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Abstract

Anaplastic thyroid carcinoma (ATC) is an extremely aggressive thyroid cancer sub-type, refractory 

to current medical treatment. Among various epigenetic anticancer drugs, BET inhibitors (BETi) 

are considered an appealing novel class of compounds. BETi target the Bromodomain and Extra-

Terminal (BET) proteins that act as regulators of gene transcription, interacting with histone acetyl 

groups. The goal of this study is to delineate which pathway underlie the biological effects derived 

from BET inhibition, in order to find new potential therapeutic targets in ATC. We investigated 

effects of BET inhibition on two human anaplastic thyroid cancer-derived cell lines (FRO and 

SW1736). The treatment with two BETi, JQ1 and I-BET762, decreased cell viability, reduced cell 

cycle S-phase and determined cell death. In order to find BETi effectors, FRO and SW1736 were 

subjected to a global transcriptome analysis after JQ1 treatment. A significant portion of 

deregulated genes belongs to cell cycle regulators. Among them, MCM5 was decreased at both 

mRNA and protein levels in both tested cell lines. ChIP experiments indicate that MCM5 is 

directly bound by the BET protein BRD4. MCM5 silencing reduced cell proliferation, thus 

underlining its involvement in the block of proliferation induced by BETi. Furthermore, MCM5 

immunohistochemical evaluation in human thyroid tumor tissues demonstrated its over-expression 

in several papillary thyroid carcinomas and in all ATCs. MCM5 was also over-expressed in a 

murine model of ATC, and JQ1 treatment reduced Mcm5 mRNA expression in two murine ATC 

cell lines. Thus, MCM5 could represent a new target in the therapeutic approach against ATC.
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Introduction

Thyroid cancers are the most widespread malignancies of the endocrine system and 

represent approximately 1–1.5% of all tumor-related diseases. The overall five-year survival 

of these tumors is approximately 85–90%, with the highest mortality rate reported for poor 

differentiated histotypes (Patel and Shaha 2014; Durante et al. 2006). Anaplastic thyroid 

carcinomas (ATC), which are wholly or partially composed of undifferentiated cells arising 

from thyroid follicular epithelium, represent the least common but most lethal thyroid cancer 

sub-type. Indeed, they are characterized by genetic and epigenetic aberrations that make 

them unresponsive to treatments based on radioiodine administration (Arturi et al. 2000; 
Schlumberger et al. 2007; Perri et al. 2011; Elisei 2012). Thus, innovative approaches for 

ATC treatment are required.

The term “epigenetics” is commonly used to describe the study of hereditable changes in 

gene expression that are independent from alteration in the underlying DNA sequence. Since 

aberrant gene expression is an essential characteristic that distinguishes neoplastic cells from 

normal ones, compounds able to target epigenetic alterations are becoming increasingly 

appealing for cancer treatment. Most of these molecules act on epigenetic “writers” or 

“erasers”, i.e. enzymes regulating DNA or histones covalent modifications. Notably, 

compounds targeting enzymes involved in DNA methylation and histone acetylation have 

been greatly investigated in several experimental models of solid tumors, including thyroid 

cancer (Puppin et al. 2005; Russo et al. 2013). Several other chromatin regulators, instead, 

act as “readers”: they possess peculiar domains able to interact with nucleosome covalent 

modifications and, responding to upstream signal cascades, to control gene expression 

(Dawson et al. 2012). A rising class of compounds able to target chromatin readers is called 

BET inhibitors. BET is the acronym of bromodomain and extra-terminal family of proteins 

(Nicodeme et al. 2010). The mammalian BET protein family includes four members: BRD2, 

BRD3, and BRD4, which are ubiquitously expressed, and BRDT, whose expression is 

confined to germ cells. These proteins possess a tandem bromodomain at the N-terminal 

region, by which they interact with histone acetyl-lysines in order to control gene 

transcription and cell proliferation (Chiang 2009). Due to the relevance of BET proteins, 

several inhibitors have been recently developed (Nicodeme et al. 2010; Filippakopoulos et 

al. 2010). BET inhibitors hinder proliferation of a wide range of hematopoietic malignant 

cell lines and of NUT midline carcinoma-derived cells (Filippakopoulos et al. 2010; Zuber et 

al. 2011). The use of BET inhibitors, as well as the use of other epigenetic compounds, 

might be a complicate issue in cancer treatment since these drugs act on a large spectrum of 

genes (Falahi et al. 2015). However, the anti-proliferative outcome could be reasonably due 

to the deregulation of only a small subset of genes. For instance, repression of the c-MYC 
oncogene seems to play a major role in mediating the effects of BET inhibitors in leukemic 

cells (Ott et al. 2012). Thus, an attractive approach to study epigenetic compounds is to 

define their critical effector genes. To this purpose, in this study we investigated the effects 

of BET inhibition in two human ATC cell lines, analyzing the modulation of their global 

gene expression profiles. By using this approach, we propose MCM5 as a potential new 

target for ATC treatment.
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Materials and Methods

Human and murine cell lines

FRO (purchased from the European Collection of Cell Cultures, Salisbury, United Kingdom) 

and SW1736 (obtained from Cell Lines Service GmbH, Eppelheim, Germany) are human 

cell lines derived from ATC, both harboring a BRAF V600E mutation (Pilli et al. 2009; 
Schweppe et al. 2008). Both cell lines have been tested for being mycoplasma-free and 

authenticated by STR analysis to be appropriate cell lines of thyroid cancer origin. FRO and 

SW1736 were grown in DMEM medium (EuroClone, Milan, Italy) and RPMI 1640 medium 

(EuroClone) respectively, supplemented with 10% fetal bovine serum (Gibco Invitrogen, 

Milan, Italy), 2 mM L-glutamine (EuroClone) and 50 mg/ml gentamicin (Gibco Invitrogen), 

in a humidified incubator (5% CO2 in air at 37°C). Cultured cells were treated with vehicle 

(DMSO, Sigma Aldrich, Saint Louis, MO, USA) or the following agents: JQ1 (50 nM–10 

μM in DMSO) (Cayman Chemical, Ann Arbor, MI, USA) and I-BET762 (50 nM –10 μM in 

DMSO) (Merck Millipore, Darmstadt, Germany). T4888M and T3531L are ATC cell lines 

derived from tumors developed by [Pten, Tp53]thyr−/− mice (Antico Arciuch et al. 2011). 

Cells were grown in DMEM supplemented with 10% FBS.

Animals

[Pten, Tp53]thyr−/− and Ptenthyr−/− mice have been previously described (Antico Arciuch et 

al. 2011; Yeager et al. 2007; Antico Arciuch et al. 2010) and were housed in the Albert 

Einstein College of Medicine animal facility under specific-pathogen-free conditions.

Cell viability and apoptosis

To test cell viability, an MTT assay was performed as previously described (Baldan et al. 

2014). Briefly, 5000 cells were seeded onto 96-well plates. On the next day, the growth 

medium was replaced with vehicle-treated medium (NT, untreated cultures) or with medium 

containing JQ1 or I-BET762; plates were incubated for 0, 24, 48 and 72 h. All experiments 

were run in quadruplicate and cell viability was expressed as a percentage relative to 

baseline samples (T0). The percentage of cell viability assessed by MTT assay was used to 

determine EC50 concentrations from dose–response curves after 72 h treatment.

Caspase 3/7 activity was measured as a marker of apoptosis using the Apo-ONE 

Homogeneous Caspase-3/7 Assay kit (Promega, Milan, Italy) according to the 

manufacturer’s protocol. 5000 cells were seeded onto 96-well plates. On the next day, the 

growth medium was replaced with vehicle-treated medium (NT, untreated cultures) or 

medium containing JQ1 5 μM or I-BET762 5 μM; plates were incubated for 48 h. All 

experimental points were run in triplicate and apoptosis levels were expressed as a 

percentage relative to baseline samples (NT).

Cell cycle analysis

Cell cycle was determined by fluorescence-activated cell-sorting (FACS) analysis of DNA 

content. Briefly, FRO and SW1736 cells were collected after a 24, 48 and 72 h treatment 

either with JQ1 or vehicle (NT); cells were fixed in cold ethanol 70% and stained with a 

propidium iodide solution containing RNase and Triton-X100. Flow cytometric analysis was 
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performed on a FACSCalibur (Becton Dickinson) using Modfit LT analysis software (Verity 

Software House, Inc., Topsham, ME, USA). A minimum of 20,000 cells was analyzed for 

each sample. All experiments were run in triplicate.

High throughput RNA-sequencing and analysis

1.5 μg of good quality RNA (RNA Integrity Number >7) was used as starting material for 

library preparation using the Illumina mRNASeq Sample Prep kit v2.0, following the 

manufacturer’s instructions. The poly-A mRNA was fragmented for 1.5 minutes at 94°C and 

all purification steps were performed by using 1X Agencourt AMPure XP beads. Quality 

and quantity of each library were assessed by using an Agilent Bioanalyzer 2100 High 

Sensitivity and Qubit DNA High Sensitivity (Invitrogen). Libraries were pooled together and 

the obtained pool was checked on an Agilent Bioanalyzer 2100 in order to determine the 

molarity. Single read sequencing was performed on the HiSeq2000 (Illumina, San Diego, 

CA, USA) generating 50-base reads. The CASAVA 1.8.2 version of the Illumina pipeline 

was used for image analysis, base calling, and demultiplexing. Reads were first trimmed in 

order to remove lower base quality data with ERNE (Vezzi et al. 2012) and adapter 

sequences were removed with Cutadapt (https://pypi.python.org/pypi/cutadapt/1.3). TopHat 

(Trapnell et al. 2012) was used for mapping and annotation on the hg19 reference sequence. 

Differential gene expression analysis was performed according to the experimental design 

using Cufflinks (Trapnell et al. 2012).

Gene expression assays

Total RNA from human cell lines, treated either with JQ1 5 μM or vehicle, was extracted 

with RNeasy mini kit according with manufacturer’s instructions (Qiagen, Hilden, 

Germany). 500 ng of total RNA were reverse transcribed to cDNA using random exaprimers 

and MMLV reverse transcriptase (Life Technologies, Carlsbad, CA, USA). Real-time PCRs 

were performed using Platinum Sybr Green QPCR supermix (Life Technologies) with the 

ABI Prism 7300 Sequence Detection Systems (Applied Biosystems). The ΔΔCT method, by 

means of the SDS software (Applied Biosystems), was used to calculate mRNA levels. 

Oligonucleotide primers for MCM5 (forward, 5′-GATCCTGGCATTTTCTACAG-3′; 

reverse, 5′-CCCTGTATTTGAAGGTGAAG-3′) and β-actin (forward, 5′-

TTGTTACAGGAAGTCCCTTGCC-3′; reverse, 5′-ATGCTATCACCTCCCCTGTGTG-3′) 

were purchased from Sigma Aldrich. Total mouse RNA (treated either with 0.5μM or 

vehicle) was extracted with Trizol and reverse transcribed using the Maxima First Strand 

cDNA Synthesis Kit kit (Thermo Scientific, Waltham, MA). qRT-PCR was performed on a 

StepOne Plus apparatus using SYBR Green mix (Applied Biosystems) and custom-designed 

primers (forward, 5′-CAGAGGCGATTCAAGGAGTTC-3′; reverse, 5′-

CGATCCAGTATTCACCCAGGT-3′). Each sample was run in triplicate and 18S was used 

to control for input RNA. Data analysis was based on the Ct method, and experiments were 

repeated at least three times using at least two independent organ and cell pools.

Chromatin immunoprecipitation (ChIP)

The ChIP assay was performed as previously described (Baldan et al., 2015). For 

immunoprecipitation, samples were incubated with 10 μg of rabbit polyclonal anti-BRD4 

(Active Motif) or Rabbit IgG, (Millipore), as negative control. After incubation with 
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Dynabeads Protein A, washing and elution, the DNA was extracted with phenol/chloroform, 

the aqueous phase recovered and precipitated. The extracted DNA was used as a template in 

qPCR with the following primers: MCM5 Forward Primer 

(CCTGTTCTGGCCGTTTGTTC), MCM5 Reverse Primer 

(GATCGTCGAATCCCGACATG); NCR Forward Primer 

(TGCTGTTACTTTTTACAGGGAGTT), NCR Reverse Primer 

(TTTGAGCAAAATGTTGAAAACAA). Fold enrichment was, then, calculated, as signal 

over background (IgG). Data are representative of three different experiments.

RNA silencing

For transient silencing of endogenous MCM5, TriFECTa RNAi Kit (Integrated DNA 

Technologies Inc, Coralville, IA, USA) was used. A ‘universal’ negative control duplex 

(NC) that targets a site that is absent from human, mouse and rat genomes was used. siRNA 

oligonucleotides were transfected at a concentration of 5 nM using DharmaFECT 

Transfection reagent (Thermo Scientific Inc, Waltham, MA, USA), according to 

manufacturer’s instructions. The day before transfection, cells were plated in antibiotics-free 

medium and cells were harvested 72 h after transfection. The gene-silencing efficiency was 

evaluated by mRNA and protein levels analysis.

Annexin V assay

In other to test the percentage of viable/apoptotic cells after MCM5 silencing, an Annexin V 

assay was performed. Briefly, cells were washed with cold PBS, transferred to a polystyrene 

round-bottomed flow tube (Falcon, Becton Dickinson, Franklin Lakes, NY) and resuspended 

in 195 μL of 1x binding buffer (BB 10 mM; HEPES/NaOH, pH 7.4, 140 mM NaCl, and 2.5 

mM CaCl2). 5 μL of Fluorescein-conjugated Annexin V (Annexin V-FITC; Bender Med 

Systems, Vienna, Austria) was added and samples were incubated for 10 minutes at room 

temperature. After washing, cells were resuspended in 190 μL of BB in which 10 μL of 

propidium iodide stock solution (final concentration 1 μg/mL) was added. Flow cytometry 

analysis was done on CyAN, Dako Cytomation using the Summit software (Flow cytometer, 

Beckman Coulter). Forward scatter (FSC) and side scatter (SSC) were acquired in linear 

mode. FITC and PI fluorescent signals derived from 488 nm excitation were detected in 

logarithmic mode at FL1/PMT3 and FL2/PMT4, with FITC 530/30 nm filters, and PI 585/42 

nm filters, respectively, and a FL1/2 560 nm short pass dichroic filter. Signals for forward 

and side scatter and fluorescence were collected for 104 cells using the forward light scatter 

parameter as the master signal. Data are expressed as mean fluorescence intensity (FI) 

values. All experiments were run in triplicate.

MCM5 over-expression

To over-express MCM5 protein, we purchased the TrueClone MCM5 cDNA cloned in 

pCMV6-AC, which contains a full open reading frame of the human MCM5 gene (Origene, 

Rockville, MD, USA). The over-expression vector was transfected with Turbofect reagent 

(Fisher Scientific S.A.S., Illkirch, France) at 2 μL per well. pCMV- empty vector was used 

as negative control (NC). Once verified the over-expression by immuonoblotting, we 

performed a rescue experiment, in order to verify the direct involvement of MCM5 in JQ1 

mechanism of action. Cells were transfected with pCMV-MCM5 or NC and exposed to 5 
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μM JQ1 or vehicle for 48 h. Cell viability was evaluated by MTT assay, as previously 

described.

Protein extraction and Western blot

Total protein extraction was performed as described previously (Passon et al. 2012). Briefly, 

FRO and SW1736 cells, incubated in vehicle-treated medium (NT, untreated cultures) or 

with JQ1 5 μM, were harvested by scraping and lysed with total lysis buffer (Tris HCl 50 

mM pH8, NaCl 120 mM, EDTA 5 mM, Triton 1%, NP40 1%, protease inhibitors). For 

subcellular fractionation, pellets were resuspended in buffer A (10 mM Tris-HCl [pH 7.5], 

1.5 mM MgCl2, and 10 mM KCl supplemented with 1× protease inhibitor cocktail, 0.5 mM 

PMSF, 1 mM NaF and 1 mM Na3VO4) and centrifugated at 2,000 × g for 10 min at 4°C. 

For nuclear extracts collection, pellets were resuspended in buffer B (20 mM Tris-HCl [pH 

7.5], 0.42 M KCl, 1.5 mM MgCl2, 20% [vol/vol] glycerol supplemented with 1× protease 

inhibitor cocktail, 0.5 mM PMSF, 1 mM NaF, and 1 mM Na3VO4) and centrifuged at 

15,000 × g for 30 min at 4°C. For Western Blot analysis, proteins were electrophoresed on 

10% SDS-PAGE and then transferred to nitrocellulose membranes, which were saturated 

with 5% non-fat dry milk in PBS/0.1% Tween 20. The membranes were then incubated 

overnight with rabbit polyclonal anti-BRD4 antibody 1:1000 (Active Motif, Carlsbad, CA, 

USA), rabbit anti-lamin-β1 antibody 1:1000 (Abcam, Cambridge, UK), rabbit polyclonal 

anti-MCM5 antibody 1:250 (Sigma Aldrich) or rabbit anti-β-actin antibody 1:1000 (Abcam). 

The day after, membranes were incubated for 2 h with anti-rabbit immunoglobulin coupled 

to peroxidase 1:4000 (Sigma-Aldrich). The blots were developed using UVITEC Alliance 

LD (UVITec Limited, Cambridge, UK) with the SuperSignal Technology (Thermo Scientific 

Inc).

Human tissues and immunohistochemistry

A series of 12 normal thyroid glands (NTs), 25 follicular adenomas (FAs), 23 follicular 

thyroid carcinomas (FTCs), 36 papillary thyroid carcinomas (PTCs) and 8 anaplastic thyroid 

carcinomas (ATCs) were selected from the files of the Institution of Anatomic Pathology of 

the University of Udine and the most representative block of each lesion was retrieved from 

the archive. Representative tumor-bearing areas were selected and a tissue microarray was 

constructed. All samples were diagnosed by referral pathologists of the institution and then 

reviewed by a single experienced pathologist, thus including only patients with a confirmed 

diagnosis. Briefly, 5 μM formalin-fixed paraffin tissue sections mounted on SuperFrost Plus 

slides (Menzel-Gläser, Braunschweig, Germany) were placed in the PT Link pre-treatment 

module (DAKO A/S, Glostrup, Denmark), which performs automatically the entire pre-

treatment process of de-paraffinization, rehydration, and epitope retrieval using the Low pH 

Target Retrieval Solution (0.001 M citrate buffer pH 6.0) at 98 °C for 40 min from DAKO. 

Endogenous peroxidase activity was blocked by incubation in the Peroxidase Block solution 

(DAKO) for 5 minutes. Primary rabbit polyclonal antiserum to MCM5 (Sigma Aldrich) 

diluted 1:1000 was applied and incubated for 60 minutes at room temperature. After 

washing slides were incubated with the DAKO EnVision FLEX System (DAKO) according 

to manufacturer’s guidelines. For reaction visualization, 3-3 diaminobenzidine 

tetrahydrochloride was used as chromogen. The sections were counterstained with Mayer’s 

hematoxylin. Using light microscopy, the entire section was scanned at high-power 
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magnification (400×) and nuclear immunostaining was evaluated semi-quantitatively as 

percentage of positive cells. Staining intensity was scored as light, moderate and strong. A 

final score was then calculated by multiplying the percent staining by the intensity level.

Statistical analysis

mRNA and protein levels, cell viability and apoptosis levels were expressed as means ± SD, 

and significances were determined by a one-way ANOVA followed by Dunnett’s test 

performed with GraphPAD Software for Science (San Diego, CA, USA). *P value <0.05 vas 

considered statistically significant.

Results

Biological effects of BET inhibitors on ATC cells

In a first set of experiments, we evaluated the sensitivity of two human anaplastic thyroid 

cancer cell lines (FRO and SW1736) to BET inhibitors. As shown in Figure 1, incubation 

either with JQ1 (Panel A) or I-BET762 (Panel B) significantly reduced FRO and SW1736 

cell viability at different time points. Relying on data obtained, we decided to use for further 

experiments the median effective dose of 5 μM, i.e. the dose required to achieve 50% of the 

desired response in 50% of the population. To assess whether the decrease in cell viability 

was due to an increase of apoptotic cell death, caspase 3/7 levels were measured after 48 h 

treatment. Administration of JQ1 increased caspase levels in both cell lines in a quite 

striking manner while I-BET762 treatment showed a less pronounced effect (Fig. 1, Panel 

C). In order to verify whether a 48 h I-BET762 treatment displayed a caspase-independent 

cell death, we perform a western blot analysis of PARP. PARP is known to be a substrate for 

several proteins as caspases, calpains and cathepsins; it produces several specific cleavage 

fragments that resemble signature patterns of different cell death programs (Gobeil et al. 

2001; Chaitanya et al., 2010). As shown in Supplementary Figure 2 (Panels A and B) ATC 

cells showed a marked increase of both apoptotic- and necrotic-specific cleaved-PARP. We, 

then, corroborated the BET inhibition effects on cell viability and cell death in 8505c cells, a 

third anaplastic thyroid cell line (Supplementary Fig. 3). Moreover, we used a third BET 

inhibitor: I-BET151. This latter is a pan-BET inhibitor having a slight different chemical 

structure compared to I-BET762. I-BET151 reduced cell viability similarly to I-BET762 

(Supplementary Fig. 1, Panels A and B, and Supplementary Fig. 3, Panels C). Hereinafter, 

we decided to proceed in our investigation with JQ1-treatment only, as it revealed to be the 

most effective drug, in terms of biological effects, in both cell lines. A FACS analysis of the 

cell cycle was then performed on both cell lines treated with 5 μM JQ1 for 24, 48 and 72 h. 

JQ1-treatment significantly increased the proportion of cells arrested in G0/G1 at each 

analyzed time point (Fig. 1, Panel D).

Differential gene expression after BET inhibition

To identify potential molecular targets connected to BET inhibition, we performed a high-

throughput RNA sequencing analysis on both FRO and SW1736 cells treated with 5 μM JQ1 

or vehicle for 24 h. To assess the transcriptional changes induced by BET inhibition, a 

comparison between cells treated with JQ1 or vehicle was performed. Heat maps 

representing each analyzed condition are shown in Figure 2 (Panel A). Expression of 14199 
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and 13013 genes was detected in FRO and SW1736 cell lines, respectively. Vehicle-treated 

(NT) FRO and SW1736 cells showed a quite different mRNA profile. After filtering low 

quantity reads, results showed that approximately 2000 genes were differentially expressed 

after JQ1 treatment either in FRO or SW1736 cells (at a log2 fold change >2) 

(Supplementary Tables 1 and 2). Among them, 768 genes were significantly up-regulated 

and 1229 were down-regulated in response to JQ1 treatment (Fig. 2, Panel B). Venn 

diagrams showed that the majority of altered genes was specific for each cell line, which 

likely underlies the differential mRNA profile observed with vehicle-treatment. However, 

there was a core set of 288 genes commonly affected by JQ1 treatment in both cell lines, 

most of which decreased their expression (n=213). RNA-seq data, then, were confirmed by 

qPCR (Supplementary Figure 4). The shared top 20 differentially expressed genes (Tab.1) 

were then subjected to Ingenuity Pathway Analysis in order to outline which pathways were 

mostly affected by JQ1 treatment. Various signaling cascades turned out to be modified by 

BET inhibitors treatment: regulation of DNA and metabolic processes proved out to be the 

most deregulated one (Supplementary Table 3). The RNA-seq analysis identified a large 

number of JQ1 putative targets, primarily in cell cycle-linked pathways. These data are 

consistent with Da Costa’s findings in leukemia cells (Da Costa et al. 2013). Several studies 

have proposed a possible role of c-MYC down-regulation as a major mechanism of action of 

BET inhibitors (Zubet et al 2011; Alderton 2011). Our RNA-seq data show that this 

oncogene is not a critical factor in JQ1-mediated effects in ATC cells, since JQ1-treatment 

did not significantly affect c-MYC expression in neither of the two cell lines (Supplementary 

Figure 4). BET inhibitors, however, modified the expression of several cell cycle regulators 

such as RB proteins, E2F transcription factors and CDK-inhibitors (Supplementary Table 4).

BET inhibitors effects on MCM5

Considering that cell cycle regulatory genes were the most affected by JQ1 treatment, we 

focused on MCM5, one of the top 20 down-regulated genes, which is known to be involved 

in G1/S cell cycle transition, coordinating origin activation and replication fork progression. 

MCM5 belongs to the minichromosome maintenance complex family, which has been 

associated with the highly proliferative phenotype of ATC (Guida et al. 2005). Several 

studies have established that MCM5 protein level is a good diagnostic marker of malignancy 

for bladder, esophageal, and gastric cancers (Kebebew et al. 2006). After confirming RNA-

seq data on mRNA levels (Fig. 3 Panel A), we evaluated whether a 5 μM JQ1 treatment 

significantly altered MCM5 protein levels in FRO and SW1736 cells (Fig. 3, Panel B). After 

72 h incubation with JQ1, a significant reduction in MCM5 protein levels was observed (Fig. 

3, Panel C). To extend and further validate this finding, we used two murine ATC cell lines 

derived from tumors developed by a genetically defined mouse model of ATC. Treatment of 

both lines with 0.5 μM JQ1 for 72h resulted in a significant downregulation of Mcm5 RNA 

(Fig. 3, Panel D). To evaluate whether MCM5 is a direct target of BRD4, which is the BET 

protein whose activity is inhibited by JQ1, we performed a ChIP-qPCR analysis in FRO and 

SW1736 cells. We first evaluated if the two cell lines expressed comparable BRD4 protein 

levels (Fig. 4, Panel A). After the ChIP assay, we observed an average 5-fold MCM5 
enrichment in the BRD4-immunoprecipitate if compared to the IgG one. To confirm 

specificity, an intergenic region has been used as negative control for BRD4-binding (Fig. 4, 

Panel B). In order to test the biological relevance of MCM5 gene repression upon BET 
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inhibition, an RNA interference analysis was performed. MCM5 gene expression was 

silenced both in FRO and in SW1736 cells, and immunoblot analysis revealed an almost 

total abolishment of endogenous MCM5 protein level with siRNA#2 treatment (Fig. 4, Panel 

C). Furthermore, MCM5 silencing, especially with siRNA#2, significantly decreased cell 

viability (p<0.001), increasing the percentage of apoptotic cells after Annexin V staining 

compared to negative control (Fig. 4, Panel D). Similarly, to what we observed treating cells 

with JQ1, this outcome was more pronounced in SW1736 than in FRO cells. To further 

prove that MCM5 is directly involved in the cell viability decrease after 5 μM JQ1 treatment, 

we performed a rescue experiment. FRO and SW1736 cells were treated with pCMV-MCM5 

or NC and exposed to JQ1 for 48 h. As shown in Fig. 4 Panel E, MCM5 protein over-

expression partially rescued its protein levels in JQ1-treated cells. To validate that this 

phenomenon is associate to a cell viability rescue, an MTT assay was performed. FRO and 

SW1736 cells over-expressing MCM5 displayed a slight but significative reduction (10% on 

average) of JQ1 effects when assessing cell viability (Fig. 4, Panel F). This mild rescue 

could be explained by the multi-target activity of BET inhibitors, whose effects are mediated 

by a remarkable number of actors, as we showed in our RNA-seq analysis (Fig. 2).

In vivo MCM5 levels evaluation

Our data underline the relevance of MCM5 in thyroid cancer cell proliferation. Thus, MCM5 

expression was evaluated in a panel of 12 normal thyroid samples (NTs), 25 follicular 

adenomas (FAs), 23 follicular thyroid carcinomas (FTCs), 36 papillary thyroid carcinomas 

(PTCs) and 8 anaplastic thyroid carcinomas (ATCs). Representative images of MCM5 

staining are shown in Figure 5 (Panel A). MCM5 was faintly expressed in normal thyroid 

tissue and in FAs. PTCs showed a dual behavior: some samples displayed an intense and 

high MCM5 nuclear staining, while some others a much lesser one, with only a cytoplasmic 

signal. In FTCs, nuclear staining was lesser intense and frequent, with a predominant 

cytoplasmic MCM5 staining. ATCs, instead, showed a marked nuclear MCM5 localization. 

No significant differences were observed in terms of MCM5 nuclear or cytoplasmic staining 

intensity among different areas of each tumor. Quantification of the nuclear 

immunohistochemical signal was obtained by computing percentage of cell positivity and 

intensity of signal (Fig. 5, Panel B). Since cytoplasmic MCM5 protein represents the 

inactive MCM5 isoform (Abe et al. 2012), the strong nuclear staining observed in all ATCs 

and several PTCs would indicate its hyper-activation. Finally, we measured the expression of 

Mcm5 in four primary ATCs developed by [Pten, Tp53]thyr−/− mice (Antico Arciuch et al. 

2011). In agreement with the human data, Mcm5 was found significantly overexpressed in 

mouse ATC, compared to normal thyroids (Fig. 5, Panel C), while its expression was not 

altered in FTCs developed by Ptenthyr−/− mice (data not shown).

Discussion

The cross talk between genomic and epigenomic elements in driving generation and 

progression of both hematologic malignancies and solid tumors has been extensively 

highlighted (Martín-Subero et al. 2013). Among epigenetic anticancer drugs, those targeting 

BET proteins have recently emerged as promising therapeutics in a remarkable range of 

diseases (Shi and Vakoc 2014; Wee et al. 2014). ATC is the most aggressive thyroid cancer 

Mio et al. Page 9

Endocr Relat Cancer. Author manuscript; available in PMC 2017 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



subtype and it does not significantly respond to any therapy. In order to find new strategies 

to treat this aggressive thyroid cancer sub-type, we investigated BET inhibitors target genes 

in ATC cell lines. As expected, human ATC cell lines FRO and SW1736, treated with three 

different BET inhibitors, displayed a decrease in cell viability associated to an increase in 

cell death phenomena. These data were also been confirmed in a third ATC cell line 

(Supplementary Fig. 3). In our experimental model, BET inhibition triggers a multi-target 

cascade resulting in substantial biological effects, as demonstrated by RNA sequencing data. 

The identification of genes mediating BET inhibitors anti-proliferative effect could provide 

innovative therapeutic targets. Among hundreds of deregulated genes after BET inhibition, a 

large fraction belongs to regulators of cell cycle and apoptosis, i.e. E2F family members, 

CDKs and CDK inhibitors, and other TP53 pathway-related elements (Møller 2003; 
Smallridge et al. 2009). These data are similar to those previously published in 

medulloblastoma and metastatic melanoma (Segura et al. 2013; Henssen et al. 2013). All 

these findings corroborate the hypothesis that BET inhibitors disrupt cell cycle control, 

driving G0/G1 arrest and inducing cell death, by acting on multiple targets. Ott at al. 

observed that JQ1 treatment decrease the expression of IL7R in leukaemic cell lines, both at 

mRNA and protein levels (Ott et al. 2012). In anaplastic thyroid cell lines a 24h JQ1 

treatment exhibited a significant down-regulation of IL7R mRNA levels, but this reduction 

was not confirmed analyzing protein levels (Supplementary Figure 5). We would like to 

stress that endogenous IL7R protein is not so abundant in these two cell lines; therefore, the 

misregulation of a protein involved in during lymphocyte development seems not to perform 

a substantial role in JQ1 effects in thyroid cancer cells. Our data, instead, show an at least 

10-fold down-regulation of MCM5 expression in JQ1-treated cells, suggesting a critical role 

of this protein in the molecular cascade triggered by BET inhibitors. As confirmation, 

MCM5 proved to be a direct target of BRD4, as highlighted in the ChIP-qPCR assay. 

Moreover, MCM5 overexpression moderately attenuated FRO and SW1736 JQ1 sensitivity, 

in terms of cell viability, as shown in the rescue experiment (Fig. 4, Panel F). This mild 

effect is reasonably due to the multi-target activity of epigenetic drugs, which act 

simultaneously on a wide range of pathways, as shown in our RNA-seq analysis. 

Accordingly to our data, poor rescue effects have been obtained for other targets of BET 

inhibitors (Lockwood et al., 2012; Bandopadhayay et al., 2014). MCM5 belongs to the 

minichromosome maintenance complex, which includes elements of the pre-replicative 

complex (pre-RC) that are essential for DNA replication (Noseda and Karsan 2006). MCM 

proteins are considered licensing components for the S-phase initiation. MCMs oscillate 

between nuclear and cytoplasmic localizations (Madine et al. 2000). Nuclear MCMs 

associate with DNA during G1 and early S-phase, allowing the control of replication origin 

firing, in order to restrict the chromosome replication to only one round per cell cycle 

(Romanowski and Madine 1997). MCMs are restricted, instead, to cytoplasm during G2/M 

phase in order to prevent re-replication phenomena (Laskey 2005). Recently, components of 

MCM family have been described as aberrantly expressed in many malignancies, including 

thyroid carcinomas (Giaginis et al. 2010). In agreement with these findings and 

corroborating our in vitro and in vivo results, MCM5 immunostaining demonstrated that 

ATCs contained more MCM5-positive cells than did normal thyroid gland (Fig. 5).
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Several studies have demonstrated that expression of MCM5 is controlled by different 

pathways (Guida et al. 2005; Abe et al. 2012; Noseda and Karsan 2006; Laskey 2005). 

Figure 6 summarizes major players controlling MCM5 gene expression, as well as their 

functional interactions. By comparing Figure 6 and Supplementary Table 4, it is undeniable 

that many proteins that up-regulate MCM5 expression are also down-regulated by BET 

inhibitors. Interestingly, JQ1 reduces the expression of some elements involved in the 

replication fork assembly thus affecting cell cycle mechanisms, in which, in turn, MCM 

proteins are involved. Altogether, this cascade could lead to G0/G1 arrest (see Fig. 1, Panel 

D) and cell death. In conclusion, our findings support the hypothesis that MCM5 targeting 

may be regarded as an effective molecular therapy against ATC.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. BET inhibitors administration decreases proliferation and survival of anaplastic 
thyroid carcinoma cell lines
Panels A and B; FRO and SW1736 were exposed to JQ1 or I-BET762 different doses (rising 

from 50 nM to 10 μM). Cell viability was determined by MTT assay after 0, 24, 48 and 72 h 

and expressed as a percentage of baseline samples (T0). All samples were run in 

quadruplicate. Panel C; apoptosis levels were evaluated 48 h after treatment either with 5 μM 

BET inhibitors or vehicle (NT). Caspase 3/7 levels were normalized to the vehicle-treated 

group. Temozolomide (500 μM), a chemotherapy drug, was used as a positive control for 

apoptosis. Each sample was run in triplicate. * p < 0.05, *** p < 0.001, **** p < 0.0001 by 

ANOVA test. Panel D; FRO and SW1736 cell cycle distribution was determined after 5 μM 

JQ1 or vehicle administration. Cells were collected after 24, 48 and 72 hours treatments. 

Data are representative of 3 independent experiments.
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Figure 2. Gene expression modifications in ATC JQ1-treated cell lines
Panel A; Heat maps showing the hierarchical clustering of mRNA targets in FRO and 

SW1736 cell lines (N=1997). Cells were treated either with 5 μM JQ1 or vehicle for 24 

hours. Panel B; Venn diagrams representing the comparison of both up-regulated (left) and 

down-regulated (right) genes between FRO and SW1736 cell lines after RNA-seq data 

analysis. Purple gene clusters represent shared modified genes between FRO and SW1736 

cell lines.
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Figure 3. Down-regulation of MCM5 in human and murine ATC cell lines after JQl-treatment
Panel A; FRO and SW1736 cells were treated either with 5 μM JQ1 or vehicle for 24 hours 

and MCM5 mRNA expression was evaluated by qPCR. All samples were run in triplicate. 

Vehicle-treated (NT) FRO cells were arbitrarily set at 1.0 and mRNA levels are expressed as 

relative expression values. Panel B; FRO and SW1736 were treated either with 5 μM JQ1 or 

vehicle for 72 h and MCM5 protein levels were detected by western blotting. Panel C; 

densitometric analysis of MCM5 protein levels in ATC cells after 5 μM JQ1 or vehicle 

treatment. Panel D; T4888M and T3531L cells were treated either with 0.5 μM JQ1 or 

vehicle for 72 hours and Mcm5 mRNA expression was evaluated by qPCR. All samples 

were run in triplicate. Vehicle-treated (NT) T4888M cells were arbitrarily set at 1.0 and 

mRNA levels are expressed as relative expression values. Results are shown as mean ± SD. 

*** p < 0.001, **** p < 0.0001 by ANOVA test. Data are representative of 3 independent 

experiments.
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Figure 4. MCM5 is directly involved in BET inhibitors effects in human ATC cell lines
Panel A; BRD4 protein expression in ATC cell lines. Panel B, chromatin was isolated from 

ATC cell lines and immunoprecipitated with BRD4 or IgG antibodies. MCM5 DNA was 

amplified using promoter-specific primers and analyzed by qPCR. All samples were run in 

triplicate. IgG-immunoprecipitate was arbitrarily set at 1.0 and the enrichment was 

expressed as relative expression value. An intergenic region (NCR) was used as a negative 

control for BRD4-binding. Panel C, FRO and SW1736 cells were treated with non-targeting 

siRNA (NC, negative control) or three different siRNA sequences specific to MCM5 (5 nM). 

Cells were collected after 72 h treatment and MCM5 protein levels were analyzed. Panel D; 

FRO and SW1736 were exposed to either siRNA targeting MCM5 or negative control for 72 

hours and apoptosis levels was analyzed by Annexin V staining. Panel E, FRO and SW1736 

cells were treated with pCMV empty vector (NC, negative control) or pCMV vector specific 

for MCM5 (1.3 μg). Cells were collected after 48 h treatment and MCM5 protein levels 

were analyzed. Panel F, FRO and SW1736 were treated with 0.01 μg p-CMV-MCM5 or 
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empty vector and exposed to 5 μM JQ1 or vehicle. Cell viability was determined by MTT 

assay after 48 h. NT was arbitrarily set at 100 and cell viability was expressed as relative 

expression value. All samples were run in quadruplicate. Results are shown as mean ± SD. 

*** p < 0.001, **** p < 0.0001 by ANOVA test. Data are representative of 3 independent 

experiments.
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Figure 5. MCM5 expression in thyroid tumors
Panel A; representative images of MCM5 expression in normal thyroid tissues (NT), FAs, 

PTCs, FTCs and ATCs. Panel B; quantitation of MCM5 expression in normal and neoplastic 

thyroid tissues. Quantitation was obtained by using the IHC score, calculated as described in 

Materials and Methods section. Panel C; Mcm5 expression was evaluated by qPCR in 

control thyroids from wild type mice and primary ATCs from [Pten, Tp53]thyr−/− mice. All 

samples were run in triplicate. Wild type (WT) expression was set at 1.0 and mRNA levels 

are expressed as relative expression values. Results are shown as mean ± SD. * p < 0.05, ** 

p < 0.01, **** p < 0.0001 by ANOVA test.
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Figure 6. Biological network related to MCMs protein function
Network diagram (upper part) showing key molecules controlling MCMs protein levels. 

White symbols represent proteins whose mRNA levels are modulated by BET inhibitors in 

our transcriptome analysis (see Supplementary Table 4); gray symbols indicate proteins 

whose mRNA levels are not modulated by BET inhibitors. Arrows indicate functional 

relationship between proteins (delineated in Guida et al. 2005; Abe et al. 2012; Madine et al. 

2000; Laskey 2005). The lower part indicates factors cooperating with MCM proteins in the 

replicative fork assembly. All of these factors are down-regulated by BET inhibitors (see 

Supplementary Table 4). Arrowheads show the relationship between MCMs and cell cycle 

phases.
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