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Previous studies on adaptive behaviour in single-celled organisms have

given hints to the origin of their memorizing capacity. Here we report evi-

dence that a protozoan ciliate Tetrahymena has the capacity to learn the

shape and size of its swimming space. Cells confined in a small water dro-

plet for a short period were found to recapitulate circular swimming

trajectories upon release. The diameter of the circular trajectories and their

duration reflected the size of the droplet and the period of confinement.

We suggest a possible mechanism for this adaptive behaviour based on a

Ca2þ channel. In our model, repeated collisions with the walls of a confining

droplet result in a slow rise in intracellular calcium that leads to a long-term

increase in the reversal frequency of the ciliary beat.
1. Introduction
The behaviour of protozoa has been examined for over a hundred years under var-

ious external conditions and has been compared with intelligent behaviour in

higher animals [1–8]. It has long been observed that even protozoa behave in a

highly adaptive way towards complicated environmental conditions [9–15].

These reports have repeatedly stimulated discussion on the possibility of some-

thing like primitive intelligence. The adaptability of protozoa and its ethological

implications has become a classical topic, but much still remains to be understood.

Because of the relative simplicity of unicellular systems compared with mul-

ticellular organisms, the physical mechanism of adaptation may be easier to

clarify. Insight has been provided by a number of studies such as solving a

maze [16] and anticipating periodic environmental events by the slime mould

Physarum [15]. These observations encourage us to rethink how this capacity

for adaptation develops from the physical nature of the organism.

Concerning the capacity to learn the geometry of a space, impressive pio-

neering work on a protozoan ciliate Paramecium was performed by Bramstedt

in 1935 [17]: after the organism was transferred from a tiny container to a

large container, it swam freely but followed a trajectory that was similar to

the shape of its previous container. Although this finding was striking, some

other research groups carefully re-examined it and drew negative conclusions

[18,19]. Here we attempt to throw more light on memory capacity of this type.

In this report, we design a new quantitative experiment and confirm that

another species of ciliate Tetrahymena shows the capacity to learn spatial configur-

ations. We first carry out a qualitative characterization of the adaptive behaviour.

We then propose a possible physical mechanism for this type of memory capacity

in ciliates, based on the regulation of electric phenomena in the membrane that

are closely coupled with ciliary motion. Finally, we discuss the implications of

this memorizing capacity from the perspective of comparative ethology.
2. Organism and methods
Protozoan ciliates Tetrahymena were cultured in a liquid medium (KCl 8 mg l21,

MgSO4 8 mg l21, CaCl2 8 mg l21) and incubated in a dark room at room
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temperature (23–258C). After being allowed to swim in a

wide space freely for several tens of minutes, specimens of

Tetrahymena were confined in a spherical droplet of culture

medium (0.3–0.6 mm in diameter (f ), approximately

0.014–0.11 ml) embedded in mineral oil for 15 min. Next,

the specimens were transferred to the much larger space of

a Petri dish (35 mm in diameter, 3 ml of medium).

To minimize any space-dependent effects of unknown

chemicals that may be released from the organism during

swimming in the droplet, the liquid medium was thoroughly

mixed just after the organism was transferred from the droplet

to the Petri dish. The specimens then began to swim freely.

The swimming motion of Tetrahymena was monitored

under dark-field illumination using a stereoscopic micro-

scope (Olympus, SZX16). Microscopic images were

captured using a CCD camera and recorded on video. The

recorded images were transferred and saved on a personal

computer. Using customized software, we analysed the

swimming trajectories of Tetrahymena by the conventional

method of video image analysis.

To characterize a swimming trajectory, the maximum

distance (MD) was defined as MDðtÞ ¼ max

f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxðtÞ � xðtþ hÞÞ2 þ ð yðtÞ � yðtþ hÞÞ2

q
j � t � h � tg, where

(x(t), y(t)) is the position of organism at time t. MD was

plotted as a function of t and could saturate at some value

of diameter when the swimming trajectory was circular. At

last, statistical occurrence of MD was plotted in the function

of t. Numbers of cells were 34 (f ¼ 0.3 mm), 31 (0.4 mm),

30 (0.5 mm) and 22 (0.6 mm).

For statistical confirmation of spatial extent of swimming

trajectory after the confinement, the width of the circular

shape of trajectory (approximate diameter) was measured

for each circular shape on the whole trajectory of swimming,

and the normalized frequency was plotted. The numbers of

circles were 757 (f ¼ 0.3 mm), 292 (0.4 mm), 375 (0.5 mm)

and 76 (0.6 mm).
3. Adaptive behaviour towards the shape and
size of a swimming space in Tetrahymena

In an open space, Tetrahymena usually swam in a straight line

at a velocity of 0.81+0.27 mm s21 (mean+ s.d., N ¼ 30),

and changed the direction of swimming at a frequency of

0.01–0.1 Hz, as shown in figure 1a1.

Figure 1a2–a4 shows the swimming trajectories observed

in a tiny spherical droplet (the diameter, f, is 0.3 mm): Tetra-
hymena repeatedly turned at the droplet wall and moved

closely (figure 1a2) or approximately (figure 1a3) along the

wall, and sometimes in a different manner (figure 1a4). The

swimming patterns (figure 1a2 and figure 1a3) were often

observed in this confined space over a few minutes. The

pattern of swimming changed on a longer time scale.

After the organism was transferred from the confined

space to a wide, open space, the swimming trajectory repeat-

edly traced a circular shape that was similar to the previous

confined space (figure 1a5,a6). Sometimes the organism

swam for a period of time almost in a straight line or in a

large arc of much lower curvature; occurrences of these

modes of swimming are apparent in the trajectories in

figure 1a5,a6. The adaptive trajectory lasted from a few

minutes to an hour, and the duration time differed from
one individual to the next. The statistical occurrence of this

type of trajectory was 45%, and the occurrence of swimming

similar to figure 1a1, in which there was no adaptive change

in the trajectory, was 53%, in a total of 117 specimens sum-

ming up the different fs (0.3, 0.4, 0.5, 0.6 mm). The

remaining of cases were the other types. The duration of con-

finement was too short at 5 min to observe the type in

figure 1a5,a6, and too long at 30 min (70% of organisms

tended to stop moving).

Figure 1b1–b3 shows the characterization of swimming

type. In a segment of swimming trajectory extracted in the

time interval of 2t, the statistical occurrence of MD of any

two positions along the segment was measured with respect

to t. In the type in figure 1a5, MD was saturated at 0.4 mm

as the trajectory is approximately circular at a diameter of

0.4 mm (figure 1b2). Such saturation was not observed in

figure 1b1 when the trajectory was almost straight like

figure 1a1. The trajectory was somewhere in between, like

figure 1a6, as shown in figure 1b3.

For modes of swimming shown in figure 1a5 and a6, nor-

malized frequencies of the diameters of the circular

trajectories (excluding periods of time in which the organism

swam in a straight line or wide arc) were determined and are

shown in figure 1c. The diameter of the swimming trajectory

increased with the diameter of the confined space experi-

enced, which varied from 0.3 to 0.6 mm. The diameter of

the swimming trajectory increased with f and was approxi-

mately 1.3 times larger than f (figure 1d ). We are at

present unable to explain this difference, and it is unclear

whether the difference is physiologically significant.

In the control group that did not experience the confined

space, only fewer than 10 times of the circular trajectories

were counted when 80 individuals were traced for 1 min,

and their diameters ranged from 1 to 2 mm. So the circular

trajectory in the diameter of less than 1 mm was not observed

at all for the accumulated 80 min of observation time. By con-

trast, after the experience of confined space, the numbers of

circular trajectory (the diameter was mainly less than

1 mm) were 757, 292, 375 and 76 for the accumulated total

observation time of 38 min, 15 min, 26 min and 23 min for

droplet diameters of 0.3 mm, 0.4 mm, 0.5 mm and 0.6 mm,

respectively. Therefore, we concluded that a circular trajec-

tory less than 1 mm did not result from some stochastic

fluctuations of swimming trajectory but was clearly induced

by the confinement.

For the data of diameter distribution shown in figure 1c, the

statistical significance tests of non-parametric type were done. It

is because a precondition of equal variance for parametric

ANOVA and multiple comparison tests was not satisfied: the

variance of each group (different size of confined space) was

not equal using Bartlett’s test for equal variance. By means of

non-parametric Kruskal–Wallis test, the medians varied signifi-

cantly among the groups ( p , 0.0001), and the rank sum

differed significantly between any pair of groups ( p , 0.05)

by Dunn’s multiple comparison test. Therefore, we concluded

that the diameter of trajectory induced by the confinement

differed significantly in the groups.

The swimming speed also changed while the swimming tra-

jectory was circular: for instance, whenf ¼ 0.3 mm, 0.39+0.12

(mean+ s.d., N ¼ 14) in the droplet and 0.56+ 0.16 after

the confinement. In the other diameters, the speeds after

the confinement were 0.51+0.09 (f ¼ 0.4 mm), 0.61+0.13

(f ¼ 0.5 mm) and 0.49+0.09 (f ¼ 0.6 mm).
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Figure 1. Typical swimming trajectories of Tetrahymena before and after the confinement: (a1) in a wide, open space before confinement in a small space; (a2 – a4)
in the confined space of a spherical droplet of diameter 0.3 mm; (a5, a6) in an open space after confinement. Solid and dashed lines show the trajectories of
swimming and the shape of the confined space, respectively. (b1 – b3) Statistical occurrence of maximum distance (MD) in the function of t at the diameter of
droplet, 0.3 mm. Grey level indicates a normalized frequency according to the grey chart on the right. (c,d) Dependence of the diameter of circular motion on the
diameter of the confined space experienced, re-drawn from (c). The left numbers in each panel of (c) indicate the diameters of the confined space (mm), and the
numbers in parentheses on the right indicate the number of experiments, number of results of type (a5), (a6), number of circular trajectories count, total obser-
vation time in minute for counting the circular trajectory. The error bars in (d ) represent the standard error. The dashed line indicates where the two diameters are
equal. Number of results of type (a5), (a6) (diameter of droplet, mm): 15(0.3), 13(0.4), 14(0.5), 11(0.6).
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4. A mathematical model for adaptive behaviour
to a confined space

The swimming of a ciliate is driven by the collective motion of

many cilia, which is controlled by the membrane potential and

the Ca2þ current [6,20–22]. When the anterior part of a ciliate

collides with an obstacle, Ca2þ ions flow into the cell and lead

to reversal of the ciliary beat. The ciliate then changes direction

and the turning angle depends on the period over which Ca2þ

exceeds the threshold concentration [23]. A spontaneous turn

sometimes occurs without collision with the wall due to exci-

tation of the membrane evoked by internal and external

fluctuations [24–28].

Based on the biochemical process that controls swim-

ming, we propose a simple mathematical model. Let a

ciliate be represented by a point particle with position (x(t),
y(t)) at time t. The swimming motion can then be described

as ð _x, _yÞ ¼ ð�v cos uðtÞ, �v sin uðtÞÞ, where �v is the speed (con-

stant) and uðtÞ [ ½�p, p� is the measured angle of the

swimming direction with respect to the x-axis, as shown in

figure 2a1.

Next, we describe the motion when the cell comes into

contact with the vessel wall: the ciliate moves along the

wall without any frictional resistance. That is, it slips along

the wall. As shown in figure 2a2, the swimming trajectory

is then given by the projection of the hypothetical free

motion (in the case of no wall) onto the vessel wall, which

is ð _x, _yÞ ¼ ð�v coswðtÞ coscðx, yÞ, �v coswðtÞ sincðx, yÞÞ, where

cðx,yÞ [ ½�p, p� is the angle of the vessel wall at the contact

point with the cell and w(t) [ [0, p/2] is the contact angle

between the vessel wall and the direction of hypothetical

free motion of the cell.
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Figure 2. Schematic of mathematical description of swimming motion for
free swimming (a1) and when in contact with the vessel wall (a2). Simu-
lation of normal free swimming in the case of an excitable u1 (b1 – b3).
(b1) Typical trajectory of swimming. (b2) Time course of u1. The noise-
induced spikes P1, P2 and P3 correspond to the turning events P1, P2
and P3, respectively, in (b1). (b3) A typical trajectory of a spike in the
state space of u1 and v. The solid line is the solution trajectory, and the
dotted and the dashed lines are the null clines for u1 and v, respectively.
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Here we assume that the angle of turning is proportional

to the Ca2þ influx such that _u ¼ b0u0ðtÞ þ b1u1ðtÞ, where u0,u1

are gating variables of the Ca2þ influx with slow and fast time

scales, respectively. The existence of two such time scales for

gating was suggested by experiment [29] and the molecular

details have been well discussed for other types of cells

such as neurons [30,31].

As the mechano-sensitive Ca2þ channel is located only at

the anterior end in Paramecium [20], we set the threshold

angle (w0) of collision sensitivity as the smallest angle at

which the collision evokes a Ca2þ influx. However, the

actual value of w0 is not well known although the estimated

w0 could be within the range of 308 to 608 in Paramecium.

Therefore, we examine the effects of w0 as a model parameter.

The slow variable u0(t) is given by _u0 ¼ �1u0 þ dðwÞs,
where 1 is a small positive value (1 ¼ 0.0001). The parameter

d is the indicator of collision and takes a value of 1 (when col-

liding and sin(w) . sin(w0)) or 0 (otherwise). The parameter s
is a constant that expresses the small effect of a collision on

the gating (s ¼ 0.003). Because this slow gate opens a little

in response to a collision and then closes slowly, a series of

frequent collisions can be accumulated and a long-term

effect on the regulation of the swimming direction appears.

The dynamics of this slow variable is the new and most

important idea in our model.

The fast variable u1 shows excitable and oscillatory behaviour

and is linked to another variable v(t) by FitzHugh–Nagumo type

equations [32], tu _u1 ¼ �u1ðu1 þ a1Þðu1 þ a2Þ �vþ Iu0 þ ju1
ðtÞ

tv _v ¼ a3u1 � vþ jvðtÞ. Here tv . 1� tu . 0, a1, a2 and I are

the parameters and ju1
ðtÞ, jvðtÞ are random variables.

Lastly, we summarize the general framework of the model.

The regulation of swimming direction is a function of Ca2þ

influx that can be described by some of the gating variables

of ion channels. It is likely that the full dynamics of the mem-

brane potential includes many types of channel, but the

effective modes of the dynamics can be described by just one

or a few variables when the system is perturbed around the rest-

ing state of the potential by the stimulation of a collision. If the
perturbed state is not far from the resting state (for free straight

swimming, and (u0, u1)¼ (0, 0)), the linear approximation

assumed in the u0-equation of our model may be acceptable.

Although the molecular machinery of the Ca2þ channels is

not yet fully understood, it is expected that the mathematical

description in our model is still plausible on a general level.
5. Numerical simulation of the model
Figure 2b shows the simulation of normal free swimming

without any collision with the wall when u1 is in an excitable

regime. Typical trajectories of swimming look like a

combination of straight motion and stochastic turning

(figure 2b1). This turning results from a fluctuation-induced

spike of u1. The spikes P1, P2 and P3 in the time course of

u1 (figure 2b2) correspond to the three turning events P1,

P2 and P3, respectively, in figure 2b1. A typical trajectory of

a spike in the state space of u1 and v is shown in figure 2b3.

Figure 3 shows the results of simulation (f0 ¼ 408)
for two different sets of parameters: an excitable u1

(figure 3a1–a3) and an oscillatory u1 (figure 3b1–b3). The

simulated trajectories of swimming are similar to the real

ones (figure 1) during (figure 3a1,b1) and after (figure 3a2,

b2) confinement in the small space.

At the initial condition (time 0), the organism contacts the

wall at an angle of 908, and the next time-step changes its

direction of movement a little because w . w0. This slight

change in direction continues with further collisions as long

as w . w0, and the contact angle w decreases to w0 (figure 3a3).

While the contact angle gradually decreases, u0 increases

by s (¼0.003) at each change of direction and continues to

increase over a series of frequent turning events as the

decay rate of u0 is slow. The increase in u0 implies that the

swimming trajectory becomes ever more curved.

Around the saturation level of u0 at w0, the curvature of

swimming becomes constant while the frequency of active

turning and the decay speed of u0 become balanced. This

simulated trajectory (figure 3a1) is similar to that observed

experimentally (figure 1a2). This saturated state of u0 is main-

tained for some time after the vessel wall is removed at time

900 in the simulation, and the simulated (figure 3a2) and

experimental (figure 1a5) trajectories remain similar.

Surprisingly, the diameter of circular motion after confine-

ment is 1.3 times larger than that of the confined circular space,

as also observed for the real organism. This relationship was

reproduced for confined spaces with a range of sizes

(figure 3c), provided that w0 ¼ 408. This adaptive circular

motion slowly disappears (much later than time 1500) and

straight motion is recovered (u0 ¼ 0, data not shown).

The simulation described above was performed in the

excitable regime of u1 and noise-induced spikes of u1 were

observed. These spikes result in a transient modulation of

the curvature of swimming trajectory.

In the alternative regime of oscillatory u1, the basic behav-

iour of u0 observed for excitable u1 was reproduced, even

though regular oscillations of w and u1 are involved. The simu-

lated trajectory during (figure 3b1) and after (figure 3b2)

confinement are similar to the experimental trajectories in

figure 1a3 and a6 with respect to the circular motion and its

modulation.

As shown in figure 3c, the simulated diameters of free

motion were approximately 1.3 times larger than the
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diameter of the confined space when w0 ¼ 408. This can be

understood from the following geometrical analysis, as illus-

trated in figure 3d. Here we neglect u1 because u0 is

essentially important to persist in the circular motion. As

the trajectory of free swimming (the thick solid line in the

figure) is circular due to the constant value of _u (u0 is

nearly constant), we set the point O at the centre of this circle

and denote the angular velocity as v1. When the organism is

confined in the small space (indicated by the dashed line), the

trajectory of free swimming is projected onto the dashed

line. The velocity vectors, AB between points A and B and

A0B0 between points A0 and B0, are ð�v cos u, �v sin uÞ and

ð�v cosw cosc, �v cosw sincÞ, respectively. The lengths jABj
and jA0B0j are thus given by �v and �v cosw, respectively. The

angular velocity shortly before and after the end of confine-

ment can be approximated (for small Dt) by v0 ≃ �v cosw0=R0

and v1 ≃ �v=R1, respectively, where R0 and R1 are the radii of

the circular trajectories during and after confinement. Because

v1 is equal to v0, the ratio of the radii is given by

R1=R0 ¼ 1= cosw0, which is 1.3 in the case of w0 ¼ 408.
6. Discussion
As the confinement in a tiny droplet is an artificial condition,

one may wonder if there indeed is such a space in the wild

and if the circular swimming pattern observed is actually

physiologically meaningful. Careful discussion on this

matter is needed.

In stagnant waters like shallow rice paddy fields and ponds

which are typical habitats for ciliates, there may be dense aggre-

gates of fibrous algae like Spirogyra that form three-dimensional

meshes with many tiny cavities. Or there may be aggregates of

debris at the bottom of the paddy field or pond that look like

media with many small-scale pores. Although the exactly spheri-

cal shape examined in this report is hardly possible under such

natural conditions, cavities whose shape can be approximated

by deformed spheres are to be expected. In this sense, a capacity

to adapt to a confined spaces is not meaningless.

On the other hand, let us assume that there is no such cavity

in the wild. Organism possess a high-enough capacity to adapt

to a shape never experienced before. This, in turn, infers that
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Tetrahymena has generalized capacity for spatial memory.

Whether or not spherical cavities occur naturally, the adaptive

capacity reported here is of potential physiological usefulness.

When we confined them for more than 30 min, we

observed that 70% of the individuals after exhibiting a circu-

lar trajectory stopped all movement. One may argue that

the experimental conditions were stressful to the organisms.

A different interpretation, however, is possible. In order to

avoid frequent contacts with the wall, it may be favourable

to cease movement, which would constitute an adaptive be-

haviour. As the organisms started to swim again sometime

after the confinement, we can exclude a weakening of its

physical condition by the confinement.

The adaptive behaviour reported here is of time scale

shorter than a life span, and much shorter than multiple

generations. It may be expected that complicated geometries

of real micro-habitats are exerted in the wild. Possible

advantages of this capacity will be examined in the future.

In the mathematical modelling performed in this paper,

we assumed that Ca2þ and their Ca2þ channels played the

key role, as many previous papers on the electrophysiological

regulation of swimming behaviour in ciliates strongly

suggested their importance [6,20,22,23]. This does not mean

that Ca2þ and Ca2þ channels indeed contribute to the devel-

opment of the adaptive behaviour reported in this paper.

Therefore, this point awaits experimental verification.

The mathematical model proposed here, however, will still

hold in a mathematical sense even if the key molecules are not

Ca2þ and Ca2þ channels, because we assumed only two things

(i) slower elicitation of a response that can accumulate their

repetitive stimulation and (ii) dependency of the response sen-

sitivity on the contact angle. The first assumption needs to be

examined biologically and mathematically.

The key assumption in our model is the slow regulation of

the Ca2þ channel, which is supported by reports that the

shutdown of the Ca2þ current in Paramecium involves fast

(10 ms range) and slow (10–100 s range) kinetics [29], and

that such slow dynamics of the Ca2þ current is also widely

found in both invertebrate and vertebrate neurons. It is thus

plausible that adaptation and memorizing at the level of

the cell might be embedded in the slow dynamics of channel

motion. The adaptive capacity observed in this report is

maintained for some time after the experience of confine-

ment, and this might result in some benefit to the organism.

The swimming speed decreased down to 0.39+0.12 in the

droplet (the diameter is 0.3 mm) in comparison with 0.81+0.27

in the wide-open space before being confined, and increased up

a little to 0.56+0.16 in the wide-open space after being con-

fined. This change in the swimming speed is consistent with

the well-known correlation between the swimming speed and

curvature of swimming trajectory in Paramecium [21]: the swim-

ming speed slows down while the curvature of swimming

trajectory is larger, due to the increase in intracellular Ca2þ con-

centration which is induced by change in Kþ–Ca2þ composition

of external medium. Although the species of organism is
different from Tetrahymena, it is known that the swimming tra-

jectory is circular in the diameter of 0.2–0.8 mm when the

swimming speed is one-half or more slower than the normal

speed (0.8–1.2 mm s21), and that the diameter is smaller at

the slower swimming speed. This relationship of diameter and

speed was very similar to the results observed in our

experiment.

It is noted that a ciliate Paramecium is capable of swim-

ming in a circular trajectory in a wide-open space under the

specific conditions of external medium. This capacity can

contribute to the space memory of spherical shape. Then a

question arises: what kinds of shape other than spheres

does the ciliate memorize? The original research done by

F. Bramstedt showed a triangle was a possibility [17]. To

test various shapes of arena is very interesting.

The capacities of adaptation and memory are of interest in

basic biology and comparative ethology. In the field of neuro-

science of higher animals, molecular events involved in the

long- and short-term potentiation of synaptic connections in

neural circuits have been studied in relation to the involvement

of the N-methyl-d-aspartate receptor (NMDA receptor). Even

in protozoa, like Paramecium and Tetrahymena, the NMDA

receptor plays a key role in the regulation of swimming behav-

iour by modulating the membrane potential and the Ca2þ

influx/efflux across the membrane [30,31]. This similarity

implies a common evolutionally origin of capacity of

memory and adaptation between ciliates and higher animals.

The range of time periods over which the real organisms

exhibited the circular trajectories varied from minutes to

hours. This large variation may be explained through the math-

ematical model. In the model, the time derivative of the slow

variable u0 is just proportional to 2eu0 as this is assumed to

be the first order approximation of much more complicated

dynamics for real channel molecules. The values of the

proportional constant e might be distributed over a range of

10-fold difference. Or, the complicated dynamics of real-world

mechanism might be sensitive to internal and/or external

noise through a nonlinear effect of dynamical motion.

Many types of smart behaviour in ciliates have been

reported over the past 100 years. The capacity of conditioning

(associative learning in response to two different stimu-

lations) is one example. Even this type of higher learning

capacity might be explained by a study of channel behaviour.

This paper suggests a promising future direction for research

on the physical ethology of ciliates.
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