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The combination of laterally activating and inhibiting feedbacks is well

known to spontaneously generate spatial organization. It was introduced by

Gierer and Meinhardt as an extension of Turing’s great insight that two react-

ing and diffusing chemicals can spontaneously drive spatial morphogenesis

per se. In this study, we develop an accessible nonlinear and discrete probabil-

istic model to study simple generalizations of lateral activation and inhibition.

By doing so, we identify a range of modes of morphogenesis beyond the

familiar Turing-type modes; notably, beyond stripes, hexagonal nets, pores

and labyrinths, we identify labyrinthine highways, Kagome lattices, gyrating

labyrinths and multi-colour travelling waves and spirals. The results are

discussed within the context of Turing’s original motivating interest: the

mechanisms which underpin the morphogenesis of living organisms.
1. Introduction
As a complex multicellular organism grows and develops, each one of its cells

follows the same set of genomically encoded instructions, yet different cells

beget drastically different fates so bringing about the organism’s complex struc-

ture. Turing was among the first to present a powerful idea pertaining to this

phenomenon, when he realized that a spatially homogeneous soup of just

two chemically reacting species can spontaneously morph into a structured pat-

tern owing to nothing more than the diffusion of these species, so long as the

reaction kinetics are of the appropriate activatory or inhibitory nature and the

diffusivities are sufficiently different [1]. Later Gierer and Meinhardt extended

this notion to show how processes other than reaction–diffusion can potentially

drive pattern formation: they demonstrated that any process which feeds back

on itself over two lateral ranges—one short range that quickens or activates the

process, the other long range that competitively slows or inhibits it—can spon-

taneously generate structural organization [2,3]. This combination of feedbacks

has come to be known as short-range activation and long-range inhibition and

is widely accepted as the key criteria for Turing-type patterning [3–5].

Groups of cells can effect lateral activation/inhibition by, for example, secret-

ing ligands that diffuse on average a few cell lengths before degradation or

binding to receptors; this binding triggers an intra-cellular signalling cascade

which in turn increases/decreases the ligand’s expression. Given the vast

number of intra- and inter-cellular signals operating within and between cells,

it seems probable that other types of lateral feedback beside lateral activation

and inhibition also operate during development; furthermore, the structural

diversity among living organisms is immense, whereas lateral activation and

inhibition alone generate a limited range of patterns. What other types of lateral

feedback may be operating to bring about the development of a multicellular

organism? What patterns can be generated by recombinations of these feedbacks

and what feedbacks are necessary and sufficient to generate a particular pattern?
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Here, we study a model of interacting lattice sites that lat-

erally activate and inhibit one another [6]. The lattice sites

may be considered as a layer of immobile discrete cells,

each executing a dynamic differentiation program to transit

between Boolean states according to a common set of deter-

ministic instructions but subject to some level of noise. The

model has an important distinguishing feature: its discrete

and probabilistic formulation makes it straightforward to

introduce and to simulate additional pattern-generating

modules—additional classes of lateral feedback operating

alongside lateral activation and inhibition—in a systematic

way: the discreteness allows us to write down simple

equations governing the bifurcation diagrams, while the

noise provides an in-built test of robustness against fluctu-

ations and renders the long-term patterning dynamics

independent of the model’s initial state. For lateral activation

and inhibition only, the model’s final states of morphogenesis

are either striped, hexagonally netted, labyrinthine, spotted

or uniform block colour, patterns that are ubiquitous in

nature and are well known to be generated by Turing-type

models [6]; the additional feedback modules that we intro-

duce generate a surprisingly extended range of static and

dynamic patterning modes. The ubiquity in nature of the pat-

terning modes generated by the original model—stripes,

hexagons, labyrinths, spots—(see e.g. [7,8]; reaction–diffu-

sion [1,9–11]; directional solidification [12]; granular/fluid

flows [13], hydrodynamic instabilities, animal furs, seashells

and more [7,14,15]) suggest that concrete applications for

these novel patterning modes may soon be discovered.
2. Model and methods
2.1. Model
The core model of discrete and probabilistic lateral activa-

tion and inhibition introduced in [6] is now described. In

each section of the results, this core model is generalized in

a different way.

The model runs on a two-dimensional square grid of lat-

tice sites that are either black (B) or white (W ). From an initial

configuration, lattice sites flip their colour, from black to

white or white to black, one at a time. The rate at which a par-

ticular site flips its colour is determined by the following

three rules:

(i) a site can flip to a colour only if a neighbouring site

has that colour (this is activation at the interface);

(ii) the likelihood of flipping to a colour decreases with

the density of sites of that colour within a particular

long range rL (i.e. long-range inhibition), where rL�1

is measured in units of a lattice site diameter;

(iii) the likelihood of flipping to a colour increases with the

density of sites of that colour within a particular short

range rS (i.e. short-range activation).

A noise level TL is associated with the long-range inhi-

bition: as TL increases, the long-range inhibition is wiped

out. Similarly, a noise level TS is associated with the short-

range activation. A parameter, b, determines the strength of

the propensity for cells to flip to a particular colour, either

black or white, independently of the lateral activation and

inhibition. When b ¼ 0, this propensity is zero, then colour

configurations converge to attractors that are 50% white
and 50% black on average over multiple instances of the

simulation; in this case, we say there is colour symmetry and

the model’s specification is unchanged when white is inter-

changed with black (see the reaction kinetics (2.1) below).

Perturbing b away from zero, then rather colour configur-

ations accumulate an excess of one particular colour—white

is more abundant for b . 0, while black is more abundant

for b , 0—and so b is called a symmetry breaking parameter
(figure 1a). To interpret the rules (i)–(iii) in the context of cel-

lular dynamics, each lattice site would represent a cell that

can be in one of a number of discrete states. Its ability to

change from a state A to a different state B would be depen-

dent on contact with another cell of that particular state. The

rate at which the transition A! B happens would be regu-

lated by two ligands produced by B cells, one activator of

the transition that is degraded within an average length rL

(long-range inhibition of type A), and one inhibitor of the

transition that is degraded within a length rS (short-range

activation of type A).

Precisely, from a given colour configuration, the prob-

ability that the next colour flip is at site x to colour C ¼W
or B is non-zero if and only if any of the eight neighbours

of x has colour C (the set of neighbouring colours is denoted

Nx); this probability has one of two possible forms depending

on the colour Cx of site x

W [ Nx: Cx ¼ B!W with prob:

expðbþ T�1
S ðw� bÞSx

� T�1
L ðw� bÞLx

Þ
Z

or B [ Nx:: Cx ¼ W ! B with prob:

expð�bþ T�1
S ðb� wÞSx

� T�1
L ðb� wÞLx

Þ
Z

,

9>>>>>>>=
>>>>>>>;

ð2:1Þ

where ðw� bÞJx
is the fraction of white minus black sites

within range rJ around x, and Z is the colour configuration-

dependent normalizing factor, or equivalently the sum of

numerators in (2.1) over every non-zero probability colour

flip. This completely specifies the model’s reaction kinetics,

except for initial and boundary conditions which are

described in the next section. For the corresponding continu-

ous time definition and a partial derivation of the mean-field

equations (see the electronic supplementary material).

When the model is run, invariably it converges to a

macroscopically stationary attractor that is either patterned,

or homogeneously noisy, or uniform block colour

(figure 1b,c; electronic supplementary material, Movies S1

and S2, [6]). Patterned attractors are time-invariant or station-

ary if and only if sites along their interfaces flip from black to

white and back again from white to black at equal rates, so

from (2.1) we have the following necessary and sufficient

mean-field approximation for stationary attractors,

ðw� bÞLx
=TL � ðw� bÞSx

=TS � b

for all sites x on interfaces:
ð2:2Þ

For lateral inhibition only and no symmetry break (high

noise on the short range TS ¼1, low noise of the long

range TL�1 and b ¼ 0), from (2.2) stationary attractors

have wLx
� 1=2 along interfaces (because wLx

¼ 1� bLx
),

whereas for both lateral activation and inhibition with no

symmetry break (TS ¼ TL�1 and b ¼ 0) then we have

wLx
� wSx

along interfaces. Straight interfaces satisfy the con-

dition wLx
� 1=2, whereas wLx

� wSx
can be satisfied by

curved interfaces. Moreover, the mean-field approximation
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Figure 1. A probabilistic and discrete model of lateral activation and inhibition. (a) The model has three key rules: (i) activation at the interface; (ii) long-range
inhibition and (iii) short-range activation. (b) Sketch bifurcation diagram for colour symmetry (b ¼ 0): for lateral inhibition only (TL � 1, TS ¼ 1), dynamics
converge to stationary stripes; for short-range activation and long-range inhibition together (TL � TS � 1), stripes bifurcate to stationary labyrinths; weakening the
long-range inhibition (TL � TS), eventually labyrinths bifurcate to bistable attractors. (c) For colour symmetry breaking (b = 0), stripes transit to hexagonal nets
while labyrinths transit to irregular arrangements of pores; these transitions are represented by plots of fb, the summary statistic for two-colour symmetry breaking
transitions (upper plot is for lateral inhibition only; lower plot is for short-range activation and long-range inhibition together). The correspondence between patterns
and fb is colour coded by red/orange/green. Simulation parameters and numbers of instances are listed in table 1. (Online version in colour.)
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predicts a linear increase of wLx
with b for lateral inhibition

only (TS ¼1 in (2.2)).
2.2. Methods
Each model was simulated on a two-dimensional square grid

of (l þ 2rL) � (l þ 2rL) sites. Initially, all sites of the simulation

are equally and independently likely to be one colour among

a list of permitted colours (black or white in the model above;

the list is extended in the generalizations below). Thereafter,

sites within the central square domain of l � l lattice sites

flip their colour according to the reaction kinetics specified

in each section. Outside of this l � l domain, colours remain

fixed for all time—this constitutes the boundary condition.

Simulations of the core model show that the local sol-

utions predicted by the mean-field approximation (2.2)

are invariably realized: for colour symmetry and lateral

inhibition only (TS ¼ 1, TL� 1, b ¼ 0), attractors are

approximately straight stripes, whereas curved labyrinths

are generated by lateral activation and inhibition together
(TS ¼ TL� 1, b ¼ 0, figure 1b; electronic supplementary

material, Movies S1 and S2, [6]). Now breaking the colour

symmetry by increasing b . 0 then stripes bifurcate to

white hexagonal nets while the predicted linear increase of

wLx
with b holds true for the overall fraction of white sites

in the l � l domain, as shown in the plots in figure 1c
which are fully described below; the relatively disordered

labyrinths bifurcate to relatively disordered pores. The initial

and boundary conditions appear to have no effect on the

local structure of the final pattern so long as simulations

are run until colour configurations have converged to an

attractor [6]. Near to the boundary, stripes and labyrinths

tend to align perpendicularly to the boundary and in this

way the domain’s geometry influences patterns’ orientations

(see the electronic supplementary material). The wavelength

of stripes, and of labyrinths when rS� rL is 4rL/3 (see the

electronic supplementary material) [6]; increasing the

domain size l � l appears to have no effect on this wave-

length. In all simulations, the domain size was set such that

the wavenumber l=4rL=3 . 8.



Table 1. Parameters for panels and plots in figures. The ‘end time’ is the number of transitions per simulation. n is the number of instances simulated for
generating statistics. ‘t’, ‘m’, ‘b’, ‘p’ stand for ‘top row’, ‘middle row’, ‘bottom row’, ‘panel’, respectively, in the corresponding figure or plot. ‘V’ stands for
‘varying’ in the corresponding figure or plot.

figure l b ðrS, T�1
S , bS, sS, gSÞ ðrL, T�1

L , bL, sL, gLÞ end time N

1(c) t 140 V (4, 0, – , – , – ) (12, 16, – , – , – ) 3 � 106 5

1(c) b 140 V (4, 16, – , – , – ) (12, 16, – , – , – ) 3 � 106 5

2(b) t black/blue 140/210 0 (4/6, 16, 0, V, – ) (12/18, 16, – , – , – ) 2 � 106 5

2(b) b 140 0 (V, 16, 0, 2, – ) (12, 16, – , – , – ) 2 � 106 5

2(c) t black/blue 140 V (4/6, 16, 0, 2, – ) (12, 16, – , – , – ) 2 � 106 2

2(c) b black/blue 140 0 (4/6, 16, V, 2, – ) (12, 16, – , – , – ) 2 � 106 2

3(a) t black/blue 140 0 (4/6, 16, 0, 0, – ) (12, 16, 0, V, – ) 5 � 106 5

3(a) t green 210 0 (9, 16, 0, 0, – ) (18, 16, 0, V, – ) 5 � 106 5

3(b) b 140 0 (V, 16, 0, 0, – ) (12, 16, 0, 2, – ) 5 � 106 5

3(c) t 140 V (6, 16, 0, 0, – ) (12, 16, 0, 2, – ) 5 � 106 2

3(c) b 140 0 (6, 16, 0, 0, – ) (12, 16, V, 2, – ) 5 � 106 2

4(a) 140 – (4, 0/16/16, – , – , 0) (12, 16/0/16, – , – , – ) 3 � 106 –

4(b) 140 – (4/6, 16, – , 2/0, – ) (12, 16, – , 0/3.4, – ) 3 � 106 –

5 140 – (4, 0/16/16, – , – , 0/1/0) (12, 16/0/16, – , – , 1/0/2) 3 � 106 –

5 p t/b 210 – (V/6, 16, – , – , 1) ( – , – , – , – , – ) 3 � 106 2
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We have seen, then, that in this model the combination of

the three rules (i) activation at the interface, (ii) short-range

activation, and (iii) long-range inhibition generates a range

of Turing-type patterns—stripes, labyrinths, hexagonal nets

and spots—and, moreover, that in several cases the corre-

spondence between stationary patterning modes and

parameter values, i.e. the bifurcation diagrams, can be

roughly anticipated simply by inspecting the mean-field

approximation (2.2). Therefore, we searched for interesting

new attractors by retaining the three rules (i)–(iii) while sys-

tematically generalizing the model in different simple ways.

Importantly, all generalizations in this study introduce new

linearly independent terms into the mean-field approxi-

mation for stationary interfaces: we hypothesized that only

such generalizations can produce attractors with interesting

new patterns (see the electronic supplementary material).

We consider each linearly independent term in the mean-

field approximation to be a lateral feedback module. Each lateral

feedback module has a corresponding free parameter.

In order to quantitatively represent transitions between

patterning modes, a representative summary statistic was

computed from each instance of the simulation and its vari-

ation with the corresponding parameter was plotted.

White/black colour symmetry breaking transitions, where b

is varied from zero, are quantitatively represented by the

variation in fb which represents the fractional excess in

white over black sites in the l � l domain, as shown in the

plots in figure 1c. In order to generate these plots, the simu-

lation was run five times for each value of b with all other

parameters held constant. The cross-hairs are fb computed

for each instance of the simulation; the line-graph connects

the averages of fb for different values of b. A similar format

is followed for every plot in the article (see table 2). Table 1

lists the corresponding parameter values and the number of

repeated instances of the simulation. Other summary stat-

istics are introduced in Results; the corresponding and

complete descriptions can be found in the electronic
supplementary material. These summary statistics do not

depend on the domain size or the end time of the simulation.
3. Results
In all sections, for a clear portrayal of the model’s dynamics it
is essential to view the corresponding movies. Parameters for each

movie are listed in the electronic supplementary material.

3.1. Labyrinthine highways, train tracks and Kagome
lattices from a competing nonlinear inhibition on
the short range

A natural extension of the model, which introduces two new

lateral feedback modules while retaining rules (i)–(iii),

includes in the exponent symmetry breaking nonlinear

terms +bSðw� bÞ2Sx
associated with the short range, and

symmetry preserving nonlinear inhibitory terms

+s2
Sðw� bÞ3Sx

which compete with the short-range activation.

Increasing bS enhances the white colour flipping rate wher-

ever there is an imbalance of colour on the short range;

increasing jsSj increases the strength of an inhibitory

response that depends on the colour imbalance on the short

range. Within a cellular tissue, bS= 0 could correspond to a

scenario where a local imbalance of cellular states drives

cells to a particular state, while sS= 0 would imply that a

local imbalance promotes a negative feedback loop. All

other notation is left unchanged. The reaction kinetics are

W [Nx: Cx¼B!W with prob:

expðbþT�1
S ððw�bÞþbSðw�bÞ2�s2

Sðw�bÞ3ÞSx
�T�1

L ðw�bÞLx
Þ

Z

B[Nx: Cx¼W!B with prob:

expð�bþT�1
S ððb�wÞ�bSðb�wÞ2�s2

Sðb�wÞ3Þ
Sx
�T�1

L ðb�wÞLx
Þ

Z
:
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Figure 2. Labyrinthine highways and Kagome lattices for competing nonlinear inhibition on the short range. In all simulations, TS ¼ TL ¼ 1/16; other parameters
are in table 1. (a) A nonlinear inhibitory lateral feedback that competes with the activatory feedback on the short range generates labyrinthine highways (i) and
Kagome lattices (ii). (b) Colour symmetry. Increasing jsSj . 1 causes labyrinths to bifurcate to labyrinthine highways as represented by the sudden increase in fS

(the black curve superposed on the blue curve is for l, rL and rS rescaled by a factor of 1.5 while other parameters are held constant). The bifurcation occurs only
when rS/rL , 1/2 (lower plot). (c) Colour symmetry break. In all plots, sS ¼ 2. Increasing b causes labyrinthine highways to bifurcate smoothly to Kagome lattices
for rS/rL ¼ 1/2 (upper blue plot) or interwoven short- and long-scale hexagonal nets for rS/rL ¼ 1/3 (upper black plot). Increasing bS causes labyrinthine highways
to bifurcate to train tracks (lower plots; blue (black) curve is for rS/rL ¼ 1/2 (1/3)). (Online version in colour.)
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where Z is the colour configuration-dependent normalizing

factor. We focus on perturbations to labyrinth attractors: in

all simulations TS ¼ TL ¼ 1=16 � 1. Electronic supplementary

material, Movies S3–S5 and figure 2 portray the dynamics.

For colour symmetry (b, bS ¼ 0), as depicted in figure 2b and

electronic supplementary material, Movie S3, increasing

jsSj . 1 causes labyrinths to suddenly bifurcate to near-station-

ary labyrinthine highways so long as rS=rL , 1=2. The summary

statistic representing this bifurcation in the plots of figure 2b,

denoted by fS, measures the prevalence of the short-range

spots within the labyrinth tracks (see electronic supplementary

material for details). Values of fS appear to be unaltered when

l, rL and rS are simultaneously rescaled while other parameters

are held constant, indicating that discretization effects of the

lattice are small (compare the blue and black curves which are

superposed in the upper plot of figure 2b). At least for jsSj ¼ 2,

labyrinthine highways persist when boundary conditions are

perturbed (see electronic supplementary material).

The bifurcation point jsSj ¼ 1 can be qualitatively

explained as follows. So long as jsSj , 1, the net short-range

feedback is always activatory for all sites since jw� bjSx
is

bounded above by 1—there is no possibility that the short-

range feedback switches to inhibitory. When jsSj . 1, the

net short-range feedback switches sign to become inhibitory
for any configuration such that jw� bjSx
. 1=jsSj, then

qualitatively new dynamics are possible.

When colour symmetry is broken by perturbing b= 0, for

rS/rL ¼ 1/2 labyrinthine highways transit to Kagome lat-

tices—a pattern of intermeshed regular hexagons and

triangles where the diameter of the hexagon is twice the side

of the triangle—that are best known to feature in the atomic

arrangement of the minerals Herbertsmithite and jarosite, see

e.g. [16,17]. Whereas for rS/rL ¼ 1/3, labyrinthine highways

transit to interwoven short and long-scale hexagonal nets

(for rS/rL ¼ 1/3) as depicted in figure 2c; electronic

supplementary material, Movies S4 and S5. When the short-

range symmetry breaking term is perturbed bS=0,

labyrinthine highways transit to train tracks. As both b and

bS are varied, the transitions between patterns are apparently

gradual and smooth, as demonstrated by the plots of figure 2c
which show gradual and smooth increases of fb (the blue curve

is for rS/rL ¼ 1/2; the black curve is for rS/rL ¼ 1/3).

3.2. Gyrating labyrinths from a competing nonlinear
activation on the long range

A second natural extension of the model, analogous to the

extension of §3.1, includes in the exponent symmetry
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breaking nonlinear terms +bLðw� bÞ2Lx
associated with the

long range, and symmetry preserving nonlinear activatory

terms +s2
Lðw� bÞ3Lx

which compete with the long-range inhi-

bition. Analogous to the previous section, increasing bL

enhances the black colour flipping rate wherever there is an

imbalance of colour on the long range; increasing jsLj
increases the strength of an activatory response that depends

on the colour imbalance on the long range. All other notation

is left unchanged. The reaction kinetics are

W [ Nx: Cx ¼ B!W with prob:

expðbþT�1
S ðw� bÞSx

�T�1
L ððw�bÞþbLðw� bÞ2�s2

Lðw� bÞ3ÞLx
Þ

Z

and

B[Nx: Cx¼W!B withprob:

expð�bþT�1
S ðb�wÞSx

�T�1
L ððb�wÞ�bLðb�wÞ2�s2

Lðb�wÞ3ÞLx
Þ

Z
,

where Z is the colour configuration-dependent normalizing

factor. Again, we focus on perturbations to labyrinths: in all

simulations TS ¼ TL ¼ 1=16 � 1. Electronic supplementary

material, Movie S6 and figure 3 portray the dynamics.

For colour symmetry (b, bL ¼ 0), as depicted in figure 3a
and electronic supplementary material, Movie S6, stationary

labyrinths bifurcate to continually gyrating labyrinths as

jsLj increases beyond approximately 1.5 (rS=rL ¼ 1=2) or 2.0

(rS=rL ¼ 1=3). This is quantitatively represented in the plots

of figure 3a by the summary statistic fL which represents

the time-averaged speed of movement of the interface (see

electronic supplementary material for details). fL appears to

be unaltered when all length-scales are simultaneously

rescaled while other parameters are held constant (compare

the blue and green curves in the plot of figure 3a), indicating

that the structure of the bifurcation diagram is unaffected by

discretization effects of the lattice. The dependency of the

bifurcation point on rS/rL may be due to more varied inter-

face geometries that are got by increasing rS/rL, since some

variations may be more likely to creep into unstable configur-

ations that must then gyrate to new configurations that are
locally stable. For sL ¼ 2, the value of rS/rL must exceed a

threshold of approximately 1/3 in order for this bifurcation

to occur (not shown). An argument precisely analogous to

that in the previous section explains why the bifurcation

point for jsLj must be greater than 1. In the electronic sup-

plementary material, we demonstrate that gyrating labyrinths

persist upon perturbations to the boundary condition.

When colour symmetry is broken by perturbing b = 0,

gyrating labyrinths first freeze to be stationary labyrinths.

They then bifurcate discontinuously to uniform block

colour attractors once the magnitude of b exceeds a threshold

as depicted in the upper plot of figure 3b (sL ¼ 2 and rS/rL ¼

1/2). The bifurcation is similar when perturbing bL = 0 but

appears to be continuous.

3.3. Multi-colour hexagonal lattices and labyrinths from
multi-colour lateral activation and inhibition

The two-colour models in the previous sections are exten-

ded to an arbitrary number of colours denoted by

Ci, i ¼ 1, 2, . . . , n. All symmetry breaking terms are omitted

in this section. The reaction kinetics can then be described

by a single expression:

Cj [ Nx: Cx ¼ Ci ! Cj = Ci with prob:

exp
P

J¼S;L ðsgnðJÞ=TJÞððcj � ciÞ � s2
J ðcj � ciÞ3ÞJx

� �
Z

,

where

sgnðJÞ ¼ þ1 if J ¼ S
�1 if J ¼ L

�

gives short-range activation and long-range inhibition, and

ciJx is the density of colour Ci within range rJ. We simulated

three and four colours with activation at the interface and

(i) long-range inhibition only; (ii) short-range activation

only; (iii) both long-range inhibition and short-range acti-

vation; and (iv) symmetry preserving nonlinear terms that

compete with the short-range activation (jsSj . 1) or the

long-range inhibition (jsLj . 1). The dynamics are portrayed

in figure 4.
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Figure 4. Patterning modes for multi-colour lateral activation and inhibition. (a) For no lateral feedbacks (TS ¼ TL ¼1), attractors are homogeneous. For lateral
inhibition only (TS ¼ 1, TL � 1), attractors are a stationary multi-colour lattice, whereas for lateral activation only (TS � 1, TL ¼ 1), attractors are multi-
stable uniform block colour. Short-range activation and long-range inhibition together (TS � TL � 1) generate multi-colour labyrinths. (b) Increasing the nonlinear
short-range inhibition jsSj . 1 produces multi-colour labyrinthine highways (rS/rL ¼ 1/3). Increasing the nonlinear long-range activation jsLj . 1 produces
gyrating labyrinths for four colours but for three colours attractors appear to remain stationary (rS/rL ¼ 1/2). (Online version in colour.)
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As depicted in figure 4a, lateral inhibition only

(TS ¼ 1, TL� 1) generates stationary hexagonal lattices. Lat-

eral activation only (TS� 1, TL ¼ 1) generates multi-stable

block colour attractors where finally each site has the same

colour and all of the permitted colours are equally likely.

Short-range activation and long-range inhibition together

(TS � TL� 1) generate multi-colour labyrinths. These attrac-

tors are analogous to two colour stripes, bistable uniform

blocks and labyrinths depicted in figure 1.

When multi-colour labyrinths are perturbed by increasing

the short-range symmetry preserving nonlinear competition

jsSj . 1, multi-colour labyrinths bifurcate to patterning

modes that are analogous to labyrinthine highways for

three and four colours (figure 4b). However, increasing the

long-range symmetry preserving nonlinear competition

jsLj . 1 causes only four-colour labyrinths to bifurcate to

gyrating four-colour labyrinths, whereas three-colour

labyrinths bifurcate to attractors that appear not to gyrate.

3.4. Travelling stripes and spirals and reorganizing
labyrinths from cyclic symmetry breaking

When the model is extended to more than two colours, a new

mode of symmetry breaking is possible which, unlike in §3.1

and 3.2, does not enforce an accumulation of one particular

colour. As in §3.3, because there are no symmetry breaking

parameters that are associated with particular colours, the

reaction kinetics can be described by a single expression:

Cj [ Nx: Cx ¼ Ci ! Cj = Ci with prob:

exp
P

J¼S;L ðsgnðJÞ=TJÞððcj � ciÞJx
þ gJðMcJx

ÞjÞ
� �

Z
,

where again

sgnðJÞ ¼ þ1 if J ¼ S
�1 if J ¼ L

�

enforces short-range activation and long-range inhibition,

and where ðMcJx
Þj is the jth element of the vector

McJx
¼

0 1 �1
�1 0 1
1 �1 0

0
@

1
A c1Jx

c2Jx

c3Jx

0
@

1
A or

0 1 0 �1
�1 0 1 0
0 �1 0 1
1 0 �1 0

0
BB@

1
CCA

c1Jx

c2Jx

c3Jx

c4Jx

0
BB@

1
CCA,

for three or four colours, respectively, and M can be defined

similarly for n colours. The circulancy of M drives the

dynamics in a symmetry breaking cyclic colour ordering

C1 ! C2 ! � � � ! Cn ! C1 for gS, gL . 0. Colours can no

longer be arbitrarily exchanged for one another without chan-

ging the model’s specification, yet there is no a priori
propensity for one particular colour to accumulate. Reversing

the sign of gS (or gL) drives the cycle in the opposite direction

on the short (or long) range. This circulancy condition could

correspond to a scenario where cells transit between states as

partly governed by a non-transitive rock–paper–scissors-like

dynamic; for example, high local density of state C1 enhances

the likelihood of state C2 possibly via the diffusivity of some

C1-produced species, similarly high local density of state C2

enhances the likelihood of state C3 and high local density of

state C3 enhances the likelihood of state C1. A similar mode

of symmetry breaking has been called cyclic dominance and

studied in a spatial and probabilistic context within [18].

For lateral inhibition only (TS ¼ 1, TL� 1), cyclic sym-

metry breaking with jgLj � 1 causes stationary multi-colour

lattices to bifurcate to travelling stripes (three colours) or

travelling lattices (four colours) (figure 5; electronic sup-

plementary material, Movie S7). For lateral activation only

(TS � 1, TL ¼ 1), cyclic symmetry breaking with jgSj � 1

causes multi-stable uniform block attractors to bifurcate to
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Figure 5. Travelling stripes, multi-colour swirls and reorganising labyrinths from cyclic symmetry breaking. For lateral inhibition only (TS ¼ 1, TL� 1), increasing
jgLj � 1 causes stationary multi-colour lattices to transit to travelling stripes/lattices (three colours/four colours); whereas for lateral activation only
(TS� 1, TL ¼ 1), increasing jgSj � 1 causes multi-stable blocks to transit to cyclic spirals. For both lateral activation and inhibition (TS ¼ TL� 1), increasing
either jgSj � 1 or jgLj � 1 causes stationary multi-colour labyrinths to transit to dynamic, continually reorganizing attractors. Panel: For cyclic spirals
(TS� 1, TL ¼ 1, jgSj � 1), the total number of spiral foci in the domain N varies linearly with l2=rS

S (top plot); changing the initial conditions to hexago-
nal/diamond lattices then varying the diameter of initial hexagons/diamonds (middle/bottom plot) appears to have little effect on N compared with the default
initial condition (dashed line). (Online version in colour.)
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cyclic spiralling attractors (figure 5; electronic supplementary

material, Movie S8). Strikingly, the focal points of the spirals

appear to be stuck rigidly in one place and rarely wander

within the domain. Simulations indicate that the number of

spiral foci at the end of the simulation N varies linearly

with l2=pr2
S (figure 5 inset panel, top plot); N appears to be

unaffected by the simulation’s initial condition (figure 5

inset panel, middle and bottom plots).

For short-range activation and long-range inhibition

together (TS � TL� 1), cyclic symmetry breaking on the

short or long range (jgSj � 1 or jgLj � 1) causes multi-colour

labyrinths to continually reorganize (see electronic supplemen-

tary material, Movies S9 and S10). These multi-colour

reorganizing labyrinths appear sensitive to perturbations to

the boundary condition, unlike the cyclic spiralling attractors

(see the electronic supplementary material).
4. Discussion
The models we have presented are simple generalizations of

the well-known pattern-producing dynamics of lateral acti-

vation and inhibition. Yet, despite their simplicity, to our

surprise they have produced a broad range of dynamics

and attractors including labyrinthine highways, Kagome
lattices, gyrating labyrinths and corresponding multi-species

analogies. In some cases, to the best of our knowledge, the

models constitute novel phenomenological mechanisms for

generating such patterning modes. We anticipate that these

attractors are robust to changes in details of the model such

as the square geometry of the lattice or the precise formulation

of the reaction kinetics and rather that they depend on the class

of interactions implemented by the model. Whether the geo-

metry of the square lattice impacts upon results could be

better established by adapting our code, which is available

on request and uses plugins from the software Processing

[19], to run on hexagonal or Voronoi grids or by completing

the derivation of the mean-field equations (see the electronic

supplementary material) and simulating the resulting system

of PDEs. We further anticipate that for each class of inter-

actions all qualitatively distinct attractors were identified: a

simple mean-field equation governing the model’s output

allowed us to search for new patterns systematically. The

ease of implementation of simulations, the ease of interpret-

ation of bifurcation diagrams, and the capacity for

systematically exploring parameter space are strengths of this

approach compared with continuum deterministic reaction–

diffusion systems, which can be coupled to produce patterning

modes similar to labyrinthine highways, gyrating labyrinths

and cycle swirls as elegantly shown in [20,21] (table 2).



Table 2. Definitions of summary statistics.

fb the fractional excess of white over black lattice sites

fS a measure of the prevalence of short-range spots within the

labyrinth pattern

fL a measure of the average speed of movement of the

interface

N the total number of spiral foci in the l � l domain
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Since we believe that the model outputs do not depend on

details of the implementation, we explore and speculate

about the likely applicability of the models to biology. Firstly,

our study indicates that such complex patterns—beyond

stripes, labyrinths and hexagonal nets—such as labyrinthine

highways or Kagome lattices may be generated by a collec-

tion of cells with the following properties: (i) a master

regulator that once expressed initiates the expression of two

diffusing ligands and a membrane-junction signal; (ii) receiv-

ing the membrane-junction signal from a neighbouring cell is

an absolute requirement for the expression of the master reg-

ulator; (iii) the first ligand diffuses in excess of a few cell

lengths on average before being degraded; or it binds to

cell-surface receptors to trigger a signal that decreases the

likelihood of expression of the master regulator; (iv) the

second diffusing ligand, which tends to be degraded within

a range that is short compared with the range of the first dif-

fusing ligand, upon binding to a receptor either increases or

decreases the likelihood of expression of the master regulator

depending on whether the number of bound receptors is

below or above a threshold. However, it must be recognized

that our model is only an abstract representation of (i)–(iv); in

particular, it represents only cases where the time-scales of

diffusion, degradation and membrane-junction signalling

are much faster than the time-scale of the master regulator’s

response to such signals. There are other possible long-

range signalling mechanisms besides diffusion, operating

over lengths which span multiple cells, that can account for

lateral feedbacks: in animals, these include the active
migration of cells, e.g. [22], and the dynamic protrusions of

filopodia, e.g. [23,24].

Secondly, our toy model motivates us to speculate about a

possible dynamical feature of some developmental programs.

In the model, when parameters enforce what we have called

colour symmetry (b ¼ 0)—a prerequisite for e.g. stripes and

labyrinths—that region of parameter space is comparatively

rich in the diversity of final patterns that are generated; con-

sequently, the final pattern responds sensitively and flexibly

to sustained changes in parameter values. The broad range

of natural patterns suggests that this might be evolutionarily

advantageous. While genetic drift would tend to take the

system away from colour symmetry, we expect evolution to

act as a tuning force which maintains the sensitivity and

flexibility of developmental programs.1
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Endnote
1We describe a dynamical system tuned to its critical point. A self-
tuned critical system is known to operate in the inner ear where it
affords tremendous sensitivity of response to vibrations of minute
amplitude [25], but, as far as we are aware, no specific system is
thought to operate in this manner owing to the action of evolution
on the genome.
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11. Bánsági T, Vanag VK, Epstein IR. 2011 Tomography
of reaction-diffusion microemulsions reveals three-
dimensional Turing patterns. Science 331, 1309 –
1312. (doi:10.1126/science.1200815)

12. Langer JS. 1980 Instabilities and pattern formation
in crystal growth. Rev. Modern Phys. 52, 1 – 27.
(doi:10.1103/RevModPhys.52.1)
13. Sandnes B, Knudsen HA, Måløy KJ, Flekkøy EG. 2007
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