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Abstract

Conventional, soft-partition clustering approaches, such as fuzzy c-means (FCM), maximum 

entropy clustering (MEC) and fuzzy clustering by quadratic regularization (FC-QR), are usually 

incompetent in those situations where the data are quite insufficient or much polluted by 

underlying noise or outliers. In order to address this challenge, the quadratic weights and Gini-

Simpson diversity based fuzzy clustering model (QWGSD-FC), is first proposed as a basis of our 

work. Based on QWGSD-FC and inspired by transfer learning, two types of cross-domain, soft-

partition clustering frameworks and their corresponding algorithms, referred to as type-I/type-II 

knowledge-transfer-oriented c-means (TI-KT-CM and TII-KT-CM), are subsequently presented, 

respectively. The primary contributions of our work are four-fold: (1) The delicate QWGSD-FC 

model inherits the most merits of FCM, MEC and FC-QR. With the weight factors in the form of 

quadratic memberships, similar to FCM, it can more effectively calculate the total intra-cluster 

deviation than the linear form recruited in MEC and FC-QR. Meanwhile, via Gini-Simpson 

diversity index, like Shannon entropy in MEC, and equivalent to the quadratic regularization in 

FC-QR, QWGSD-FC is prone to achieving the unbiased probability assignments, (2) owing to the 

reference knowledge from the source domain, both TI-KT-CM and TII-KT-CM demonstrate high 

clustering effectiveness as well as strong parameter robustness in the target domain, (3) TI-KT-CM 

refers merely to the historical cluster centroids, whereas TII-KT-CM simultaneously uses the 

historical cluster centroids and their associated fuzzy memberships as the reference. This indicates 

that TII-KT-CM features more comprehensive knowledge learning capability than TI-KT-CM and 

TII-KT-CM consequently exhibits more perfect cross-domain clustering performance and (4) 

neither the historical cluster centroids nor the historical cluster centroid based fuzzy memberships 

involved in TI-KT-CM or TII-KT-CM can be inversely mapped into the raw data. This means that 

both TI-KT-CM and TII-KT-CM can work without disclosing the original data in the source 
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domain, i.e. they are of good privacy protection for the source domain. In addition, the 

convergence analyses regarding both TI-KT-CM and TII-KT-CM are conducted in our research. 

The experimental studies thoroughly evaluated and demonstrated our contributions on both 

synthetic and real-life data scenarios.
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1. Introduction

As we know well, partition clustering is one of the conventional clustering methods in 

pattern recognition which attempts to determine the optimal partition with minimum intra-

cluster deviations as well as maximum inter-cluster separations according to the given 

cluster number and a distance measure criterion. The studies began with hard-partition 

clustering in this field, such as k-means [1-3] (also known as crisp c-means [3]), i.e., the 

ownership of one pattern to one cluster is definite, without any ambiguity. Then, benefiting 

from Zadeh’s fuzzy-set theory [4,5], soft-partition clustering [6-24,26-43] emerged, such as 

classic fuzzy c-means (FCM) [3,6], where the memberships regarding one data instance to 

all underlying clusters are in the form of uncertainties (generally measured by probabilities 

[6,17,18] or possibilities [7-9]), i.e. fuzzy memberships. So far soft-partition clustering has 

triggered extensive research and the representative work can be reviewed from the following 

four aspects: (1) FCM’s derivatives [6-14]. For improving the robustness against noise and 

outliers, two major families of derivatives of FCM, i.e., possibilistic c-means (PCM) [3,7-9] 

and evidential c-means (ECM) [10-13], were presented by relaxing the normalization 

constraint defined on the memberships of one pattern to all classes, and based on the 

concepts of possibilistic partition and credal partition, respectively. In addition, Pal and 

Sarkar [14] analyzed the conditions in which we can or should not use the kernel version of 

FCM; and the convergence analyses regarding FCM were studied in [15,16], (2) maximum 

entropy clustering (MEC) [3,17-23]. Karayiannis [17] and Li and Mukaidono [18] initially 

developed the MEC models by incorporating the Shannon entropy term into the total intra-

cluster distortion measure. After that, Li and Mukaidono [19] further designed a complete 

Gaussian membership function for MEC; Wang et al. [20] incorporated the concepts of 

Vapnik’s ε-insensitive loss function as well as weight factor into the original MEC 

framework in order to improve the identification ability of outliers; Zhi et al. [21] presented 

a meaningful joint framework by combining the fuzzy linear discriminant analysis with the 

original MEC objective function; and the convergence of MEC was studied in [22,23], (3) 

hybrid rough-fuzzy clustering approaches [13,24-30]. Dubois and Prade [24] fundamentally 

addressed the rough-fuzzy and fuzzy-rough hybridization as early as 25 years ago. Then 

quite quantities of fuzzy and rough hybridization clustering approaches have been 

developed. For example, Mitra et al. [25] introduced a hybrid rough-fuzzy clustering 

algorithm with fuzzy lower approximations and fuzzy boundaries; Maji and Pal [26] varied 

Mitra’s et al. method [25] into the rough-fuzzy c-means with crisp lower approximations and 

fuzzy boundaries for heightening the impact of the lower approximation on clustering; Mitra 
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et al. [27] suggested the shadowed c-means algorithm as an integration of fuzzy and rough 

clustering; and Zhou et al. [28] discussed shadowed sets in the characterization of rough-

fuzzy clustering, (4) other fuzzy clustering models as well as applications. Aside from the 

above mentioned three aspects of literature, there exists a plenty of other work regarding 

soft-partition clustering. For example, Miyamoto and Umayahara [3,29] regarded FCM as a 

regularization of crisp c-means, and then via the quadratic regularization function of 

memberships they designed another regularization method named fuzzy clustering by 

quadratic regularization (FC-QR); Yu [30] devised the general c-means model by extending 

the definition of the mean from a statistical point of view; Gan and Wu [31] proposed a 

classic fuzzy subspace clustering model and further analyzed its convergence; Wang et al. 

[32] proposed another fuzzy subspace clustering method for handling high-dimensional, 

sparse data; and in addition, some application studies with respect to soft-partition clustering 

were also conducted, such as image compression [33,34], image segmentation [35-37], real-

time target tracking [38,39], and gene expression data analysis [40].

As is well known, however, the effectiveness of usual soft-partition clustering methods in 

complex data situations still faces challenges. Specifically, their clustering performance 

depends to a great extent on the data quantity and quality in the target dataset. They can 

achieve desirable clustering performance only in relatively ideal situations where the data 

are comparatively sufficient and have not been distorted by lots of noise and outliers. 

Nevertheless, these conditions are usually difficult to be satisfied in reality. Particularly, new 

things frequently appear in modern high-technology society, e.g., load balancing in 

distributed systems [41] and attenuation correction in medical imaging [42], and it is 

difficult to accumulate abundant, reliable data in the beginning phase in these new 

applications. Therefore, this issue strictly restricts the practicability of partition clustering, in 

both cases of hard-partition and soft-partition. In our view, there exist two countermeasures 

to this challenge. That is, on one hand, we try our best to go on refining the self-formulations 

of partition clustering, like the trials from crisp c-means to FCM, PCM, MEC, and the others 

(e.g., [10,27,29]); on the other hand, the collaboration between partition clustering and 

fashionable techniques in pattern recognition should also be feasible, including semi-

supervised learning [43-45], transfer learning [46-59], multi-task learning [60-62], multi-

view learning [63,64], co-clustering [65-67], etc. Semi-supervised learning utilizes partial 

data labels or must-link/cannot-link constraints as the reference in order to improve the 

learning effectiveness on the target dataset. Transfer learning aims to enhance the processing 

performance on the target domain by migrating some auxiliary information from other 

correlative domains into the target domain. Multi-task learning concurrently performs 

multiple tasks with interactivities among them so that they can achieve better performance 

than that of each separate one. Multi-view learning regards as well as processing the data 

from multiple perspectives, and then eventually combines the result of each individual view 

according to a certain strategy. Co-clustering attempts to perform clustering on both the 

samples and the attributes of a dataset, i.e. it simultaneously processes the dataset from the 

perspectives of both row and column. As far as these techniques are concerned, however, we 

prefer transfer learning due to its specific mechanism. Transfer learning works in at least 

two, correlative data domains, i.e. one source domain and one target domain, and the case of 

more than one source domain is also allowed if necessary. Transfer learning first identifies 
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useful information in the source domain, in the form of either raw data or knowledge, and 

then it handles the data in the target domain with such information acting as the reference 

and supplements. This usually enhances the learning quality of intelligent algorithms in the 

target domain. When current data are insufficient or impure (namely, polluted by noise or 

outliers), but some helpful information from other, related fields or previous studies is 

available, transfer learning is definitely the appropriate choice. Currently, many 

methodologies regarding transfer learning have also been deployed. For example, Pan and 

Yang [46] made an outstanding survey on transfer learning. The transfer learning based 

classification methods were investigated in [47-50], and the classification problem could 

currently be the most extensive research field on transfer learning. Several transfer 

regression models were proposed in [51-53]. Two dimension reduction approaches via 

transfer learning were presented in [54,55]. In addition, the trials connecting clustering 

problems with transfer learning were studied in [56-59], and several transfer clustering 

approaches were consequently put forward.

In this literature, we focus on the combination of the new soft-partition clustering model 

with transfer learning, due to the following two aspects of facts. First, conventional soft-

partition clustering approaches, such as FCM and MEC, are prone to being confused by the 

apparent data distribution when the data in the target dataset are too sparse or distorted by 

noise or outliers. This usually causes their inefficient and even invalid results. Second, 

transfer learning offers us additional, supplemental information from other correlative 

domains in addition to these existing data in the target domain. With such auxiliary 

information acting as the reference, it is possible to approach the underlying, unknown data 

structure in the target domain. To this end, we conduct our work in two ways, i.e., refining 

the soft-partition clustering formulation as well as incorporating the transfer learning 

mechanism. In the first point, in light of the separate advantages in different, existing soft-

partition models, e.g., FCM, MEC, and FC-QR, we first propose a new, concise, but 

meaningful fuzzy clustering model, referred to as quadratic weights and Gini-Simpson 

diversity based fuzzy clustering (QWGSD-FC), which aims at simultaneously inheriting the 

most merits of these existing methods. Then, based on this new model, by means of transfer 

learning, two types of cross-domain, soft-partition clustering frameworks and their 

corresponding algorithms, called Type-I/Type-II knowledge-transfer-oriented c-means (TI-

KT-CM/TII-KT-CM), are separately developed. The primary contributions of our studies in 

this manuscript can be concluded as follows.

1. As a basis of our work, the delicate QWGSD-FC model concurrently has the 

advantages of FCM, MEC and FC-QR. That is, on one hand, similar to FCM, based 

on the weight factors in the form of quadratic, fuzzy memberships, this model can 

more effectively differentiate the individual influence of different patterns in the 

total intra-cluster deviation measure than that of the linear form adopted in MEC 

and FC-QR. On the other hand, in terms of the Gini-Simpson diversity measure, 

like Shannon entropy in MEC, and equivalent to the quadratic regularization 

function in FC-QR, QWGSD-FC is prone to attaining the unbiased probability 

assignments, based on the statistical maximum-entropy inference (MEI) principle 

[18,68].
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2. Benefiting from the knowledge reference from the source domain, both TI-KT-CM 

and TII-KT-CM prove relatively high cross-domain clustering effectiveness as well 

as strong parameter robustness, which was demonstrated by comparing them with 

several state-of-the-art approaches on both artificial and real-life data scenarios.

3. Comparatively, TI-KT-CM only employs the historical cluster prototypes as the 

guidance, whereas TII-KT-CM refers simultaneously to the historical cluster 

prototypes and their associated fuzzy memberships. This indicates that TII-KT-CM 

features a more comprehensive knowledge learning capability than TI-KT-CM, and 

as a result, TII-KT-CM exhibits more excellent cross-domain, soft-partition 

clustering performance.

4. Either the historical cluster prototypes or the historical cluster prototype associated 

fuzzy memberships involved in TI-KT-CM or TII-KT-CM, belong to the advanced 

knowledge in transfer learning, and they cannot be mapped inversely into the raw 

data. This means that both TI-KT-CM and TII-KT-CM have the good capability of 

privacy protection for the data in the source domain.

The remainder of this manuscript is organized as follows. In Section 2, three, related, soft-

partition clustering models (i.e., FCM, MEC and FC-QR) and the theory of transfer learning 

are briefly reviewed. In Section 3, the new QWGSD-FC model as well as the details of TI-

KT-CM and TII-KT-CM are introduced step by step, such as the frameworks, the algorithm 

procedures, the convergence analyses and the parameter settings. In Section 4, the 

experimental studies and results are reported and discussed. In Section 5, the conclusions are 

presented.

2. Related work

2.1. FCM

Let X = {xj ∣ xj ∈ Rd, j = 1, …, N} denote a given dataset where xj (j = 1, …, N) presents 

one data instance, and d and N are separately the data dimension and the data capacity. 

Suppose there exist C (1 < C < N) potential clusters in this dataset. The framework of FCM 

can be rewritten as

(1)

where V ∈ RC×d denotes the cluster centroid matrix composed of the cluster centroids (also 

known as cluster prototypes), vi ∈ Rd, i = 1, …, C; U ∈ RC×N signifies the membership 

matrix and each entry uij denotes the fuzzy membership of data instance xj to cluster 

centroid vi; and m > 1 is a constant.

Using the Lagrange optimization, the update equations of cluster centroid vi and 

membership uij in Eq. (1) can be separately derived as
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(2)

(3)

2.2. Maximum entropy clustering (MEC)

In a broad sense, MEC refers to a category of clustering methods that contain a certain form 

of maximum entropy term in the objective functions. With the same notations as those in Eq. 

(1), the most classic MEC model [3,18] can be represented as

(4)

where Σijuij ln uij is derived from Shannon entropy [17,18,69,70], , 

and β > 0 is the regularization coefficient.

Similarly, via the Lagrange optimization, the update equations of cluster centroid vi and 

membership uij in Eq. (4) can be separately deduced as

(5)

(6)

2.3. Fuzzy clustering by quadratic regularization (FC-QR)

In [29], FCM was regarded as a regularization of crisp c-means via the fuzzy membership-

based nonlinearity , and for presenting another regularization method, with MEC as the 

reference, in terms of the quadratic function  as the new non-linearity, the 

FC-QR approach was proposed. With the same notations as those in Eq. (4), it can be 

reformulated as
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(7)

where dij = ∥xj − vi∥
2, and τ > 0 is the regularization parameter.

Based on the Lagrange optimization, it is easy to deduce that the update equation of cluster 

centroid vi of FC-QR is the same as Eq. (5), whereas the derivation of fuzzy membership uij 

is a little complicated. Here we only quote the conclusions, and one can refer to [29] for the 

details. Let

(8)

i.e.,  in Eq. (8) is derived from JQF − FC in Eq. (7) with a fixed xk. Thus, 

 and each  can independently be minimized from 

other . Moreover let

(9)

Assume d1k ≤ d2k ≤ … ≤ dCk, then the solution of uik that minimizes  is given by the 

following algorithm.

Algorithm for the optimal solution of uik in 

Setp1 Calculate  for L = 1,…,C by Eq. (9). Let L̄ be the smallest 

number such that .

Step2

For i = 1, …, L̄, put ; and for i = L̄+1, 

…, C, put uik = 0.

2.4. Transfer learning

Transfer learning [46] works in at least two, correlative data domains, i.e. one source domain 

and one target domain, and sometimes there is more than one source domain in some 

complicated situations. Transfer learning usually aims to improve the learning performance 

of intelligent algorithms in the target domain, i.e. the target dataset, by means of the prior 

information obtained from the source domains. The overall modality of transfer learning is 

indicated in Fig. 1. As shown in Fig. 1, there are two possible types of prior information 

existing in transfer learning, i.e. raw data as well as knowledge.
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Raw data in the source domain are the least sophisticated form of prior information. It may 

be the most common form to sample the source domain datasets in order to acquire lots of 

representatives and their labels. In contrast, knowledge in the source domains is one type of 

advanced information. The original data are not always available in the source domains; we 

sometimes need to draw knowledge from them. For example, for the purpose of privacy 

protection, some raw data might not be opened but the knowledge from the source domains 

without confidential information could be accessed. Other reasons also could cause the raw 

data not to be used directly even if they can be opened. For instance, if there are some 

potential drifts between the source and the target domain, an unexpected, negative influence 

may occur in the target domain if some improper data are adopted from the source domains. 

This is the so-called phenomenon of negative transfer. In order to avoid this underlying risk, 

it is a good choice to identify useful knowledge from the source domains rather than directly 

use raw data, e.g. the cluster prototypes in the source domain can be regarded as the good 

reference in the target domain.

3. Cross-domain soft-partition clustering based on Gini–Simpson diversity 

measure and knowledge transfer

Let us first recall and summarize some essences with respect to the relevant, soft-partition 

clustering models introduced in the previous section, i.e. FCM, MEC and FC-QR, before we 

introduce our own work.

1. As is evident, in FCM, the nonlinearity  consisting of fuzzy membership uij and 

the fuzzifier m is used to regularize crisp c-means, and the desirable, nontrivial 

fuzzy solution is achieved accordingly. However, it can also be expounded from the 

other perspective, i.e., it is equivalent to a weight factor for determining the 

individual influence of each dij = ∥xj − vi∥
2 to the total deviation measure 

, in which dij evaluates the distortion of sample xj (j = 1,…,N) to 

cluster prototype vi (i = 1,…,C). Obviously, the larger the value of uij is, the more 

significantly dij impacts.

2. As uncovered in [3], both MEC and FC-QR were devised as other types of 

regularization methods of crisp c-means, and their formulations can be generalized 

as , in which k(U) signifies one nonlinear 

regularization function with respect to fuzzy memberships and β > 0 is a 

regularization parameter. In MEC,  ln uij is derived 

from Shannon entropy, whereas in FC-QR, k(U) is instanced as the quadratic 

function .

3. As we know, in FCM, the fuzzifier (i.e., constant power) m must be greater than 1, 

and it is set to 2 by default in most cases.

4. Differing from that in FCM, the weight of each dij = ∥xj − vi∥
2 is uij rather than 

(m > 1) in both MEC and FC-QR, as shown in Eqs. (4) or (7).
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We next present three aspects of our understanding regarding soft-partition clustering based 

on the above summaries.

1. As intuitively illustrated in Fig. 2, the common deviation measure in soft-partition 

clustering,  (m ≥ 1), is explicitly 

in the form of weighted sum, which measures the total distortion among all data 

instances and all cluster prototypes (i.e., cluster centroids). In this regard, we prefer 

the weighted modality enlisted in FCM (i.e., m > 1) rather than that in MEC and 

FC-QR (i.e., m = 1), as we consider that, comparatively,  (m > 1) can more 

effectively distinguish the individual influence of each dij = ∥xj − vi∥
2 in J. 

Specifically, as is evident, in the membership matrix U, the greater the value of 

entry uij is, the higher the probability of xj belonging to cluster i will be. That is, 

larger values of uij much convince us that individual xj is a member of cluster i, 
thus their corresponding impacts of deviation measure in 

 should be ensured. In contrast, the 

influences of much smaller values of uij should certainly be restricted and even 

neglected. This idea is a little similar to that in the shadowed c-means [27], in 

which the importance of different objects is differentiated by the regions, i. e., the 

members in the core of a shadowed set are weighted by 1, the objects in the 

shadowed region by , and the objects in the exclusion zones by  (i.e., 

double-powered by the fuzzifier parameter). To this end, we need a manner which 

can effectively convey the individual importance of each . In 

the sense of power functions, w = um (m > 1), as indicated in Fig. 3 where m = 2 is 

taken as an example, compared with the linear one, w = u, in theory, the former is 

able to more reliably insure the impacts of larger values of u (e.g., u2 in Fig. 3) as 

well as suppress those of much smaller ones (e.g., u1 in Fig. 3).

2.
It is clear that the second term, , in MEC is derived from 

Shannon entropy, also termed as Shannon diversity index [70],  ln 

pi. However, in our view, the quadratic regularization function, , 

recruited in FC-QR can be regardedas another diversity index [69-72]: i.e., Gini–

Simpson diversityindex [69-71]: . Under this consideration, in 

terms of the information theory, we can assign this term another more meaningful 

connotation, which is just explained in the following.

3. It is evident that the fuzzy clustering process conducted on a dataset can be 

regarded as probability assignment operations, i.e., determining the probability of 

each pattern xj belonging to each cluster prototype vi according to a quantity of 

accessible information, e.g., the mutual distances among all patterns. In the sense of 

information theory, the incorporation of the diversity index in the framework of 

fuzzy clustering, such as Shannon entropy or Gini–Simpson index, is to avoid bias 

while agreeing with whatever information is given, based on the statistical MEI 
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principle [18,68]. As discussed in [68], as far as we know, this could be the only 

unbiased probability assignment mechanism that we can use, as the usage of any 

other would amount to arbitrary assumption of information which is sometimes 

hard to be validated in reality.

Based on the above understanding, we now first present a novel, delicate soft-partition 

clustering model as follows.

3.1. Soft-partition clustering based on quadratic weights and Gini–Simpson diversity

Definition 1—Using the same notations as those in Eqs. (1) and (4), the quadratic weights 
and Gini–Simpson diversity based fuzzy clustering model (QWGSD-FC) is defined as

(10)

Using the Lagrange optimization, it is easy to prove that the update equations of cluster 

centroid vi and membership μij of QWGSD-FC can be straightforwardly derived as

(11)

(12)

The motivation of the design of QWGSD-FC in this literature is to first figure out a concise 

but meaningful soft-partition clustering model that integrates the most merits of FCM, MEC 

and FC-QR, and then use it as a foundation to further propose our eventual, knowledge-

transfer-oriented, soft-partition clustering methods below. For this purpose, QWGSD-FC is 

composed of two significant terms as usual. The first term, , 

measures the total deviation of all data instances xj, j =1,…,N, to all cluster prototypes vi, 

i=1,…,C, with  being the weight factors. The second one, , derived from 

Gini–Simpson index, and equivalent to the quadratic function in FC-QR, pursues achieving 

unbiased probability assignments during the clustering process, based on the statistical MEI 

principle.

As for the quadratic weight  recruited in QWGSD-FC for the total intra-cluster deviation 

measure, this devisal arises from the following three aspects. First, as previously interpreted, 

we favor adopting  (m > 1) as the weight factor for the intra-cluster deviation measure, 
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and as illustrated in Fig. 3, m = 2 meets our requirement that it is able to effectively convey 

the desired, individual impact regarding every dij = ∥xj − vi∥
2 in the total deviation measure. 

Second, compared with the combination of “linear weights+quadratic regularization 

function (equivalently, Gini–Simpson index)” in FC-QR, the pair of “quadratic weights

+Gini–Simpson diversity” in QWGSD-FC appears more tractable, which can be 

demonstrated by the separate derivations of the update formulas of uij and vi in FC-QR and 

QWGSD-FC. As uncovered in [3], the derivation process of FC-QR looks a little 

sophisticated, whereas via the ordinary Lagrange optimization, the update equations in 

QWGSD-FC are easily achieved. Last and most important, the practical performance of this 

model against the existing ones, e.g., FCM, MEC, and FC-QR, had been extensively, 

empirically validated before it was shaped in our research, which will be shown in detail in 

the experimental section.

It is still worth discussing the reason why we did not directly incorporate the Gini–Simpson 

diversity term into the framework of FCM, i.e., the formulation of 

, m > 1. This formulation looks stronger than 

that of QWGSD-FC from the point of view of generalization. Nevertheless, it is easy to 

deduce that, in this way, the desirable, straightforward, analytical solutions of the cluster 

centroid and the fuzzy membership, like Eqs. (11) and (12), cannot be conveniently achieved 

in this case, and we could need other pathways to figure out the solutions of this issue, e.g., 

the gradient descent method [53]. This may bring us a distinct computing burden, which 

definitely, conversely weakens the practicability of this method.

Due to the above reasons, the form of “quadratic weights+Gini–Simpson diversity” in Eq. 

(10) is enlisted in our QWGSD-FC model, which can be regarded as a new improvement 

against these existing, classic, soft-partition clustering models.

3.2. Two types of cross-domain, soft-partition clustering frameworks via transfer learning

In order to improve the realistic performance of intelligent algorithms on the target dataset, 

i.e., the target domain, from the viewpoint of transfer learning, the prior knowledge from 

other correlative datasets, i.e., the source domains, is the reliable, beneficial supplement for 

these existing data. Based on such comprehension, we now present two types of cross-

domain, soft-partition clustering strategies via the new QWGSD-FC model defined in Eq. 

(10). To facilitate interpreting and understanding, we suppose only one source domain and 

one target domain are involved throughout our research.

3.2.1. Type-I soft-partition transfer optimization formulation and 
corresponding knowledge-transfer-oriented c-means clustering framework

Definition 2: Let v̂(i = 1,…, C) denote the known cluster centroids in the source domain and 

other notations be the same as those in Eq. (10), then the type-I soft-partition transfer 
optimization formulation can be defined as
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(13)

where γ ≥ 0 is the regularization coefficient.

Eq. (13) defines a transfer learning strategy in terms of the known cluster centroids v̂i, i = 1, 

…, C, in the source domain. In our view, the cluster centroids, i.e. cluster prototypes, belong 

to a category of more reliable, prior information compared with a quantity of raw data drawn 

from the source domain. Because the raw data may contain certain uncertainties, e.g., data 

shortage, noise and outliers, whereas the cluster centroids are usually achieved by a certain, 

relatively precise procedure, which consequently insures their reliability. In Eq. (13), 

 is used to measure the total approximation between the estimated 

cluster centroids in the target domain and the historical ones in the source domain with 

 being the weight factors. As for the regularization coefficient γ, like other usual 

penalty parameters, it is used to control the overall impact of this regularization formulation. 

The composition of Definition 2 is illustrated in Fig. 4 intuitively.

Although ordinary  is also able to evaluate the total deviation between the 

estimated cluster centroids in the target domain and the corresponding known ones in the 

source domain, it is more reasonable that the individual influence of each ∥v̂i −vi∥
2 is 

differentiated in the total measure, i.e., assigning each different weights. It is also well-

accepted that major clusters composed of numerous data instances certainly play significant 

influences in this measure. Therefore, we attempt to devise a mechanism to effectively 

identify the major clusters. As we know well, each column uj = [u1j…uij…uCj]T in the 

membership matrix U, as shown in Fig. 4, indicates all the probabilities of pattern xj to every 

estimated cluster prototype. More precisely, the larger the value of uij, the higher the 

probability of xj being a member of cluster i. Let us switch to the other point of view, i.e., 

each row ui = [ui1…uij…uiN] in U. Cluster i necessarily contains a great quantity of data 

instances if many entries of ui take values close to 1, which accordingly causes  to 

take a large value. Therefore, with  being the weights, the major clusters are 

able to be highlighted as well as identified in the total deviation measure between these two 

types of cluster prototypes.

Based on Eqs. (10) and (13), we can present our first type of cross-domain, soft-partition 

clustering framework in the following definition.

Definition 3: If the notations are the same as those in Eqs. (10) or (13), the type-I 
knowledge-transfer-oriented c-means (TI-KT-CM) framework can be attained by 

incorporating Eq. (13) into Eq. (10) as follows:

Qian et al. Page 12

Pattern Recognit. Author manuscript; available in PMC 2017 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(14)

where β > 0 and γ ≥ 0 are the coefficients of the Gini–Simpson diversity measure and the 

transfer optimization, respectively.

As previously mentioned, in TI-KT-CM, the parameter γ is adopted to control the whole 

impact of the transfer optimization  to the entire framework. The 

greater the value of γ is, the more the transfer term contributes to the overall framework. 

Specially, γ→+∞ implies that the role of the transfer optimization term is significantly 

emphasized, i.e., the reference values of those historical cluster centroids are high in this 

case; therefore, the estimated cluster centroids in the target domain should be close to them. 

Conversely, γ→ 0 indicates that the importance of this transfer term is weakened, and the 

approximation between the known and the estimated cluster centroids in two different 

domains is consequently relaxed.

3.2.2. Type-II soft-partition transfer optimization formulation and 
corresponding knowledge-transfer-oriented c-means clustering framework—
In terms of transfer learning again, we further extend Eq. (13) into the other, more delicate 

soft-partition transfer optimization formulation defined in Definition 4.

Definition 4: Let ũij(i = 1, …, C; j = 1, …, N) signify the membership of individual xj (j = 1, 

…, N) in the target domain to the known cluster centroid v̂i(i = 1,…,C) in the source domain 

(referred to as historical cluster centroid-based memberships for short), and which can be 

computed by any fuzzy membership update equation in the source domain, e.g., Eqs. (3) or 

(6). Using the same notations as those in Eq. (13), the type-II soft-partition transfer 
optimization formulation can be defined as

(15)

where η ∈ [0, 1] is one trade-off factor.

Obviously, the difference between ΘTII(V, U) in Eq. (15) and ΘTI(V, U) in Eq. (13) lies in 

the weight factors, i.e., we replace  with  as the weight of 

∥v̂i −vi∥
2 in ΘTII(V, U). For clearly interpreting the connotation in Eq. (15), the composition 

of Definition 4 is illustrated in Fig. 5. As shown in this figure, besides the current, estimated, 

fuzzy memberships in U in the target domain, the historical cluster centroid-based 

memberships in Ũ are also referenced for advanced transfer learning. More specifically, 

under the premise of transfer learning, there should be some similarity between v̂i, vi, i = 1,

…,C, to a certain extent for any data instance xj in the target domain. Therefore, the 

membership uij of xj to vi in the target domain and the membership ũij of xj−v̂i in the source 
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domain should also be close to each other to a certain extent, which means that ũij can also 

be enlisted for appraising the importance of each ∥v̂i−vi∥
2 in the total approximation 

measure. As such, as indicated in Fig. 5, via the trade-off factor η ∈ [0, 1], the combination 

of  and  is used to constitute the new weight factor 

, and the value of η balances the individual 

impacts of these two types of fuzzy memberships. Specially, η→1 indicates that the 

importance of the estimated membership uij in the target domain is highlighted, whereas 

n→0 indicates that the historical cluster centroid-based membership ũij is significantly 

referenced. As for the regularization coefficient γ, its role is the same as that in ΘTII(V, U), 

i.e., it is recruited for controlling the whole impact of ΘTII(V, U).

In addition, further inspired by Eq. (15), we extend Eq. (10) into the following transfer 

learning form:

(16)

That is, in addition to the current estimated membership uij (i = 1, …, C; j = 1, …, N), the 

corresponding historical membership ũij (i = 1, …, C; j = 1, …, N) can be recruited as the 

reference, and their combination via the trade-off factor η is eventually used as the joint 

weight for the intra-cluster deviation measure. Here the value of (1 − η) determines the 

reference degree of historical knowledge.

So far, we can propose the other type of cross-domain, soft-partition clustering framework 

by combining Eq. (16) with (15) as follows.

Definition 5: If the notations are the same as those in Eqs. (15) and (16), the type-II 
knowledge-transfer-oriented c-means (TII-KT-CM) framework is defined as

(17)

where η ∈ [0, 1], β > 0, and γ ≥ 0 are the transfer trade-off factor, the regularization 

parameter of Gini–Simpson diversity measure and the regularization parameter of transfer 

optimization, respectively.

3.2.3. Update equations of TI-KT-CM and TII-KT-CM

Theorem 1: The necessary conditions for minimizing the objective function ΘTI−KT−CM in 
Eq. (14) yield the following update equations of cluster centroids and fuzzy memberships:
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(18)

(19)

Theorem 2: The necessary conditions for minimizing the objective function ΘTII−KT−CM in 
Eq. (17) yield the following cluster centroid and membership update equations:

(20)

(21)

For the proofs of Theorems 1 and 2, please see Appendix A.1 and A.2, respectively.

3.2.4. The TI-KT-CM and TII-KT-CM algorithms—We now depict the two, core, TI-

KT-CM and TII-KT-CM clustering algorithms as follows

Algorithms: Type-I/Type-II knowledge-transfer-oriented c-means clustering (TI-KT-CM/

TII-KT-CM)

Inputs: The target dataset XT (the target domain), the number of clusters C, the known cluster centroids v̂i, i = 1, …, 
C, or the historical dataset XS (the source domain), the specific values of involved parameters in TI-KT-CM 
or TII-KT-CM, e.g. η, β, and γ, the maximum iteration number maxiter, the termination condition of 
iterations ε.

Outputs: The memberships U, the cluster centroids V, and the labels of all patterns in XT.

Extracting knowledge from the source domain:

Setp1: Generate the historical cluster centroids v̂i(i = 1, …, C) in the source domain XS via other soft-partition 
clustering methods, e.g., FCM or MEC (Skip this step if the historical cluster centroids v̂i(i = 1, …, C) are 
given).

Step2: Compute the historical cluster centroid-based memberships ũij(i = 1, …, C; j = 1, …, N) of all data instances 
in XT to those historical cluster centroids v̂i(i = 1, …, C) via Eq. (3) or (6).

Performing clustering in the target domain:

Step 1:
Set the iteration counter t=0 and randomly initialize the memberships U(t) which satisfies 0 ≤ uij(t)≤ 1 and 

.

Step 2: For TI-KT-CM, generate the cluster centroids V(t) via Eq.(18), U(t), and v̂i(i = 1, …, C).

For TII-KT-CM, generate the cluster centroids V(t) via Eq. (20), U(t), v̂i(i = 1, …, C), and ũij(i = 1, …, C; j 
= 1, …, N).
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Step 3: For TI-KT-CM, calculate the memberships U(t + 1) via Eq. (19), V(t), and v̂i(i = 1, …, C).

For TII-KT-CM, calculate the memberships U(t+1) via Eq. (21), V(t), and v̂i(i = 1, …, C).

Step 4: If ∥ U(t + 1) − U(t)∥ < ε or t=maxiter go to Step 5, otherwise, =t+1 and go to Step 2;

Step 5: Output the eventual cluster centroids V and memberships U in XT, and determine the label of each 
individual in XT according to U.

3.3. Convergence of TI-KT-CM and TII-KT-CM

For the convergence of iterative optimization issues, the well-known Zangwill’s convergence 

theorem [15,32] is extensively adopted as a standard pathway. Let us first review this 

theorem below.

Lemma 1—(Zangwill’s convergence theorem): Let D denote the domain of a continuous 
function J, and S ⊂ D be its solution set. Let Ω signify a map over D which generates an 
iterative sequence {z(t+1) = Ω(t + 1)(z(t)), t = 0, 1, …} with z(0) ∈ D. Suppose that

1. {z(t), t = 1, 2…} is a compact subset of D.

2. The continuous function, J : D→ R, satisfies that

a. If z ∉ S, then for any y ∈ Ω(z), J(y) < J(z),

b. if z ∈ S, then either the algorithm terminates or for any y ∈ Ω(z), J(y) ≤ J(z).

3. Ω is continuous on D–S.

Then either the algorithm stops at a solution or the limit of any convergent 

subsequence is a solution.

Likewise, we use this theorem to demonstrate the convergence of both TI-KT-CM 

and TII-KT-CM as follows.

3.3.1. Convergence analyses regarding TI-KT-CM

Definition 6: Let X = {x1, …, xN} denote one finite data set in the Euclidean space Rd, then 

the set composed of all soft C-partitions on X is defined as

(22)

Definition 7: A function FI : RCd → MC is defined as FI(VI) = UI, where UI ∈ MC consists 

of , 1 ≤ i ≤ C, 1 ≤ j ≤ N, and  is calculated by Eq. (19) and VI ∈ RCd.

Definition 8: A function GI : MC → RCd is defined as , where 

, 1 ≤ i ≤ C, are the estimated cluster centroids computed via Eq. (18) 

and UI ∈ MC.

Definition 9: A map TI : RCd × MC → RCd × MC is defined as  for the iteration 

in TI-KT-CM, where  and  are further defined as 
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, i.e., TI is a composition of two embedded 

maps:  and  and 

.

Theorem 3: Suppose X = {x1, …, xN} contains at least C (C < N) distinct points and 

 is the start of the iteration of TI with  and , then the 

iteration sequence  is contained in a compact subset of RCd × 

MC.

The proof of Theorem 3 is given in Appendix A.3.

Proposition 1: If , and γ ≥ 0 are fixed, and the function †I: MC → R is defined as 

, then  is a global minimizer of †I over MC if and only if 

.

Proof: It is easy to prove that †I (UI) is a strictly convex function when , β > 0; 

and γ ≥ 0 are fixed. This means †I (UI) at most has one minimizer over MC, and it is also a 

global minimizer. Furthermore, based on the Lagrange optimization, we know that 

 is a global minimizer of †I (UI) over MC.

Proposition 2: If , β > 0; and γ ≥ 0 are fixed, and the function ΓI: RCd → R is 

defined as , then  is a global minimizer of ΓI over RCd if 

and only if .

Proof: It is easy to demonstrate that ΓI(VI) is a positive definite quadratic function when 

, β > 0; and γ ≥ 0 are fixed, which means ΓI(VI) is also strictly convex in this 

situation. Likewise, by means of the Lagrange optimization, we consequently know that 

 is a global minimizer of ΓI (VI).

Theorem 4: Let

(23)
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denote the solution set of the optimization problem min ΦTI–KT–CM(V, U). Let β > 0 and γ ≥ 

0 take the specific values as well as v̂i, i = 1, …, C, be known beforehand, suppose X = {x1, 

…, xN} contains at least C (C < N) distinct points. For (V̄, Ū) ∈ RCd × MC, if (V̑, Ȗ) = TI(V̄, 

Ū) then ΦTI–KT–CM (V̑, Ȗ) ≤ ΦTI–KT–CM (V̄, Ū) and the inequality is strict if (V̄, Ū)∉SI.

The proof of Theorem 4 is given in Appendix A.4.

Theorem 5: Let β > 0 and γ ≥ 0 take the specific values as well as v̂i, i = 1, …, C, be known 
beforehand, suppose X = {x1, …, xN} contains at least C (C < N) distinct points, then the 
map TI : RCd × MC → RCd × MC is continuous on RCd × MC.

The proof of Theorem 5 is given in Appendix A.5.

Theorem 6: (Convergence of TI-KT-CM). Let X = {x1, …, xN} contain at least C (C < N) 

distinct points and ΦTI–KT–CM be in the form of Eq. (14), suppose (V(0), U(0)) is the start of 
the iterations of TI with U(0) ∈ MC and V(0) = GI(U(0)), then the iteration sequence, 

, either terminates at point (V*, U*) in 
the solution set SI of ΦTI–KT–CM or there is a subsequence converging to a point in SI.

Based on Zangwill’s convergence theorem, Theorem 6 immediately holds under the 

premises of Theorems 3, 4, and 5.

3.3.2. Convergence analyses regarding TII-KT-CM

Definition 10: A function FII : RCd → MC is defined as FII(VII) = UII, where UII ∈ MC 

consists of , 1 ≤ i ≤ C, 1 ≤ j ≤ N, and  is calculated by Eq. (21) and VII ∈ RCd.

Definition 11: A function GII : MC → RCd is defined as , 

where , 1 ≤ i ≤ C are the estimated cluster centroids computed via 

Eq. (20) and UII ∈ MC.

Definition 12: A map TII : RCd × MC → RCd × MC is defined as  for the 

iteration in TII-KT-CM, where  and  are defined as 

, i.e., TII is one composition of two 

embedded maps:  and , and 

.
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Theorem 7: Suppose X = {x1, …, xN} contains at least C (C < N) distinct points and 

 is the start of the iteration of TII with  and , then the 

iteration sequence  is contained in a compact subset of RCd × 

MC.

The proof of Theorem 7 is given in Appendix A.6.

Proposition 3: If , β > 0, γ ≥ 0, and η ∈ [0, 1]s are fixed, and the function †II : 

MC → R is defined as , then  is a global minimizer of 

†II over MC if and only if .

For the proof of this proposition, one can refer to that of Proposition 1.

Proposition 4: If , β > 0, γ ≥ 0; and η ∈ [0, 1] are fixed, and the function ΓII : RCd 

→ R is defined as , then  is a global minimizer 

of ΓII over RCd if only if .

For the proof of this proposition, one can refer to that of Proposition 2.

Theorem 8: Let

(24)

denote the solution set of the optimization problem min ΦTII–KT–CM(V, U). Let η ∈ [0, 1], β 

> 0, and γ ≥ 0 be fixed as well as ũij, i = 1, …, C, j = 1, …, N and v̂i, i = 1, …, C, be known 

beforehand, suppose X = {x1, …, xN} contains at least C (C < N) distinct points. For (V̄,Ū) 

∈ RCd × MC, if (V̑,Ȗ) = TII(V̄,Ū), then ΦTII–KT–CM (V̑,Ȗ) ≤ ΦTII–KT–CM (V̄,Ū) and the 

inequality is strict if (V̄,Ū)

SII.

The proof of Theorem 8 is given in Appendix A.7.

Theorem 9: Let η ∈ [0, 1], β > 0, and γ ≥ 0 be fixed as well as ũij, i = 1, …, C, j = 1, …, N 
and v̂i, i = 1, …, C, be given beforehand, suppose X = {x1, …, xN} contains at least C (C < 

N) distinct points, then the map TII : RCd × MC → RCd × MC is continuous on RCd × MC.

For the proof of this theorem, one can refer to that of Theorem 5 in Appendix A.5.

Theorem 10: (Convergence of TII-KT-CM). Let X = {x1, … xN} contain at least C (C < N) 
distinct points and ΦTII–KT–CM be in the form of Eq. (17), suppose (V(0), U(0)) is the start of 
the iterations of TII with U(0) ∈ MC and V(0) = GII(U(0)), then the iteration sequence, 
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, either terminates at a point (V*, U*) in the 
solution set SII of ΦTII–KT–CM or there is a subsequence converging to a point in SII.

Theorem 10 holds immediately based on Theorems 7, 8 and 9.

3.4. Parameter settings

There are two core parameters involved in TI-KT-CM, including the diversity measure 

coefficient β and the transfer regularization parameter γ in Eq. (14). As for TII-KT-CM in 

the form of Eq. (17), in addition to β and γ, the transfer trade-off factor η is also involved. 

We would like to explain the proper ranges regarding these parameters before we discuss 

how to effectively adjust them. As previously mentioned in Eqs. (14) or (17), the rough 

ranges of these parameters are η ∈ [0, 1] β > 0, and γ ≥ 0. Parameter η aims to balance the 

individual impacts of the current estimated memberships uij(i = 1, …, C; j = 1, …, N) and 

the historical memberships ũij(i = 1, …, C; j = 1, …, N) in TII-KT-CM. In light of the 

possible values of both and uij and ũij varying from 0 to 1, it is appropriate to let η also take 

values within interval [0, 1]. In order to make the Gini–Simpson diversity measure always 

play roles, β must take values larger than zero. Likewise, γ > 0 can make the transfer 

optimization term, i.e., Eqs. (14) or (17), impact in the framework of TI-KT-CM or TII-KT-

CM. As for γ = 0, for TI-KT-CM, it indicates that our algorithm gives up the prior 

knowledge from other correlated data scenes and it degenerates thoroughly into QWGSD-

FC in the form of Eq. (10), which usually occurs in such situations where the data 

distribution in the target domain greatly differs from that in the source domain; for TII-KT-

CM, if γ = 0 and η ≠ 1, this indicates our algorithm only refers to the historical cluster 

centroid-based memberships for transfer learning, otherwise, i.e., γ = 0 and η = 1, TII-KT-

CM also degenerates into QWGSD-FC in this case, and there is no historical knowledge 

which can be referenced at all.

As is well-known, nowadays the grid search strategy is extensively recruited for parameter 

setting in pattern recognition, and it is dependent on certain validity indices. Validity indices 

can be roughly divided into two categories, i.e., the label-based, external criterion as well as 

the label-free, internal criterion. The external criterion, e.g., NMI (Normalized Mutual 

Information) [45,73], RI (Rand Index) [73,74], and ACC (Clustering Accuracy) [45], 

evaluates the agreement degree between the estimated data structure and the known one, 

such as the clusters in the dataset. In contrast, the internal criterion, such as DBI (Davies 

Bouldin Index) [74] and DI (Dunn Index) [74], appraises the effectiveness of algorithms 

based purely on the inherent quantities or features in the dataset, such as the intra-cluster 

homogeneity as well as the inter-cluster separation.

Coming back to our work, in order to obtain the optimal parameter settings in TI-KT-CM or 

TII-KT-CM, the grid search was conducted as usual. Suppose the trial ranges of all involved 

parameters are given, the seeking procedure of best settings can be briefly depicted as 

follows. The range of each parameter was first evenly divided into several subintervals; after 

that, in the form of repeated implementations of the TI-KT-CM/TII-KT-CM algorithm, the 

multiple, nested loops were executed with one parameter locating in one loop and the 

subintervals of the parameter being the steps of the loop. Meanwhile, the clustering 
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effectiveness in terms of the selected validity index, e.g., NMI or DBI, was recorded 

automatically. After the nested loops terminated, the best settings of all parameters can be 

obtained straightforwardly, i.e., the ones corresponding to the best clustering effectiveness 

within the given trial ranges. As for how to appraise the appropriate trial ranges of 

parameters in related algorithms, we will interpret this in the following experimental section.

4. Experimental results

4.1. Setup

In this section we focus on demonstrating the performance of our novel TI-KT-CM and TII-

KT-CM algorithms. Besides TI-KT-CM and TII-KT-CM, several other correlative, state-of-

the-art approaches are recruited as the competitors, i.e., LSSMTC (Learning Shared 

Subspace for Multitask Clustering) [62], CombKM (Combining K-means) [62], STC (Self-

taught Clustering) [56], and TSC (Transfer Spectral Clustering) [59], in order to compare 

them with each other. Among them, TI-KT-CM and TII-KT-CM belong to soft-partition 

clustering, whereas LSSMTC and CombKM belong to hard-partition clustering; CombKM, 

LSSMTC and TSC belong to multi-task clustering; STC, TSC, TI-KT-CM, and TII-KT-CM 

belong to cross-domain clustering (i.e., transfer clustering); and STC as well as TSC belong 

to co-clustering essentially. The detailed, related categories regarding these methods are 

listed in Table 1. Definitely, these algorithms cover multiple categories and most of them 

belong to at least two categories. Therefore, the experiments performed by these approaches 

should be convincing. In addition, for verifying the practical performance of QWGSD-FC 

proposed as the foundation of our research, besides QWGSD-FC itself, other classic soft-

partition clustering models, including FCM [3,6], MEC [3,18], FC-QR [3,29], PCM [3,7] 

and ECM [10], are also involved in our experimental studies.

Our experiments were conducted on both artificial and real-world data scenarios, and three 

popular validity indices, i.e., NMI, RI, and DBI, were enlisted for the clustering performance 

evaluation in our work. Among them, NMI and RI belong to external criteria, whereas DBI 

is one internal criterion. Before we introduce the details of our experiments, we first 

concisely review the definitions of these indices below.

4.1.1. NMI (normalized mutual information) [45,73]—

(25)

where Ni,j denotes the number of agreements between cluster i and class, Ni is the number of 

data instances in cluster, Nj is the number of data instances in class j, and N signifies the 

data capacity of the entire dataset.

4.1.2. RI (rand index) [73,74]—
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(26)

where f00 signifies the number of any two data instances belonging to two different clusters, 

f11 signifies the number of any two data instances belonging to the same cluster, and N is the 

total number of data instances.

4.1.3. DBI (Davies–Bouldin index) [74]—

(27 – 1)

where

(27 – 2)

C denotes the cluster number in the dataset,  denotes the data instance belonging to cluster 

Ck, and nk and vk separately signify the data size and the centroid of cluster Ck.

Both NMI and RI take values from 0 to 1, and larger values of NMI or RI indicate better 

clustering performance. Oppositely, smaller values of DBI are preferred, which convey that 

both the inter-cluster separation and the intra-cluster homogeneity are concurrently, 

relatively ideal in these situations. It is worth noticing that, however, similar to other internal 

criteria, DBI has the underlying drawback that smaller values do not necessarily indicate 

better information retrieval.

The trial ranges or the specific values of the core parameters in the involved algorithms are 

listed in Table 1 simultaneously. These trial ranges were also determined by the grid search 

strategy. Specifically, taking one algorithm running on one dataset as the example, in order 

to determine the appropriate parameter ranges, we first supposed a range for each parameter 

and evenly divided the initial range into several subintervals. Then, as depicted in Section 

3.4, the nested loops, in which one parameter is located in one loop, were performed in order 

to implement the algorithm repeatedly with different parameter settings. Similarly, by means 

of the selected validity metric (e.g., NMI or DBI), the clustering effectiveness was recorded 

during the entire procedure. After the loops terminated, we attempted to change the current 

range of each parameter according to the following principles: (1) To gradually shrink the 

range, if the best score of the validity index located within the current range, (2) to gradually 

reduce the lower bound of the current range, if the best score of the validity index located in 

or near the lower bound, (3) to gradually increase the upper bound of the current range, if 

the best score of the validity index located in or near the upper bound. After several times of 

such trials, the appropriate parameter ranges of the algorithm on current dataset can be 

determined. Likewise, on other datasets, the above procedure was repeated similarly. By 

merging all the appropriate parameter ranges of the algorithm on all involved datasets, the 

eventual parameter trial ranges of the algorithm were achieved. For the specific parameter 
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values recruited in those competitive algorithms, e.g. ECM, LSSMTC, STC and TSC, we 

referred generally to the authors’ recommendations in their literature as well as adjusting 

them according to our practices.

All of our experiments were performed on a PC with Intel Core i3-3240 3.4 GHz CPU and 

4GB RAM, Microsoft Windows 7, and MATLAB 2010a. The experimental results are 

reported in the form of means and standard deviations of the adopted validity indices, which 

are the statistical results of running every algorithm 20 times on every dataset.

4.2. In artificial scenarios

To simulate the data scenarios for transfer clustering, we generated five artificial datasets: 

, and . Among them, XS simulates the only source domain dataset, 

and the others present four, target domain datasets with different data distributions. The 

supposed transfer scenarios are imagined as follows. The source domain dataset XS is 

relatively pure and its data capacity is comparatively sufficient so that we can extract the 

intrinsic knowledge from it, i.e., the historical cluster centroids and the historical cluster 

centroid-based memberships of the patterns in the target domain. For this purpose, we 

generated XS with four clusters and each cluster consisting of 250 samples, so its total 

capacity is 1000, as illustrated in Fig. 6. Let ECi and ΣCi denote the mean vector and the 

covariance matrix of the ith cluster in one dataset, respectively, then XS was created via the 

MATLAB built-in function, mvnrnd(), with EC1 [3 4], ΣC1 = [10 0;0 10], EC2 = [10 15], ΣC2 

= [25 0;0 7], EC3 = [9 30], ΣC3 = [30 0;0 20] and EC4 = [20 5], ΣC4 = [13 0;0 13]. As for the 

target domain datasets, we designed the following four particular scenes.  simulates the 

situation in which the data are rather insufficient and sparse, as indicated in Fig. 7(a). To this 

end,  was generated with four clusters and each cluster merely including 20 data 

instances. More exactly,  was constituted with EC1 = [3.5 4], ΣC1 = [10 0;0 10], EC2 = 

[11 13], ΣC2 = [25 0;0 7], EC3 = [9.5 29], ΣC3 = [30 0;0 20], and EC4 = [22 4.5], ΣC4 = [13 

0;0 13].  depicts the case in which the data capacity is comparatively acceptable, 

although its data distribution differs from that in XS to a great extent. For this purpose, we 

created  with ECi and ΣCi, i = 1, 2, 3, and 4, being the same as those in  despite each 

cluster being composed of 130 samples, as illustrated in Fig. 7(b).  and  simulate the 

other, two, different scenes where the data are distorted by outliers and noise, respectively, 

although their capacities are also acceptable. Both  and  were generated based on 

. More specifically, for , based on , we added another 35 data points by hand as 

the outliers, which were far away from all the existing individuals, as shown in Fig. 7(c) 

where the outliers are marked with the purple diamonds; for , it was attained by adding 

the Gaussian noise with the mean and the deviation being 0 and 2.5, respectively, into , 

as shown in Fig. 7(d). Eventually, the data sizes of , and  are separately 

80, 520, 555, and 520 respectively.

Except for TSC, the other involved algorithms were separately implemented on these 

synthetic datasets. Among them, aside from the pure soft-partition clustering approaches, 
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i.e., FCM, MEC, FC-QR, PCM, ECM, and QWGSD-FC, the other five algorithms need to 

use the source domain dataset XS in different ways. Specifically, both TI-KT-CM and TII-

KT-CM utilize the advanced knowledge drawn from XS, i.e. the historical cluster centroids 

or the historical cluster centroid-based fuzzy memberships of the individuals in 

, and , whereas the others directly use the raw data in XS. As for TSC, it 

requires that the data dimension must be larger than the cluster number, and this condition 

cannot be satisfied in these synthetic data scenarios, therefore it did not run on these 

artificial datasets.

The clustering performance of each algorithm is listed in Table 2 in terms of the means and 

the standard deviations of NMI, RI, and DBI, where the top three scores of each index on 

each dataset are marked in the style of boldface and with “➀”, “➁” and “➂”, respectively. 

It should be mentioned that the experimental results of FCM with m = 2 and m taking the 

optimal settings within the given trial interval are separately listed in Table 2, due to the fact 

that the quadratic weight-based intra-cluster deviation measure in QWGSD-FC is equivalent 

to FCM’s formulation with m = 2. In this way, the practical regularization efficacy regarding 

Gini–Simpson diversity index in QWGSD-FC can be intuitively validated.

Based on these experimental results, we make some analyses as follows.

1. The data instances in  are rather scarce and some clusters even partially overlap. 

In this case, the classic soft-partition clustering approaches usually cannot achieve 

desirable results as they are prone to being confused by the apparent data 

distribution, e.g. MEC and ECM. In addition, the data distribution in  differs 

substantially from that in the source domain XS such that the clustering 

effectiveness of LSSMTC, STC, and CombKM is distinctly worse than that of TI-

KT-CM or TII-KT-CM, due to the poor entire reference value of the raw data in XS 

in this case. In contrast, both TI- KT-CM and TII-KT-CM delicately utilize the 

concluded knowledge instead of the raw data in XS as the guidance, i.e., the 

historical cluster centroids and their associated fuzzy memberships in XS, and the 

reliability of these two types of knowledge is definitely stronger than that of raw 

data in . As such, both TI-KT-CM and TII-KT-CM outperform the others easily.

2. Most algorithms achieve comparatively acceptable effectiveness on  as the data 

in  are relatively adequate and the data distribution in  is close to that in XS, 

which conceals to a certain extent the dependence of related approaches to the 

source domain in this case.

3. In the situations of  and  where the data are polluted by either the outliers 

or the noise, our proposed two transfer fuzzy clustering methods: TI-KT-CM and 

TII-KT-CM methods as well as the FCM’s derivative: ECM or PCM, exhibit more 

effective than the others, which demonstrates one of the merits of these methods, 

i.e., the better anti-interference capability.

4. As previously mentioned, the missions of multi-task clustering and transfer 

clustering are different. Specifically, multi-task clustering aims to simultaneously 
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finish multiple tasks, and there should certainly be some interactivities between 

these tasks. However, transfer clustering focuses on enhancing the clustering 

effectiveness in the target domain by using some useful information from the 

source domain. Their different pursuits consequently cause the matching different 

clustering performances, as shown in Table 2. In summary, the clustering 

performance of those transfer clustering approaches, such as STC, TI-KT-CM, and 

TII-KT-CM, is generally better than that of the multi-task ones, e.g. LSSMTC and 

CombKM, in terms of the clustering results on the target domain datasets.

5. QWGSD-FC aims at integrating the most merits of FCM, MEC, and FC-QR as 

well as being concise in our research. As far as the results of the pure soft-partition 

clustering algorithms in Table 2 are concerned, it is clear that, in general, the 

performance of QWGSD-FC is better than or comparable to the others, even facing 

to PCM and ECM, two dedicated soft-partition clustering approaches devoted to 

coping with complex data situations. Particularly, the efficacy of the quadratically 

weighted intra-cluster deviation measure and the Gini–Simpson diversity measure 

can be verified by comparing the outcomes of QWGSD-FC with those of FC-QR 

and FCM (m = 2), respectively. Moreover, as described in Section 3, not only the 

framework but also the derivations regarding QWGSD-FC feature brief and 

straightforward. Therefore, putting them together, our intentions on QWGSD-FC 

are achieved.

6. Benefitting from the reliability of QWGSD-FC as well as the historical knowledge 

from the source domain, in general, both TI-KT-CM and TII-KT-CM exhibit 

relatively excellent clustering effectiveness on these synthetic datasets. Especially, 

owing to only relying on the advanced knowledge rather than the raw data in the 

source domain, they feature valuable stability in either the situation of data shortage 

or data impurity. As shown in Table 2, TII-KT-CM is always the best one and TI-

KT-CM ranks at the top two or three, in terms of the well-accepted, authoritative 

NMI and RI indices.

7. Comparing TI-KT-CM with TII-KT-CM, the former refers to the historical cluster 

centroids solely, the latter, however, recruits the historical cluster centroids and 

their associated fuzzy memberships simultaneously. This means that TII-KT-CM 

has more distinctive, comprehensive learning capability with respect to historical 

knowledge than TI-KT-CM, which is directly responsible for its superiority to all 

the other candidates.

8. Both TI-KT-CM and TII-KT-CM overcome the others from the perspective of 

privacy protection as they only use the advanced knowledge in the source domain 

as the reference and this knowledge cannot be inversely mapped into the original 

data. Conversely, the other approaches thoroughly use the raw data in the source 

domain if needed.

In addition, based on Table 2, as previously mentioned, the instinctive flaw of the DBI index 

has been confirmed. That is, good clustering results in terms of the authoritative NMI and RI 

indices usually achieve relatively small DBI scores, whereas the smallest DBI value 

unnecessarily indicates the ground truth of data structure.
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4.3. In real-life scenarios

In this subsection, we attempt to evaluate the performance of all involved algorithms in six, 

real-life transfer scenarios, i.e., texture image segmentation, text data clustering, human face 

recognition, dedicated KEEL datasets, human motion time series and email spam filtering. 

We first introduce the constructions regarding these data scenarios and then present the 

clustering results of all participants in them.

1. Texture image segmentation (Datasets: texture image segmentation 1 and 2, TIS-1 
and TIS-2)

We chose three different textures from the Brodatz texture database 1 and 

constructed one texture image with 100 × 100 = 10,000 resolution as the source 

domain, as shown in Fig. 8(a). In order to simulate the target domains, we first 

composed another texture image, as indicated in Fig. 8(b), using the same textures 

and resolution as those in Fig. 8(a). Then we generated one derivative of Fig. 8(b) 

by adding noise, as shown in Fig. 8(c). With Fig. 8(a) acting as the source domain 

and Fig. 8(b) and (c) as the target domains, respectively, we generated two datasets 

for the scene of texture image segmentation, i.e., TIS-1 and TIS-2, by extracting the 

texture features from the corresponding images via the Gabor filter method [75]. 

The specific composition of TIS-1 and TIS-2 is listed in Table 3.

2. Text data clustering (Datasets: rec VS talk and comp VS sci)

We selected four categories of text data: rec, talk, comp, and sci, as well as some of 

their sub-categories from the 20 News-groups text database 2 in order to compose 

the two datasets, rec VS talk and comp VS sci, of the transfer scene of text data 

clustering. The categories and their sub-categories used in our experiments are 

listed in Table 4. Furthermore, the BOW toolkit [76] was adopted for data 

dimension reduction, which was originally up to 43,586. The eventual data 

dimension in both rec VS talk and comp VS sci is 350.

3. Human face recognition (Dataset: ORL)

The famous ORL database of face 3 was enlisted in our work for constructing the 

transfer scene of human face recognition. Specifically, we selected 8 × 10 = 80 

facial images from the original database, i.e., eight different faces and ten images 

per face. One frontal facial image of each person is illustrated in Fig. 9. We 

arbitrarily placed eight images per face in the source domain, and the remainder 

two in the target domain. In order to further widen the difference between the 

source and the target domain as well as enlarge the data capacity in each domain, 

we separately rotated each image anticlockwise with 10 and 20 degrees, then 

obtained two derivatives of each original image. Thus, the source domain and the 

target domain eventually contain 192 and 48 images, respectively. In view of the 

resolution of each image up to 92 × 112 = 10,304 pixels, we cannot directly use the 

pixel-gray values in each image as the features. Therefore, the principal component 

1http://www.ee.oulu.fi/research/imag/texture/image_data/Brodatz32.html
2http://www.cs.nyu.edu/~roweis/data.html
3http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
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analysis (PCA) method was subsequently performed on the original features of 

pixel-gray values, and we obtained the eventual dataset with the dimension being 

239.

4. The dedicated KEEL datasets (Datasets: cleveland and mammographic)

In this scene, two dedicated datasets in the Knowledge Extraction based on 
Evolutionary Learning (KEEL) repository 4, i.e., cleveland and mammographic, 

were taken in our experiments. In each, the data capacity of the testing set is less 

than 90, whereas the data capacity in the training set is around nine times that in the 

testing set. Thus, one of our supposed transfer conditions is met, i.e., the data in the 

target domain are quite insufficient, and this data shortage in the target domain is 

prone to causing the data distribution inconsistence between the source domain and 

the target domain. Meanwhile, as real-life datasets, they usually contain 

uncertainties, such as noise and outliers. Putting them together, it should be suitable 

that these two real-life datasets are used to verify the effectiveness of all involved 

algorithms. As such, the testing set in cleveland or mammographic was regarded as 

the target domain and the training set as the source domain in our experiment.

5. Human motion time series (Dataset: HMTS)

The dataset for ADL (Activities of Daily Living) recognition with wrist-worn 
accelerometer data set in the UCI machine learning repository 5 was recruited for 

the clustering on human motion time series. The initial dataset consisted of many 

three-variate time series recording three signal values of one sensor worn on 16 

volunteers’ wrists while they conducted 14 categories of activities in daily living, 

including: climbing stairs, combing hair, drinking, sitting down, walking, etc. In 

order to simulate the transfer scene, the volunteers were divided into two groups via 

their genders, and 10 categories of activities, whose series number are greater than 

15, were employed in our experiment. Due to the fact that the female’s total records 

are distinctly more than the male’s, we used all the female’s time series as the 

source domain and the male’s as the target domain. The initial properties of these 

involved activities and their affiliated time series are listed in Table 5. Because the 

time series dimensions (also, series lengths) of different categories of activities are 

inconsistent and they vary from hundreds to thousands, as shown in Table 5, the 

multi-scale discrete Haar wavelet decomposition [77] strategy was adopted in our 

study for dimensionality reduction. After three to six levels of Haar discrete 

wavelet transform (DWT) [77] performed on these raw time series, we truncated 

the intermediates with the same length being 17 and reshaped them into the forms 

of vectors, thus we attained the eventual dataset called human motion time series 
(HMTS) in our experiment with the final data dimension being 17 × 3 = 51.

6. Email spam filtering (Datasets: ESF-1 and ESF-2)

The email spam repository, released by the ECML/PKDD Discovery Challenge 
2006 6, was adopted in our experiment. The data contains a set of publicly available 

4http://www.keel.es/
5http://archive.ics.uci.edu/ml/datasets/

Qian et al. Page 27

Pattern Recognit. Author manuscript; available in PMC 2017 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.keel.es/
http://archive.ics.uci.edu/ml/datasets/


messages as well as several sets of email messages from different users. As 

disclosed in [78], there exist distinct data distribution discrepancies between the 

publicly available messages and the ones collected by users, therefore these data are 

suited to construct our transfer learning domains. All messages in the repository 

were preprocessed and transformed into a bag-of-words vector space 

representation. Attributes were the term frequencies of the words. For our 

experiment, 4000 samples taken from the publicly available messages as well as 

separate 2500 samples obtained from two users’ email messages were recruited in 

order to construct our two transfer clustering datasets: ESF-1 and ESF-2. Due to the 

too high dimension in the original data (originally, as high as 206,908), the BOW 

toolkit [76] was adopted again for dimension reduction in our work, and the 

eventual data dimension in both ESF-1 and ESF-2 is 500, i.e., the 500 highest term 

frequencies of the words in each involved message were extracted as the eventual 

features in our experiment. The composition regarding ESF-1 and ESF-2 is listed in 

Table 6. Here, the task for all participating approaches is to identify the spam and 

non-spam emails.

The details of all involved real-life datasets in our experiments are listed in Table 7. Based 

on our extensively empirical studies, for easily attaining the appropriate parameter ranges 

involved in each algorithm (particularly, for the regularization parameters), the data would 

better be normalized before being used in experiments. To this end, we transformed the 

range of each data dimension in all enlisted real-life datasets into the same interval [0,1] via 

the commonest data normalization equation, 

, where i and d 
denote the sample and the dimension indices, respectively.

Table 8 reports the clustering performance of the 12 clustering algorithms running on these 

real-life datasets in terms of the NMI, RI and DBI metrics. As previously explained, among 

these approaches, FCM, MEC, FC-QR, PCM, ECM and QWGSD-FC, six pure soft-partition 

clustering approaches, ran directly on the target domain datasets, and the others worked by 

concurrently using both the source domain and the target domain datasets in different ways.

As shown in Table 8, the reliability of QWGSD-FC has been verified once again. 

Specifically, as far as the clustering effectiveness of six pure soft-partition clustering 

methods is concerned, QWGSD-FC is better than or comparable with the others again. 

Especially, compared with that in previous artificial scenarios, the superiority of QWGSD-

FC generally looks more obvious in these real-life data scenarios. Moreover, benefiting from 

the advanced knowledge from the source domain, both TI-KT-CM and TII-KT-CM also 

feature relatively excellent clustering effectiveness and stability. More exactly, in terms of 

the most authoritative NMI validity index, TII-KT-CM is always the best except on the comp 
VS sci dataset, and TI-KT-CM still ranks at the top 2 or top 3. In particular, referring to the 

NMI index again, compared with MEC, one conventional, soft-partition clustering method 

with maximum entropy optimization, the average performance improvement of TI-KT-CM 

is approximately 29.8%, and of TII-KT-CM is even up to 52.4%, in these real-life data 

6http://www.ecmlpkdd2006.org/challenge.html
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scenarios. In addition, the other analyses and conclusions that we performed over those 

artificial datasets also hold on these real-life ones. In order to save paper space, we no longer 

repeat here.

It is worth discussing that neither TI-KT-CM nor TII-KT-CM achieved desirable scores on 

the comp VS sci dataset, despite the optimal parameter settings. In our view, the inherent 

data inhomogeneity existing in this dataset caused such phenomenon. As previously 

explained, both TI-KT-CM and TII-KT-CM need to use the knowledge from the source 

domain, i.e., the historical cluster centroids and their associated fuzzy memberships, and the 

knowledge is usually acquired by performing one, conventional, soft-partition clustering 

approach in the source domain, such as MEC in our work. However, we found the best NMI 

score of MEC was only approximately 0.1 in the source domain in comp VS sci, even at the 

optimal parameter settings, which indicates that both TI-KT-CM and TII-KT-CM cannot 

obtain desirable historical knowledge from the source domain in this situation. As the 

evidence shows in Table 8, all 12 algorithms failed on comp VS sci, and the best score of 

TSC is merely around 0.3. This distinctly demonstrates the data inconsistency existing in the 

dataset.

Moreover, the segmentation results of all the 12 algorithms in Fig. 8(b) and (c) are 

separately illustrated in Figs. 10 and 11 where the pixels belonging to the same clusters are 

shown in the same colors in each sub-figure of each algorithm. Intuitively, the last three 

algorithms, i.e., TSC, TI-KT-CM and TII-KT-CM, achieved better segmentations than the 

others.

4.4. Robustness analyses

Last but not the least, in order to completely demonstrate the reliability of our research, we 

have also appraised the parameter robustness of our proposed TI-KT-CM and TII-KT-CM 

algorithms with respect to their core parameters, i.e., in TI-KT-CM, the Gini–Simpson 

diversity measure parameter β and the transfer regularization parameter γ are involved, and 

in TII-KT-CM, in addition to β and γ, the transfer trade-off factors η is also included. For 

each algorithm on each dataset, either the synthetic or the real-life, we took turns selecting 

one parameter and then gradually varied its value with fixing the other parameters, 

meanwhile recorded the clustering performance of TI-KT-CM and TII-KT-CM in terms of 

NMI, RI and DBI. We attempt to exhibit the effectiveness curve of each validity index with 

respect to each approach on each dataset, based on these records. To save paper space, here 

we only separately report the experimental results of TI-KT-CM and TII-KT-CM on two 

synthetic datasets,  and , and two real-life transfer datasets, i.e., ORL and cleveland..

On , TI-KT-CM achieved the optimum with β = 90 and γ = 0.35 during the grid-search 

procedure, on  with β = 60 and γ = 0.05, on ORL with β = 0.05 and γ = 0.05, and on 

cleveland with β = 0.2 and γ = 0.05. As for TII-KT-CM, on  with β = 2, γ = 0.45 and η = 

0.1, on  with β = 60, γ = 0.05, and η = 0.9, on ORL with β = 0.05, γ = 0.2, and η = 0.05, 

and on cleveland with β = 30, γ = 2, and η = 0.7.
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The performance curves of TI-KT-CM on these four datasets are illustrated in Fig. 12 where 

Fig 12(a) and (b) shows the cases on , Fig 12(c) and (d) is on , Fig 12(e) and (f) is on 

ORL, and Fig 12 (g) and (h) is on cleveland. Likewise, Fig. 13 indicates the situations of 

TII-KT-CM with Fig 13(a)–(c) on , Fig 13(d)–(f) on , Fig 13 (g)–(i) on ORL, and Fig 

13(j)–(l) on cleveland.

As seen in Figs. 12 and 13, the clustering effectiveness of both TI-KT-CM and TII-KT-CM 

is relatively stable when their core parameters locate within proper ranges, which 

demonstrates that they both feature the quite excellent robustness against parameter settings.

5. Conclusions

To resolve the issue that existing soft-partition clustering approaches still cannot effectively 

cope with the situations where the data are quite insufficient or much distorted by plenty of 

noise or outliers, in this manuscript our work proceeds from three major aspects. (1) Based 

on the deep analyses regarding FCM, MEC and FC-QR, we first propose the delicate 

QWGSD-FC model which inherits the most merits of these three base models. (2) By means 

of two strategies of transfer learning, we devise two types of transfer optimization 

formulations in the forms of Eqs. (13) and (15), respectively. (3) Combining the previous 

two steps of work, we subsequently put forward two types of cross-domain, soft-partition 

clustering frameworks and their matching algorithms, i.e., type-I/type-II knowledge-transfer-

oriented c-means (TI-KT-CM and TII-KT-CM). In addition, we prove the convergence of 

both TI-KT-CM and TII-KT-CM, and discuss the parameter settings involved in them. The 

experimental studies in both the artificial and the real-life transfer scenarios demonstrate that 

both TI-KT-CM and TII-KT-CM are of good cross-domain clustering effectiveness as well 

as parameter robustness, and, furthermore, that TII-KT-CM works better than TI-KT-CM 

benefiting from the more comprehensive ability of knowledge reference.
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Appendix A. Proofs

A.1 Proof of Theorem 1

Proof

In terms of the Lagrange optimization, the minimization of ΦTI–KT–CM in Eq. (14) can be 

converted to the following unconstrained minimization problem:

Qian et al. Page 30

Pattern Recognit. Author manuscript; available in PMC 2017 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(A.1)

where αj, j = 1, …, N, are the Lagrange multipliers.

By setting the derivatives of L1 to zero with respect to vi and uij, respectively, we arrive at:

(A.2)

We can obtain Eq. (18) immediately by rearranging Eq. (A.2).

(A.3)

Because of , according to Eq. (A.3), we have

(A.4)

We then obtain Eq. (19) by substituting Eq. (A.4) into Eq. (A.3).

A.2 Proof of Theorem 2

Proof

Likewise, by using the Lagrange optimization, Eq. (17) can be converted to the following 

unconstrained minimization problem:

(A.5)

where αj, j = 1, …, N, are the Lagrange multipliers.

We separately generate the derivatives of L2 with respect to vi and μij and set them to 0:

Qian et al. Page 31

Pattern Recognit. Author manuscript; available in PMC 2017 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(A.6)

thus we can conveniently obtain Eq. (20) by reorganizing Eq. (A.6).

(A.7)

In light of , based on Eq. (A.7), we attain

(A.8)

We can eventually attain Eq. (21) by substituting Eq. (A.8) into Eq. (A.7).

A.3 Proof of Theorem 3

Proof

In light of the fact that the known, historical cluster centroids in the source domain, v̂i, i = 1, 

…, C, are given and γ ≥ 0 is fixed, we can first define a new domain 

.

Suppose  is randomly initialized and γ ≥ 0 is fixed, then  can be 

calculated via Eq. (18) as

(A.9)

where v̂i, i = 1, …, C, signify the known, historical cluster centroids in the source domain.
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Let  and , j = 1, …, N, then Eq. (A.9) is equivalent 

to

(A.10 – 1)

with

(A.10 – 2)

Thus , i = 1, …, C, i.e. , where conv(E) and [conv(E)]C 

denote the convex hull of E and the C-fold Cartesian product of the convex hull of E, 

respectively.

Iteratively, is computed via Eq. (19) and . Similar to the above 

analyses in Eqs. (A.9) and (A.10), we know that  also belongs to 

[conv(E)]C. Therefore, as such, all iterations of TI must belong to [conv(E)]C × MC.

Because MC in the form of Eq. (22) is closed and bounded, and therefore compact. 

[conv(E)]C is also compact [15,32]. Thus [conv(E)]C × MC is consequently compact in RCd 

× MC.

A.4 Proof of Theorem 4

Proof

As (V̑, Ȗ) = TI(V̄, Ū), we arrive immediately at Ȗ = FI(V̄) and V̑ = GI(Ȗ) according to 

Definition 9, and we have ΦTI–KT–CM(TI(V̄, Ū)) = ΦTI–KT–CM(V̑, Ȗ) = 

ΦTI–KT–CM(GI(FI(V̄)), FI(V̄)). It is obvious that, if (V̄, Ū) ∈ SI, the conditions, Ū = FI(V̄) and 

V̄ = GI(Ū), must simultaneously hold, otherwise, at least one of them does not hold. 

Specifically,

Combining the cases (1)–(3), we know ΦTI–KT–CM (V̑, Ȗ) ≤ ΦTI–KT–CM (V̄, Ū) and the 

inequality is strict if (V̄, Ū)∉SI.

A.5 Proof of Theorem 5

1. For (V̄, Ū) 

SI, i.e., Ū = FI(V̄) and V̄ = GI(Ū), we have ΦTI–KT–CM(V̑, Ȗ) = 

ΦTI–KT–CM(GI(FI(V̄)), FI(V̑)) = ΦTI–KT–CM(GI(Ū), Ū) = ΦTI–KT–CM(V̄, Ū).
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2. For Ū ≠ FI(V̄), according to Proposition 1, we attain ΦTI–KT–CM(V̄, Ū) > 

ΦTI–KT–CM (V̄, FI(V̄)) = ΦTI–KT–CM(V̄, Ȗ). Further, based on Proposition 2, we 

have ΦTI–KT–CM (V̄, Ȗ) ≥ ΦTI–KT–CM (GI(Ȗ), Ȗ) = ΦTI–KT–CM(V̑, Ȗ). Thus we 

arrive at ΦTI–KT–CM(V̑, Ȗ) < ΦTI–KT–CM (V̄, Ū).

3. For Ū = FI(V̄) and V̄ ≠ GI (Ū), we arrive at ΦTI–KT–CM(V̑, Ȗ) = 

ΦTI–KT–CM(GI(FI(V̄)), FI(V̄)) = ΦTI–KT–CM(GI(Ū), Ū). Further, according to 

Proposition 2, we have ΦTI–KT–CM(V̑, Ȗ) = ΦTI–KT–CM(GI(Ū), Ū) < ΦTI–KT–CM(V̄, 

Ū).

Proof

As defined in Definition 9, the map  is a composition of two, embedded maps, 

i.e.  and . Thus, if both  and  are continuous,  is consequently 

continuous. In order to prove  is continuous, it equals to showing that 

FI(V) is continuous. As FI(V) is computed by Eq. (19) and it is continuous,  is reasonably 

continuous. Likewise, in order to prove  is continuous, it amounts to 

(demonstrating that GI(U) is continuous. As GI(U) is calculated via Eq. (18), and Eq. (18) is 

definitely continuous when β and γ are fixed and v̂i, i = 1, …, C, i, are given, GI(U) is 

continuous, and so is . Combining them, this theorem can be proven.

A.6 Proof of Theorem 7

Proof

Similar to the proof of Theorem 3, we first define the domain 

.

Suppose  is randomly initialized and γ ≥ 0, η ∈ [0, 1] are fixed, then 

 can be calculated via Eq. (20) as

(A.11)

where v̂, i = 1, …, C, are the known, historical cluster centroids in the source domain, and 

ũij, i = 1, …, C, j = 1, …, N, are the historical cluster centroid-based memberships of the 

data instances in the target domain. All the historical knowledge, both v ̂i and ũij, is given or 

can be calculated in advance.
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Let  and 

 j = 1, …N, then Eq. (A.11) can be rewritten as

(A.12 – 1)

with

(A.12 –2)

Thus we know that  belongs to [conv(E)]C which denotes the C-fold Cartesian product 

of the convex hull of E.

Moreover,  is calculated via Eq. (21) and it definitely belongs to MC. 

Referring to Eq. (A.12), we know that  also belongs to [conv(E)]C. As 

such, all iterations of TII belong to [conv(E)]C × MC. Likewise, due to both MC [conv(E)]C 

being compact, this theorem is proven.

A.7 Proof of Theorem 8

Proof

Because of (V̑, Ȗ) = TII(V̄, Ū), we immediately obtain Ȗ = FII(V̄) and V̑ = GII(Ȗ) according 

to Definition 12, and we further arrive at ΦTII–KT–MC(V̑, Ȗ) = ΦTII–KT–MC(GII(FII(V̄)), 

FII(V̄)). Clearly, if (V̄, Ū) ∈ SII, the conditions, Ū = FII(V̄) and V̄ = GII(Ū), should 

concurrently hold, otherwise, at least one of them does not hold.

1. For (V̄,Ū) ∈ SII, i.e., Ū = FII(V̄) and V̄ = GII(Ū), we have ΦTII–KT–MC(V̑, Ȗ) = 

ΦTII–KT–MC(GII(FII(V̄)), FII(V̄)) = ΦTII–KT–MC(GII(Ū), Ū) = ΦTII–KT–MC(V̄, Ū).

2. For Ū ≠ FII(V̄), based on Proposition 3, we obtain ΦTII–KT–MC(V̄,Ū) > ΦTII–KT–MC 

(V̄, FII(V̄)) = ΦTII–KT–MC(V̄, Ū). Further, according to Proposition 4, we arrive at 

ΦTII–KT–MC(V̄, Ȗ) ≥ ΦTII–KT–MC(GII(Ȗ), Ȗ) = ΦTII–KT–MC(V̑, Ȗ). Thus we obtain 

ΦTII–KT–MC(V̑, Ȗ) < ΦTII–KT–MC(V̄, Ū).

3. For Ū = FII(V̄) and V̄ ≠ GII(Ū), we arrive at ΦTII–KT–MC(V̑, Ȗ) = 

ΦTII–KT–MC(GII(FII(V̄)), FII(V̄) = ΦTII–KT–MC(GII(Ū), Ū. Further, according to 

Proposition 4, we have ΦTII–KT–MC(V̑, Ȗ) = ΦTII–KT–MC(GII(Ū), Ū < 

ΦTII–KT–MC(V̄, Ū).

As such, combining the cases (1)-(3), we know ΦTII–KT–MC(V̑, Ȗ) and the inequality is strict 

if (V¯, Ū)

SII.
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Fig. 1. 
Overall framework of transfer learning.

Qian et al. Page 41

Pattern Recognit. Author manuscript; available in PMC 2017 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Interpretation of the deviation measure in soft-partition clustering from the perspective of 

weighted sum.
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Fig. 3. 
Impact distinction between m = 1 and m = 2 while um is used as the weight factor in 

deviation measure.
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Fig. 4. 
Illustration of the composition in Definition 2.
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Fig. 5. 
Illustration of the composition in Definition 4.
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Fig. 6. 
Artificial source domain dataset XS.
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Fig. 7. 

Artificial target domain datasets , and .
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Fig. 8. 
Texture images adopted to construct TIS-1 and TIS-2. (a) Source domain in both TIS-1 and 

TIS-2 (b) Target domain in TIS-1 (c) Target domain in TIS-2.
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Fig. 9. 
Human facial dataset: ORL.
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Fig. 10. 
Segmentation results of all involved algorithms on Fig. 8(b). (a) FCM(m=2) (b) MEC (c) 

FC-QR (d) QWGSD-FC (e) PCM (f) ECM (g) LSSMTC (h) CombKM (i) STC (j) TSC (k) 

TI-KT-CM and (l) TII-KT-CM.
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Fig. 11. 
Segmentation results of all involved algorithms on Fig. 8(c). (a) FCM(m=2) (b) MEC (c) 

FC-QR (d) QWGSD-FC (e) PCM (f) ECM (g) LSSMTC (h) CombKM (i) STC (j) TSC (k) 

TI-KT-CM and (l) TII-KT-CM.
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Fig. 12. 

Performance curves of TI-KT-CM with respect to parameters γ and β on , ORL, and 

Cleveland. (a) TI-KT-CM on , β is fixed and γ varies; (b) TI-KT-CM on , γ is fixed and 

β varies; (c) TI-KT-CM on , β is fixed and γ varies; (d) TI-KT-CM on , γ is fixed 

and β varies; (e) TI-KT-CM on ORL, β is fixed and γ varies; (f) TI-KT-CM on ORL, γ is 

fixed and β varies; (g) TI-KT-CM on cleveland, β is fixed and γ varies; (h) TI-KT-CM on 

cleveland, γ is fixed and β varies.
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Fig. 13. 

Performance curves of TII-KT-CM with respect to parameters γ, β, and η on , ORL, 

and Cleveland. (a) TII-KT-CM on , β and η are fixed, and γ varies; (b) TII-KT-CM on , 

γ and η are fixed, and β varie; (c) TII-KT-CM on , and β are fixed, and η varies; (d) TII-

KT-CM on , β and η are fixed, and γ vari; (e) TII-KT-CM on , γ and η are fixed, and 

β varies; (f) TII-KT-CM on , γ and β are fixed, and η varies; (g) TII-KT-CM on ORL, β 

and η are fixed, and γ varies; (h) TII-KT-CM on ORL, γ and η are fixed, and β varie; (i) TII-

KT-CM on ORL, γ and β are fixed, and η varie; (j) TII-KT-CM on cleveland, β and η are 

fixed, and γ varies; (k) TII-KT-CM on cleveland, γ and η are fixed, and β varies; (l) TII-KT-

CM on cleveland, γ and β are fixed, and η varies.
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Table 1

Categories and parameter settings of involved algorithms.

Algorithms Categories Parameter values or trial ranges

FCM Soft-partition clustering Fuzzifier m ∈ [1.1 : 0.1 : 2.5]

MEC Soft-partition clustering Entropy regularization parameter β ∈[0.05:0.05:1, 10:10:100]

PCM Soft-partition clustering Fuzzifier m ∈[1.1 : 0.1 : 2:5]

Parameter K=1

ECM Soft-partition clustering Parameter α ∈[1:1:10]

Parameter β ∈[1.1:0.1:2.5]

Parameter δ ∈[3:1:9]

FC-QR Soft-partition clustering Quadratic function regularizing coefficient γ ∈[0.1:0.1:2, 20:20:200]

QWGSD-FC Soft-partition clustering Diversity measure coefficient β ∈[0.05:0.05:1, 10:10:100]

LSSMTC Hard-partition clustering; Multi-task clustering; Task number T=2

Regularization parameter l ∈{2; 22; 23; 24 ∪ [100 : 100 : 1000]

Regularization parameter λ ∈{0.25, 0.5, 0.75}

ComKM Hard-partition clustering; Multi-task clustering K equals the number of cluster

STC Transfer clustering; Co-clustering Trade-off parameter λ = 1

TSC Transfer clustering; Multi-task clustering; Co-clustering Parameters K=27, λ = 3, and step=1

TI-KT-CM Soft-partition clustering; Transfer clustering Entropy regularization parameter β∈[0.05:0.05:1,10:10:100]

Transfer regularization parameter γ∈[0:0.05:1,2:1:10,20:10:200]

TII-KT-CM Soft-partition clustering; Transfer clustering Entropy regularization parameter β∈[0.05:0.05:1,10:10:100]

Transfer regularization parameter γ∈[0:0.05:1,2:1:10,20:10:200]

Transfer trade-off factor η∈=[0 : 0:05 : 1]
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Table 3

Composition of texture image scenario.

Dataset Source domain Target domain

TIS-1 Fig. 8(a) Fig. 8(b)

TIS-2 Fig. 8(a) Fig. 8(c)
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Table 4

Categories and sub-categories of 20Newsgroups adopted in text data clustering.

Dataset Source domain Target domain

rec VS talk rec.autos rec.sport.baseball

talk.politics.guns talk.politics.mideast

comp VS sci comp.sys.mac.hardware comp.sys.ibm.pc.hardware

sci.med sci.electronics
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Table 6

Composition of email spam filtering scenario.

Dataset Source domain Target domain

ESF-1 Publicly available messages (size: 4000) User 1’s messages (size: 2500)

ESF-2 User 2’s messages (size: 2500)
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