relative value. They do not represent a decision variable, however, because (i) their activity 

does not reflect the choice itself and (ii) the dynamics of the firing rate modulation appear to 

be identical regardless of the relative value (so they do not represent the integrated value). 

“Offered value” neurons could supply momentary evidence to an integrator, but they would 

require additional activations to provide a stream of independent samples. A related class of 

neurons in macaque vmPFC (area 14) appear to represent relative value of items bearing on 

choice, but they too have transient responses (Strait et al., 2014). Other “reward preference” 

neurons in OFC exhibit persistent (i.e., sustained) activity predictive of reward (e.g., Saez et 

al., 2015; Tremblay and Schultz, 1999). Their persistent activity does not suggest an 

accumulation of evidence toward valuation, but the outcome of such valuation, hence reward 

expectation (Schoenbaum and Roesch, 2005; Tremblay and Schultz, 2000). These neurons 

are also unlikely to supply a stream of independent samples of momentary evidence because 

the noise associated with persistent activity tends to be correlated over long time scales 

(Murray et al., 2014).

Representation of the decision variable likely varies depending on the required response. 

When a value-based decision requires a saccadic choice, neurons in area LIP appear to 

reflect both the decision outcome and the difficulty (e.g., relative value) (Dorris and 

Glimcher, 2004; Platt and Glimcher, 1999; Rorie et al., 2010; Sugrue et al., 2005), hence a 

quantity like a decision variable. Like perceptual decisions, this representation is not unique 

to LIP but can be found in parietal and prefrontal brain areas associated with planning other 

types of effector responses (Andersen and Cui, 2009; Kubanek and Snyder, 2015; Leon and 

Shadlen, 1999; Schultz, 2000; Snyder et al., 1997). The critical point is not which 

association areas are involved in a particular task but that areas like LIP represent a decision 

variable because they connect many possible inputs—here viewed as sources of evidence—

to a potential plan of action, that is, the outcome of the decision.

More generally, the representation of any decision variable must reside in circuits with the 

capacity to hold, increment and decrement signals—that is, to represent an integral of 

discrete, independent samples of momentary evidence (i.e., ΔFiringRate). Activity in these 

circuits cannot be corrupted or overwritten by incoming information and the activity cannot 

precipitate immediate action. These are the association areas (e.g., LIP) whose neurons 
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exhibit persistent activity—the substrate of working memory, planning, directing attention 

and decision making (Funahashi et al., 1989; Fuster, 1973; Fuster and Alexander, 1971; 
Shadlen and Kiani, 2013). It is useful to think of these areas as directed toward some 

outcome or provisional plan (e.g., a possible eye movement in the case of LIP), but this does 

not exclude more abstract representations about relative value itself, independent of action, 

in the persistent activity of neurons in the vmPFC or elsewhere (e.g. Boorman and 

Rushworth, 2009; Chau et al., 2014; Hunt et al., 2012; Kolling et al., 2012; Padoa-Schioppa 

and Rustichini, 2014). Like sensory areas involved in evidence acquisition, the circuits that 

establish provisional plans, strategies, rules and beliefs in propositions (Cui and Andersen, 

2011; Duncan, 2010; Gnadt and Andersen, 1988; Li et al., 2015; Pastor-Bernier et al., 2012; 
Rushworth et al., 2012; Wallis et al., 2001) that is, form decisions—are also arranged in 

parallel (Cisek, 2007; Cisek, 2012; Shadlen et al., 2008).

Parallel processing and sequential updating

What then accounts for the observation that many decisions appear to evolve sequentially 

from multiple samples despite the likelihood that such samples can be obtained more or less 

simultaneously? We suggest that it is the connectivity between the many possible evidence 

sources to any one site of a decision variable—the matchmaking, as it were, between sources 

of evidence and what the brain does with that evidence. There are many possible sources of 

evidence that could bear on a decision, yet it seems unlikely that each association area 

receives direct projections from all possible sites—perceptual or mnemonic—that could 

process such evidence. Rather, the diverse sources must affect clusters of neurons in the 

association cortex through a relatively small number of connections, what we construe as 

limited bandwidth information conduits or thalamocortical “pipes”. We imagine these pipes 

to be arranged in parallel, in one-to-one correspondence with the association areas or 

clusters of neurons within these areas. We employ this metaphor as a reminder that the 

anatomical substrates we mention here are only speculative.

Figure 4 illustrates one such pipe that connects neurons in area LIP to the variety of inputs 

that could bear on a decision communicated with an eye movement. The key insight is that 

one pipe can collect input from many acquisition sources. For example, in the symbols task 

(Kira et al., 2005), the eight possible shapes shown at four possible locations must somehow 

affect the same neurons in LIP. Consequently, access must involve switching between 

sources, in this case the ΔFiringRate instruction that is associated with each of the shapes. It 

is hard to imagine a mechanism that would allow these diverse instructions simultaneous 

access to the same LIP neurons. Related constraints have been proposed to explain the 

psychological refractory period and the broad necessity for serial processing in cognitive 

operations (Anderson et al., 2004; Zylberberg et al., 2011). Of course, the access problem 

need not be solved at the projection to LIP. Another cortical area could solve the problem 

and stream the solution to LIP (e.g., dorsolateral prefrontal cortex), but the problem of 

access merely shifts to the other cortical area.

The resolution of the access problem is likely to involve circuitry that can control inputs to 

cortical areas that represent the decision variable. The different sources of information must 

be converted to a ΔFiringRate instruction by converging on structures that control the cortex. 
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We suggested above that the striatum is a natural candidate for such conversion, and its 

access to the cortex is via the thalamus, either directly (e.g., to prefrontal and inferotemporal 

areas, Kemp and Powell, 1971; Middleton and Strick, 1996) or indirectly via cortico-cortical 

and subcortico-thalamo-cortical connections (e.g., superior colliculus to pulvinar to LIP) 

(see also Haber and Calzavara, 2009).

Given that we are speculating about controlling the cortical circuit— transmitting an 

instruction—rather than transmitting information, the accessory thalamic nuclei (e.g., dorsal 

pulvinar) and thalamic matrix (Jones, 2001) are likely to play a role. Like intralaminar 

thalamus, these thalamic projections target supragranular cortex, especially layer 1. This is 

an attractive target because control signals ought to influence the way the circuit processes 

without contaminating the information that is processed. For example, there are classes of 

inhibitory neurons that appear to play a role in modulating the activity of pyramidal cells in 

deeper layers, and distal apical dendritic input to deeper pyramidal cells can affect the way 

these integrate other inputs throughout their dendritic tree (Jiang et al., 2013; Larkum, 

2013a; Larkum, 2013b). Layer 1 is also the site of termination of long range cortico-cortical 

feedback projections (Felleman and Van Essen, 1991; Rockland and Pandya, 1979). Thus it 

seems possible that thalamic input with broad arborization could target specific circuits by 

intersecting with feedback and other inputs (Roth et al., 2016), including the persistent 

calcium signals in the apical dendrites of pyramidal cells that are activated by another source 

(e.g., visual input representing the location of a choice target). These are mere speculations, 

but they lend plausibility to the suggestion that a narrow-bandwidth channel could “instruct” 

cortical neurons to increment or decrement (or hold) their current firing rate and thus 

represent a decision variable.

To summarize, we are suggesting that memory retrieval could lead to an update of a decision 

variable that guides value-based choice. This process must be at least partly sequential, 

because even if memories and decisions are evaluated in parallel, access to the sites of the 

decision variable is limited. This perspective can begin to explain why memory retrieval, 

recall and even prospective thought processes would contribute to decision time.

Conclusions and Future Directions

Our exposition exploits three types of simple, laboratory based decisions. Two are sequential 

by design; two make use of memory. The symbols task, because it incorporates both 

qualities, offers a bridge between the more extensively studied motion and snacks tasks. It 

seems reasonable to wonder if even the random dot motion task actually makes use of 

associative memory. Even perceptual decisions might involve a more circuitous set of steps, 

which may have more in common with memory retrieval than previously imagined.

We do not mean to imply that the three tasks depicted in Figure 2 use identical mechanisms. 

For example, it seems likely that value based decisions exploit a race architecture differently 

than perceptual decisions about motion direction. In the latter case, evidence for/against 

rightward motion is evidence against/for leftward, so the races are strongly anticorrelated 

(Indeed they are often depicted on a single graph with an upper and lower termination 

bound.) The races are likely to be more independent in value based decisions because 
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memory conferring evidence for/against one of the snack items may have little bearing on 

the evidence against/for another item. This idea might be related to the observation that the 

object under scrutiny exerts greater influence in some value based choices (Krajbich et al., 

2010; Krajbich et al., 2012).

We also do not mean to imply that all memory-based decisions use identical circuits. For 

example, some disconnection studies imply that retrieval of value can bypass the striatum 

(e.g., Clark et al., 2013; Eldridge et al., 2016). Further, specific subregions of OFC and 

vmPFC are likely to support distinct aspects of value-guided decisions and to connect with 

the MTL through distinct circuits. For example, some types of object-value learning appear 

to depend on the central part of the OFC (Rudebeck and Murray, 2011), an area that may be 

distinct from the frontal regions implicated in value representation in humans (Mackey and 

Petrides, 2010, 2014; Neubert et al., 2015). One speculative possibility is that these different 

circuits support two different kinds of decisions: those that involve retrieval of a specific, 

well-learned value association and those that involve integration of learned associations to 

support new decisions, inferences, and prospection.

Although our core argument is about how memory can be used to affect value based 

decisions, it is interesting to speculate about how these ideas apply to other kinds of 

decisions. In particular, the constraints of the hypothesized circuits are relevant for any 

decision about evidence that comprises several sources that must compete for access to the 

same narrow bandwidth “pipe”. This would apply even to perceptual decisions that involve 

sampling by means other than memory (e.g., attention). We are not suggesting that all 
decisions require sequential sampling. Many decisions are based on habits or on just one 

sample of evidence, and many other decisions rely on parallel acquisition of multiple 

samples and rapid integration. The necessity for sequential processing arises when diverse 

sources of evidence bear on the same neural targets—the same decision variable or the same 

anatomical site. Yet no doubt, even here there are exceptions. Multimodal areas that combine 

disparate sources of evidence, such as vestibular and visual information for example (e.g., 

VIP or MST) would obviate the necessity for sequential processing, assuming these areas 

acquire their information in parallel.

Sequential sampling likely also plays a role in decisions pertaining to memory itself, e.g. the 

decision about whether an encountered cue is old or new, or whether a retrieval search was 

successful or not, an idea that goes back at least to Ratcliff (1990) and Raaijmakers and 

Shiffrin (1992). Ratcliff exploited random walk and diffusion models to explain response 

times in decisions about whether an item, presented among foils, was included in a 

previously memorized set. Interestingly, in Ratcliff’s view, as in ours, the sequential nature 

of the task is in the formation of a decision variable (the mental comparisons between object 

features), not in the retrieval step itself. As with most proponents of random walk and 

diffusion models (e.g., Laming, 1968; Link, 1992), the assertion of sequential processing is 

assumed or inferred on the basis of long decision times. This is not to say that memory 

retrieval itself does not take time, but given that a single memory retrieval is accomplished 

very rapidly (possibly in the duration of a sharp wave ripple; e.g., on the order of 100ms, 
Buzsaki, 1986), it is unlikely to account for long decision times.
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The hypotheses outlined here are speculative, but they suggest several new avenues for 

empirical work. For example, there is evidence that memory retrieval supports value-based 

decisions when value depends explicitly on memory (Gluth et al., 2015), but the extent to 

which memory retrieval accounts for reaction times in decisions between already familiar 

items remains unknown. Future studies could test this by combining fMRI, modeling and 

behavior using typical value-based decision tasks (e.g. deciding between two familiar 

snacks). If sequential memory retrieval supports this process, we would predict that trial-by-

trial BOLD activity, particularly in the hippocampus and perhaps also in the striatum, will 

account for variance in trial-by-trial reaction time and accuracy. This prediction could be 

tested in more physiological detail by recording from neurons in the hippocampus during 

value based decisions. We would predict that putative physiological correlates of retrieval 

(e.g., sharp wave ripple events; Yu and Frank, 2015), should be observed even during simple 

value-based decisions and should vary with reaction time.

Causal evidence for memory contributions to value-based decisions could be obtained by 

testing patients with hippocampal damage. There are few studies of value-based decisions in 

individuals with memory impairments. Nonetheless, several recent findings suggest such 

patients are impaired at reward-based learning and decisions (Foerde et al., 2013; Palombo 

et al., 2015). A critical prediction from our proposed framework is that patients with 

memory loss will display abnormalities in reaction time and accuracy of value-based 

decisions, even in tasks that do not depend overtly on memory retrieval. Similarly, our 

speculation that the striatum plays a key role in updating value predicts that patients with 

striatal dysfunction, such as Parkinson’s disease, should also display abnormalities in 

reaction time and accuracy of decisions. Patients with Parkinson’s disease are known to have 

impaired learning of value. Recent data suggest that they are also impaired at making 

decisions based on value, separate from learning, consistent with our hypothesis (Shiner et 

al., 2012; Smittenaar et al., 2012).

Beyond value-based decisions, a central prediction emerging from our framework is that 

sequential sampling is needed for any decision that depends on the integration of multiple 

sources of evidence. For example, we predict that if the same cues from the “symbols” task 

(Kira et al., 2005) were presented simultaneously, rather than sequentially over time, the 

decision would still require sequential updating of the decision variable (reflected in long 

reaction times). Notably, experiments using a similar probabilistic task in humans do present 

the cues simultaneously, and analysis of choice data suggests that human participants 

integrate information across these simultaneously presented cues (Gluck et al., 2002; Meeter 

et al., 2006; Shohamy et al., 2004). We predict that reaction times should vary as a function 

of integration and will reflect a process of sequential sampling.

The idea that memory and prospection guide value-based decisions invites reconsideration 

of other features of value-based decisions, which contrast with perceptual decisions. Unlike 

perceptual decisions, which are about a state of the world, relative value is in the mind of the 

decider. If the evidence bearing on preference involves memory and prospection, then the 

values of items might change as one pits them against different items; moreover, the order in 

which memory is probed will affect which choice is made (Weber and Johnson, 2006; Weber 

et al., 2007). This implies that the notion of correct/incorrect is not only subjective but that it 

Shadlen and Shohamy Page 12

Neuron. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



is constructed and therefore influenced by how memories are encoded, represented, and 

retrieved. This idea might also offer insight into the phenomenon of stochastic preference 

with repeated exposures (Agranov and Ortoleva).

The use of memory might help explain a peculiar feature of decisions between two high-

value items, for which the rational choice is to take either without wasting time on 

deliberation. To wit, memory and prospection have the potential to introduce new 

dimensions of comparison that did not affect an initial assessment of value (e.g., via 

auction). Finally, from this perspective, the rule for terminating a decision might be more 

complicated, involving an assessment of whether further deliberation is likely to yield a 

result that outperforms the current bias. This formulation is related to the application of 

dynamic programming to establish termination criteria in simple perceptual decisions 

(Drugowitsch et al., 2012; Rao, 2010). The only difference is that for the latter, the approach 

yields optimal policy, given desiderata, such as collapsing decision bounds (Drugowitsch et 

al., 2012), whereas in value based decisions the estimate of the value of future deliberation 

might be approximated on the fly.

In summary, the hypothesis we propose here is that many value-based decisions involve 

sampling of value-relevant evidence from memory to inform the decision. We speculate on 

the reasons for the sequential nature of this process, proposing that there are circuit-level 

constraints which prohibit parallel or convergent updating of neural responses that represent 

the accumulation of evidence—that is, a decision variable. This constraint on how 

information can come to bear on the decision making process should be considered 

independently of the mechanism of parallel memory retrieval itself, especially its dynamics. 

That said, conceiving of memory retrieval as a process that updates a decision variable, at 

the neural level, might guide understanding of memory retrieval in its own right.
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Figure 1. Bounded evidence accumulation framework explains the relationship between choice 
and deliberation time
The decision is based on sequential samples of evidence until a stopping criterion is met, 

yielding a choice. A. Drift-diffusion with symmetric bounds applied to a binary decision. 

This is the simplest example of sequential sampling with optional stopping, equivalent to a 

biased random walk with symmetric absorbing bounds. The momentary evidence is regarded 

as a statistically stationary source of signal plus noise (Gaussian distribution; mean=μ, 

) sampled in infinitesimal steps, δt. The resultant drift-diffusion 

process (noisy trace) is a decision variable that terminates at ±A (the bounds), to stop the 

process. If the termination is in the upper or the lower bound, the choice is for h1 or h2, 

respectively. B. Competing accumulators. The process is viewed as a race between two or 

more processes, each representing the accumulation of evidence for one of the choice 

alternatives. The architecture is more consistent with neural processes and has a natural 

extension to decisions between N>2 alternatives. The process in A is a special case, when 

evidence for h1 equals evidence against h2 (e.g., Gaussian distributions with opposite means 

and perfectly anticorrelated noise). (reprinted from Gold & Shadlen 2007, with permission).
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Figure 2. Similarities and differences among three types of decisions
Each is displayed as a series of events in time (left to right): stimuli are presented on a 

display monitor; the subject makes a binary decision, and, when ready, communicates the 

decision with a response. A. Perceptual decision. The subject decides whether the net 

direction of a dynamic, random-dot display is leftward or rightward. B. Value-based 

decision. The subject decides which of two snack items she prefers. The subjective values 

associated with the individual items are ascertained separately before the experiment. C. 
Decision from symbolic associations. The subject decides whether the left or right option is 

more likely to be rewarded, based on a sequence of shapes that appear near the center of the 

display. Each shape represents a different amount of evidence favoring one or the other 

option. In both A and C, the display furnishes more evidence with time (i.e., sequential 

samples), whereas in B, all the evidence in the display is presented at once. In A, sensory 

processes give rise to momentary evidence, which can be accumulated in a decision variable. 

Both B and C require an additional step because the stimuli alone don’t contain the relevant 

information. We hypothesize that the stimuli elicit an association or memory retrieval 

process to derive their symbolic meaning or subjective value as momentary evidence.
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Figure 3. Memory contributions to value-based decisions are related to BOLD activity in the 
hippocampus, striatum, and vmPFC
Three tasks in humans use fMRI to assess brain regions involved in value-based decisions 

involving memory. A. Decisions based on transfer of reward value across related memories 

(following (Wimmer and Shohamy, 2012). In this “Sensory Preconditioning” task, 

participants first learn to associate pairs of stimuli with each other (e.g. squares with circles 

of different colors), without any rewards (Association phase). Next, they learn that one 

stimulus (e.g., the grey circle) leads to monetary reward, while another (e.g., the white 

circle) leads to no reward (Reward phase). Finally, participants are asked to make a decision 

between two neutral stimuli, neither of which has been rewarded before (e.g. blue vs. yellow 

squares; Choice phase). Participants often prefer the blue square to the yellow square or 

other neutral and equally familiar stimuli, suggesting they have integrated the reward value 

with the blue square because of the memory associating the blue square with the rewarded 

grey circle. The tendency to show this choice behavior is correlated with BOLD activity in 

the hippocampus and functional connectivity between the hippocampus and the striatum. 
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These sorts of tasks allow experimenters to measure spontaneous memory-based decisions, 

without soliciting an explicit memory or rewarding it. In actual experiments, all stimuli are 

controlled for familiarity, likability, value, etc. B. Decisions about new food combinations 

involve retrieval of memories (following (Barron et al., 2013). In this task, foods are first 

evaluated separately (e.g. raspberries, avocado, tea, jelly, etc.). Then, participants learn to 

associate each food with random shapes (e.g. Asian characters; not shown here). Finally, 

participants are presented with a series of choices between two configurations of abstract 

shapes, which represent a new configuration of foods (e.g. raspberry-avocado shake vs. tea-

jelly). These new choices, which involve retrieval and integration of two previously 

experienced stimuli, are correlated with activity in the hippocampus and in the vmPFC. C. 
Decisions about preferred snacks elicit retrieval of spatial memories (following (Gluth et al., 

2015). After providing participants’ subjective preference for a series of snack items (not 

shown), participants learn a series of associations between snacks and a spatial location on 

the screen. Some associations are trained twice as often as others, creating memories that are 

relatively strong or weak. Participants are then probed to make choices between two 

locations, choices that require retrieval of the memory for the location-snack association. 

Choice accuracy and reaction times conform to bounded evidence accumulation and are 

impacted by the strength of the memory. Choice value on this task is correlated with BOLD 

activity in the hippocampus and in vmPFC. D. Overlay of regions in the hippocampus, 

striatum and vmPFC where memory and value signals were reported for the studies 

illustrated in A (red) B (green) and C (blue). Across studies, activation in the hippocampus, 

striatum and vmPFC is related to the use of memories to guide decisions. These common 

patterns raise questions about the neural mechanisms and pathways by which memories are 

used to influence value representations and decisions.
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Figure 4. Putative neural mechanisms involved in updating a decision variable using memory
The symbols task (left) and, per our hypothesis, the snacks task (right) use memory to 

update a decision variable. The diagram is intended to explain why the updating of a 

decision variable is likely to be sequential in general, when evidence is derived from 

memory. In both tasks, visual information is processed to identify the shapes and snack 

items. This information must lead to an update of a decision variable represented by neurons 

in associative cortex with the capacity to represent cumulative evidence. This includes area 

LIP when the choice is communicated by an eye movement, but there are many areas of 

association cortex that are likely to represent the evolving decision variable. The update of 

the decision variable is effectively an instruction to increment or decrement the firing rate of 

neurons that represent the choice targets (provisional plans to select one or the other) by an 

amount, ΔFiringRate. The ΔFiringRate instruction is informed by a memory retrieval 

process, which is likely to involve the striatum. In the symbols task this is an association 

between the shape that is currently displayed and a learned weight (logLR value; Fig. 2C). 

In the snacks task it is likely to involve episodic memory, which leads to a value association 

represented in the vmPFC/OFC. Notice that there are many possible sources of evidence in 

the symbols task and potentially many more in the snacks task. Yet there is limited access to 

the sites of the decision variable (thalamo-cortical “pipe”). Thus, access to this pipe is likely 

to be sequential, even when the evidence is not supplied as a sequence. Anatomical labels 
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and arrows should be viewed as hypothetical and not necessarily direct. PR, perirhinal 

cortex; HC, hippocampus.
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