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The blood oxygen-level dependent (BOLD) response to a neural stimulus is

analysed using the transfer function derived from a physiologically based

poroelastic model of cortical tissue. The transfer function is decomposed

into components that correspond to distinct poles, each related to a response

mode with a natural frequency and dispersion relation; together these yield

the total BOLD response. The properties of the decomposed components

provide a deeper understanding of the nature of the BOLD response, via the

components’ frequency dependences, spatial and temporal power spectra,

and resonances. The transfer function components are then used to separate

the BOLD response to a localized impulse stimulus, termed the Green function

or spatio-temporal haemodynamic response function, into component

responses that are explicitly related to underlying physiological quantities.

The analytical results also provide a quantitative tool to calculate the linear

BOLD response to an arbitrary neural drive, which is faster to implement

than direct Fourier transform methods. The results of this study can be used

to interpret functional magnetic resonance imaging data in new ways based

on physiology, to enhance deconvolution methods and to design experimental

protocols that can selectively enhance or suppress particular responses, to

probe specific physiological phenomena.
1. Introduction
Functional magnetic resonance imaging (fMRI), based on the blood oxygen-level

dependent (BOLD) signal, has become increasingly popular in the last decades

because of its ability to probe the function of various regions of the brain. The

experiments are performed through non-invasive measurement of vascular oxy-

genation changes in response to neural activity [1–5]. The dynamics of the BOLD

response can be further understood by formulating a haemodynamic response

function (HRF) that represents the spatio-temporal properties of the response to

a localized impulse of stimulation; for neuroimaging, the stimulation is related

to the neural activity. Such a formulation will potentially enable better mapping

of the brain areas that respond to specific experimental stimuli.

Attempts have been made to model the BOLD signal by linking changes in

haemodynamic quantities, such as cerebral blood flow (CBF), cerebral blood

volume (CBV) and deoxygenated haemoglobin (dHb). One of them is the temporal

‘balloon model’ [6] that treats the cerebral vasculature as an elastic balloon that

inflates/deflates during an increase/decrease in blood volume. Paired with the

neurovascular model of [7], this has successfully predicted observed temporal

properties of the BOLD signal, such as stimulus-dependent increases and under-

shoots [7,8]. Many studies on the spatio-temporal variation of BOLD, on the

other hand, have rested on an assumption that the spatio-temporal haemodynamic

response function (stHRF) is just a product of a temporal HRF and a spatial point

spread function. The spatial function has been widely approximated by a Gaussian

function [9], motivated by numerical fitting in three-dimensional fMRI exper-

iments [10,11] and rapid spatial diffusion of vasodilatory agents, such as nitric
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Figure 1. Arbitrary volume element of poroelastic cortical tissue. Blood flows
through the vessels, serving as pores of the tissue, in the direction of the
solid arrows. Broken arrow indicates the average direction of the flow with
velocity v. (Online version in colour.)
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oxide [12]. However, the simple product of temporal and spatial

HRFs ignores intrinsic brain dynamics such as blood flow

in between neighbouring veins and arteries, finite blood

propagation speeds and haemodynamic waves [13].

A recent physiologically based model, which treats cortical

tissue as a poroelastic medium, is successful in predicting

both the spatial and temporal characteristics of the BOLD

response [13–15]. The model was formulated using the

methods from the theory of linear poroelasticity in geophysics

[16], resulting in a transfer function that predicts the linear

BOLD response to a neural activity. It comprises coupled

nonlinear partial differential equations that embody the

mean field approximations of haemodynamic changes of

blood flow, blood mass, pore pressure and haemoglobin

concentration in response to neural activity as governed by

physical conservation laws.

The features of the transfer function derived from poroelas-

tic haemodynamics relate the dynamics of inputs to determine

the spatio-temporal properties of the BOLD response. One

important feature is the frequency poles that allow recovery

of the natural frequencies that govern the inherent modes of

oscillation of the BOLD signal. In order to find the poles, one

can use the partial fraction method widely used in control sys-

tems theory [17] and computer modelling [18]. The technique

transforms a transfer function into linear combinations of

lower-order components, thereby reducing the complexity of

the system under study. The objective of this work is to analyti-

cally decompose the BOLD transfer function into partial

fractions to derive the poles and response modes. This may

enable us to formulate optimization protocols that allow one

to selectively enhance or suppress specific modes/responses

depending on which physiological phenomenon is relevant.

The paper is organized as follows: in §2, we summarize the

spatio-temporal haemodynamic model [13–15] and discuss

how the resulting transfer function predicts the linear BOLD

response to a neural activity. In §3, we detail the partial fraction

method to decompose the BOLD response into natural modes,

each corresponding to a frequency pole. In §4, we characterize

the spatio-temporal frequency properties of these components

in terms of frequency responses, power spectra and resonances.

In §5, we derive analytic expressions for the BOLD response to

localized impulsive neural activity, mathematically modelled

as a Dirac delta function; we term this response the Green func-

tion or the stHRF. The results provide a powerful quantitative

tool to calculate the linear BOLD response to an arbitrary

neural drive, which is faster and more efficient than traditional

Fourier transform methods. In §6, we apply our analytical

results to determine the BOLD response to a spatio-temporal

Gaussian stimulus and compare with experimental fMRI

data. We show how the response can be decomposed into its

components. We also show an illustrative example to selec-

tively enhance the BOLD response components by using a

spatio-temporally moving sinusoidal neural stimulus. Finally,

in §7, we summarize our major results and provide key

points in designing appropriate protocols to test our findings

in future experiments.
2. Spatio-temporal haemodynamic model
Many studies have shown that the BOLD signal, measured using

fMRI, can serve as a proxy for neural responses [4,5]. The phys-

ical principles underlying fMRI experimental data can be better
understood by formulating a theory that can predict the

haemodynamic response to neural activity. In this section, we

outline the key results of a recent haemodynamic model derived

from physiological properties of cortical tissue that produces a

transfer function that can predict the linear BOLD response to

a neural activity. Readers are referred to the original references

for detailed description and derivation [13–15].

2.1. Dynamical equations
Here we outline and briefly discuss the spatio-temporal

haemodynamic model. Its equations can be used to predict

the spatio-temporal BOLD signal Y.

The model starts by considering a cortical tissue approxi-

mated as a poroelastic medium in which the vessels serve as

the ‘pores’ of the system as shown in figure 1. In the presence

of a neural activity z(R, t) at location R at time t, the neuro-

vascular coupling between neurons and blood vessels leads

to changes in blood inflow. The arterial blood inflow rate

F(R, t) is modelled as a damped harmonic oscillator driven

by the neural drive z(R, t) [7,14]

@2FðR, tÞ
@t2

þ k
@FðR, tÞ
@t

þ g[FðR, tÞ � F0] ¼ zðR, tÞ, ð2:1Þ

where k, g and F0 are the blood flow signal decay rate, the

flow-dependent elimination constant and the resting blood

inflow, respectively.

The response owing to inflows or outflows is constrained

by changes in blood vessel pressure and conservation of mass

and momentum of blood within the tissue. This is collectively

modelled by the nonlinear haemodynamic wave equation

for blood mass J(R, t) [13,15]

@2JðR, tÞ
@t2

þ D
rf

@JðR, tÞ
@t

� c1r2PðR, tÞ

¼ rfdðzÞ
@

@t
þ D
rf

 !
[FðR, tÞ � cPPðR, tÞ], ð2:2Þ

where D quantifies damping owing to effective blood viscosity,

rf is the blood density, c1 is the pressure coupling constant, d(z)

is the Dirac delta function expressing the inflows or outflows

at the cortical surface z ¼ 0, cP is the blood outflow constant,

and P(R, t) is the average pressure. Equation (2.2) predicts

propagation of J waves with c1r2P serving as the spatial

coupling between adjacent sites in the tissue owing to pore

pressure gradients. In addition, P(R, t) is related to J via the

constitutive equation

PðR, tÞ ¼ c2J
bðR, tÞ, ð2:3Þ
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where c2 is the porous coupling constant and b is the elasticity

exponent of cortical vessels. In this paper, we associate b with

the reciprocal of Grubb’s exponent, which relates CBF to CBV,

such that b � 3.23 [14,19]. This b value implies that the average

behaviour of the vessels is hyperelastic (i.e. more resistant to

stretching than perfectly elastic vessels).

Analogous to the conservation of blood mass in the arter-

ioles, conservation of dHb must also be followed in the veins.

Changes in the concentration of dHb Q(R, t) are described

by the dynamical equation

@QðR, tÞ
@t

¼ �r � {QðR, tÞ[vðR, tÞ � vFðR, tÞ � vPðR, tÞ]}

þ [cJðR, tÞ �QðR, tÞ]h

� QðR, tÞ
JðR, tÞ=rf

dðzÞcPPðR, tÞ,

ð2:4Þ

where v(R, t) is the average blood velocity, vF(R, t) is the inflow

blood velocity, vP(R, t) is the outflow blood velocity, c is the

ratio of haemoglobin concentration to blood density and h is

the fractional rate of oxygen consumption. The first term on

the right-hand side relates the rate of change of dHb to the

amount of flux going to adjacent sites, the second term is the

conversion of dHb to oxygenated haemoglobin (cJ 2 Q) at a

rate h, and the last term represents the rate of reduction of

dHb owing to blood outflow at the boundary. On the other

hand, vF(R, t) and vP(R, t) are derived from the boundary

conditions imposed on Q(R, t) and follow the relations

r � vFðR, tÞ ¼ dðzÞFðR, tÞ ð2:5Þ

and

r � vPðR, tÞ ¼ �dðzÞcPPðR, tÞ, ð2:6Þ

whereas conservation of momentum governs the average

blood velocity such that

rf
@vðR, tÞ
@t

¼ �[c1rPðR, tÞ þDvðR, tÞ]: ð2:7Þ

Finally, the BOLD signal Y is modelled by the semi-

empirical relation [20]

YðR,tÞ

¼V0 k1 1�QðR,tÞ
Q0

� �
þk2 1�

QðR,tÞrf V0

JðR,tÞQ0

� �
þk3 1�JðR,tÞ

rf V0

 !" #
,

ð2:8Þ

where V0 is the resting blood volume fraction, Q0 is the resting

dHb concentration per unit cerebral cortical volume, and k1–k3

are parameters dependent on the configuration of the fMRI

scanner used. Equation (2.8) expresses the spatio-temporal

BOLD signal Y(R, t) in terms of the quantities F(R, t),
J(R, t), P(R, t) and Q(R, t) for a given neural drive z(R, t).
2.2. Linear blood oxygen-level dependent transfer
function

Equations (2.1)–(2.8) can be used to calculate the nonlinear

haemodynamic response to any kind of neural drive z(R, t).
However, when the neural drive is short in duration and low

in amplitude, it has been shown in experiments that the haemo-

dynamic response is approximately linear [13,21]. In this case,

we can treat the haemodynamic variables F, J, Q, v, P, z and Y
as being linear perturbations from their steady-state values

allowing us to linearize equations (2.1)–(2.8).

Fourier methods can be used to understand the properties

of the linearized equations at a given spatial frequency k

and temporal angular frequency v. This leads to a set of

transfer functions Tuz which describes the change of the

haemodynamic quantity u (i.e. F, J, Q, Y ) per unit change

in neural drive z at the same k and v. As an example, for

u ¼ Y, the transfer function TYz that relates the BOLD signal

to the neural drive is

TYzðk, vÞ ¼ Yðk, vÞ
zðk, vÞ , ð2:9Þ

where Y(k, v) and z(k, v) are the Fourier transforms of the

BOLD signal Y(R, t) and neural drive z(R, t), respectively.

Upon averaging of dynamics through the thickness of the

cortex, linearization of equations (2.1)–(2.8), and mapping to

Fourier space, equation (2.9) becomes [15]

TYzðk, vÞ ¼
Czð�ivþD=rf Þðk2 � k3Þ
k2n2

b þ k2
zn

2
b � v2 � 2iGv

� 1

�ðvþ 1=2 ikÞ2 þ v2
f

� 1� k1 þ k2

k2 � k3

� �
�V0ivþ Cz½h� t�1ðb� 2Þ�

�ivþ hþ t�1

� �
,

ð2:10Þ

where jkj2 ¼ k2 ¼ k2
x þ k2

y is the spatial wavenumber in the

plane of the cortex, Cz is the outflow normalization constant,

kz is the effective spatial frequency, vf is the natural frequency

of flow response, t is the haemodynamic transit time and vb
and G are the free parameters corresponding to the wave

propagation speed and damping rate, respectively [13,15].

All constants are either obtained from known physiological

estimates or derived from steady-state behaviour [15]; their

nominal values from physiology are summarized in table 1.
2.3. Calculation of the blood oxygen-level dependent
response

Equations (2.9) and (2.10) can be used to calculate the BOLD

response to an arbitrary drive. This is achieved by taking the

inverse Fourier transform of Y(k, v) to obtain the two-

dimensional linear BOLD response in coordinate space as

Yðr, tÞ ¼
ð

d2k

ð2pÞ2
ð

dv

2p
TYzðk, vÞzðk, vÞeiðk�r�vtÞ, ð2:11Þ

where from here on, the previously defined spatial variable R

is replaced by r to signify that we are measuring the average

dynamics in the plane of the cortex. Note that it is possible to

extend the BOLD measurement to three dimensions to comp-

lement studies on laminar flows and cortical layer-specific

activity [26]. However, this requires additional underlying

theory to be developed and is beyond the scope of this study.
3. Natural modes of the blood oxygen-level
dependent response

Transfer functions are vital in signal processing and control

systems theory as they are powerful and convenient represen-

tations of the input–output response of a linear system [17].



Table 1. Model variables and parameters. In each row, the columns are ordered from first to last to detail the variable or parameter, its symbol or formula, its
nominal value/range from physiology coming from various sources, and its units, respectively [8,14,15,22 – 25].

variable symbol value units

pressure coupling constant c1 6 � 1028 —

porous coupling constant c2 104 � (32)2b Pa kg2b m3b

blood flow signal decay rate k 0.65 s21

flow-dependent elimination constant g 0.41 s22

blood mass density rf 1062 kg m – 3

effective blood viscosity D 106 – 850 kg m – 3 s – 1

mean elasticity exponent of cortical vessels b 3.23 —

baseline CBF F0 0.01 s – 1

haemodynamic transit time t 1 s

fractional oxygen consumption rate h 0.4 s – 1

haemoglobin concentration – blood density ratio c 0.0018 mol kg – 1

resting blood volume fraction V0 0.03 —

magnetic field parameters at 3 T, TE ¼ 30 ms k1, k2, k3 4.2, 1.7, 0.41 —

natural frequency of flow response vf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g� k2=4

p
0.56 s – 1

blood outflow constant cP 1 � 1027 s – 1 Pa – 1

average cortical thickness L �3 mm

wave propagation speed vb 1 – 20 mm s – 1

wave damping rate G ¼ 1=2[D=rf þ Czðb=tÞ] 0.1 – 1 s – 1

perpendicular spatial frequency k0 ¼ cos21(0.8)/L �214 m – 1

outflow normalization constant Cz ¼ 1 mm� k0= sinðLk0Þ �0.36 —

effective spatial frequency kz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

0 þ ð1=n2
bÞCzðb=tÞD=rf

q
�214 – 950 m – 1
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Consider a transfer function G(v) obtained through methods

such as Fourier and Laplace transforms, which describes the

response of a linear system to different frequencies v. If G(v)

can be expressed as a ratio of two polynomials (i.e.

GðvÞ ¼ AðvÞ=BðvÞÞ, the roots of B(v) are poles of G(v) and

will give us an insight into the behaviour of the system for any

input. Solving the linear dispersion relation corresponding to

the poles will result in output solutions that represent the under-

lying modes of oscillation of the system. For example, if a pole of

the form 2a+bi is found for G(v), where a and b are positive

constants, then we can immediately infer that one of the under-

lying modes of the system under study is a decaying sinusoid

with decay rate a and oscillation frequency b. Other modes that

can possibly arise from analysis of the poles are widely discussed

in several control systems books such as [17]. Finally, the general

response after an arbitrary excitation will be aweighted sum of all

the modes.

In this section, we rewrite the linear BOLD transfer func-

tion in equation (2.10) as a ratio of two polynomials and

calculate the poles. We decompose the resulting equation

into components corresponding to each pole via the partial

fraction method, thereby allowing us to derive the natural

modes of the BOLD response.

3.1. Pole decomposition of the blood oxygen-level
dependent transfer function

Here we provide an analytic method to decompose the BOLD

transfer function to pole components associated with its
modes. We want to write TYz as a linear sum of transfer

functions Tj(k, v), i.e.

TYzðk, vÞ ¼
XN

j¼1

Tjðk, vÞ, ð3:1Þ

where N is the number of modes we can extract from TYz.

This enables us to characterize the separate contribution of

the jth mode to the overall BOLD response. In addition, we

want Tj to be related to a temporal frequency pole vj(k)

with general form

Tjðk, vÞ ¼
ajðkÞ

v� vjðkÞ
, ð3:2Þ

such that the jth mode of TYz follows the dispersion relation

v ¼ vjðkÞ, ð3:3Þ

and aj(k) is a k-dependent quantity that needs to be

determined. Equations (3.1) and (3.2), when combined,

decompose the BOLD transfer function via the partial

fraction method. The rest of the section is devoted to the deri-

vation of the number of modes N, the poles vj(k), and the

quantities aj(k).

We start by expressing equation (2.10) as a ratio of two

polynomials A(v) and B(k, v) such that

TYzðk, vÞ ¼ AðvÞ
Bðk, vÞ , ð3:4Þ
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where

AðvÞ¼�iv2Cz[k2�k3�V0ðk1þk2Þ]

þvCz

(
(k2�k3Þðhþt�1)� (k1þk2)Cz[h�t�1(b�2)]:

þ D
rf

[k2�k3�V0ðk1þk2Þ]
)

þ iCz
D
rf

�
(k2�k3)(hþt�1)� (k1þk2)Cz[h�t�1(b�2)]

)

ð3:5Þ

and

Bðk, vÞ ¼ (k2n2
b þ k2

zn
2
b � v2 � 2iGv)

� � vþ 1

2
ik

� �2

þ v2
f

" #
(vþ ihþ it�1): ð3:6Þ

We can write A(v) in a compact form by defining real-valued

constants

P ¼ �Cz½k2 � k3 � V0ðk1 þ k2Þ�, ð3:7Þ

Q ¼ Cz

�
ðk2 � k3Þðhþ t�1Þ � ðk1 þ k2ÞCz½h� t�1ðb� 2Þ�

þ D
rf
½k2 � k3 � V0ðk1 þ k2Þ�

�
ð3:8Þ

and R ¼ Cz
D
rf

{ðk2 � k3Þðhþ t�1Þ

�ðk1 þ k2ÞCz½h� t�1ðb� 2Þ�}, ð3:9Þ

such that equation (3.5) becomes

AðvÞ ¼ iv2Pþ vQþ iR: ð3:10Þ

On the other hand, B(k, v) in equation (3.6) is a fifth-order poly-

nomial, which implies that the BOLD transfer function has five

frequency poles corresponding to five intrinsic modes (N¼ 5).

To derive the exact form of the poles, we rewrite equation (3.6) as

Bðk, vÞ ¼
YN¼5

j¼1

½v� vjðkÞ�, ð3:11Þ

where the dispersion relation in equation (3.3) is followed. Com-

paring equations (3.6) and (3.11), the complex frequency poles

are

v1ðkÞ ¼ �iG�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2n2

b þ k2
zn

2
b � G2

q
, ð3:12Þ

v2ðkÞ ¼ �iGþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2n2

b þ k2
zn

2
b � G2

q
, ð3:13Þ

v3ðkÞ ¼ v3 ¼ �
1

2
ik� vf, ð3:14Þ

v4ðkÞ ¼ v4 ¼ �
1

2
ikþ vf ð3:15Þ

and v5ðkÞ ¼ v5 ¼ �ih� it�1, ð3:16Þ

where v3, v4 and v5 are k-independent constants. We use

equations (3.1), (3.2), (3.4), (3.10) and (3.11) to get the final

expression for aj(k) as

ajðkÞ ¼
iv2

j ðkÞPþ vjðkÞQþ iRQ5
m¼1 ½vjðkÞ � vmðkÞ þ d jm�

, ð3:17Þ

where djm is the Kronecker delta equal to 1 if j¼ m and 0 other-

wise. We see from the form of aj(k) that each Tj depends on all

m = j poles, implying that the modes of the BOLD response

will have inter-related properties.
3.2. Decomposition of the blood oxygen-level
dependent response

In §3.1, we analytically decomposed TYz into a linear sum

of component transfer functions Tj. This result when substituted

in equation (2.11) leads to the decomposition of two-dimensional

BOLD response Y(r, t) as a linear sum of five response

components Yj(r, t). Mathematically, this is demonstrated as

Yðr, tÞ ¼
X5

j¼1

Yjðr, tÞ, ð3:18Þ

where

Yjðr, tÞ ¼
ð

d2k

ð2pÞ2
ð

dv

2p
Tjðk, vÞzðk, vÞeiðk�r�vtÞ: ð3:19Þ

Many studies have shown that a linear section of the pri-

mary visual cortex will be stimulated if presented with a ring

stimulus centred in the subject’s visual field [13,27], owing to

the natural retinotopic mapping between visual field and

visual cortex [28]. Thus, a ring visual stimulus translates to

a neural drive that only spatially varies perpendicular to a

line (i.e. it is independent of the y direction) and results

in a stronger BOLD response than its two-dimensional

point-stimulus counterpart [13,15]. Hence, it is also worth

calculating the BOLD response to a neural stimulus that is

uniform in the y-dimension such that

zðk, vÞ ¼ 2pdðkyÞzðkx, vÞ, ð3:20Þ

where kx and ky are the spatial frequencies in the x- and

y-directions, respectively. Substituting equation (3.20) into

(2.11) will allow us to drop the y argument and Y will only

depend on the one-dimensional distance x perpendicular to

the centre of stimulus given by

Yðx, tÞ ¼
ð

dkx

2p

ð
dv

2p
TYzðkx, vÞzðkx, vÞeiðkxx�vtÞ: ð3:21Þ

We can then represent equation (3.21) as

Yðx, tÞ ¼
X5

j¼1

Yjðx, tÞ, ð3:22Þ

where

Yjðx, tÞ ¼
ð

dkx

2p

ð
dv

2p
Tjðkx, vÞzðkx, vÞeiðkxx�vtÞ ð3:23Þ

is the jth component of the BOLD response in one dimension

(i.e. to a line stimulus).
4. Features of components Tj (k,v)
For a given neural drive z, the BOLD response Y depends on

the properties of the transfer function TYz(k, v). The decompo-

sition derived in §3 allows us to isolate the contribution of each

component Tj(k, v) to the overall characteristics of TYz(k,v),

providing a detailed understanding of the BOLD response. It

also aids in formulating possible methods to selectively

enhance or suppress specific modes of the BOLD response

depending on which pole vj(k) we want to focus on. In this sec-

tion, we describe the frequency characteristics of Tj(k, v) and

calculate its corresponding temporal and spatial power spectra.

We analytically derive the frequencies of resonances in the

power spectra and associate them with the singularities of aj(k).
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Figure 2. Frequency characteristics of the component transfer functions for vb ¼ 1 mm s21 and G ¼ 1 s21. Each panel shows a contour plot in logarithmic scale
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for different values of k and colour bars show levels of values acquired. (Online version in colour.)
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4.1. Spatio-temporal frequency properties
The wave properties of the BOLD response Y depend on the

intrinsic frequency characteristics of Tj(k, v). We show in

figure 2 the magnitude of Tj using vb ¼ 1 mm s21 and G ¼

1 s21 for different spatio-temporal frequencies k and f ¼ v/2p.

We observe the following relationships

jT1ðk, vÞj2 ¼ jT2ðk, �vÞj2 ð4:1Þ

and

jT3ðk, vÞj2 ¼ jT4ðk, �vÞj2, ð4:2Þ

signifying responses of the same magnitude that are mirror

images of each other with respect to v ¼ 0. This remark can

be further illustrated in coordinate space by taking the inverse

Fourier transform Fjðr, tÞ ¼ F�1{jTjðk, vÞj2}, where F�1 is the

inverse Fourier transform operator, as plotted in figure 3.

Figure 3 shows that F1 ¼ F�2, where F* denotes the complex

conjugate of F, verifying that they represent travelling waves

of the same speed but propagating in opposite directions.

Also, we observe that F3–F5 are local and non-propagating

responses; with F3 and F4 having the same magnitude but

opposite phases (because F3 ¼ F�4), whereas F5 is real-valued

having low amplitude.

The broken lines in figure 2 show the maximums of

jTj(k, v)j2 representing resonances that indicate where the

BOLD response Y will preferentially oscillate. For each k
value, the broken lines predict a corresponding temporal res-

onance frequency fj,res ¼ vj,res/2p. The general form or value

of vj,res is exactly solved by taking the partial derivative

of jTj(k, v)j2 with respect to v and equating it to zero.
This results in

v j;res ¼ Re½vjðkÞ�, ð4:3Þ

where Re[.] denotes taking the real part and the explicit forms

of vj(k) are given in equations (3.12)–(3.16).

Using parameters vb ¼ 1 mm s21 and G ¼ 1 s21, and

nominal values for the constants, the relation ðk2n2
b þ k2

zn
2
b�

G2Þ . 0 is valid, such that v1;res ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2n2

b þ k2
zn

2
b � G 2

q
and

v2;res ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2n2

b þ k2
zn

2
b � G 2

q
: For k-values where k2n2

b �

k2
zn

2
b � G 2, v1,res and v2,res vary almost linearly with k as

shown by the broken lines in figure 2a,b. In addition, using

vf ¼ 0.56 s21 (table 1), the resonances v3,res/2p ¼ 20.089,

v4,res/2p ¼ þ0.089 and v5,res¼ 0 Hz are the specific frequen-

cies of the broken lines in figure 2c,d,e, respectively. Moreover,

the resonances for the total transfer function in figure 2f occur

at all resonance frequencies observed for its components.
4.2. Power spectra
In this section, we examine the spectral distribution of power

in Tj(k, v). We do this by calculating the temporal power

spectrum Pt
jðvÞ and spatial power spectrum Ps

j ðkÞ, as follows

Pt
jðvÞ ¼

ð
d2k

ð2pÞ2
jTjðk, vÞj2 ð4:4Þ

and

Ps
j ðkÞ ¼

ð
dv

2p
jTjðk, vÞj2: ð4:5Þ
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n o

: Note that Im[F5(r, t)] and Im[FYz(r, t)] are

zero everywhere. (Online version in colour.)

rsif.royalsocietypublishing.org
J.R.Soc.Interface

13:20160253

7

In figure 4, we plot the temporal power as a function

of frequency f ¼ v/2p for different pairs of vb and G.

We observe that each Tj(k, v) has high temporal power

at low frequencies, characteristic of a low-pass filter and

consistent with the findings of experiments [14] and the

blood volume fluctuation transfer function predicted by

the balloon model [21]. We also see that by independently

increasing vb and G, the amplitudes of all spectra

decreases. However, higher G broadens Pt
1 and Pt

2 but

does not change the shape of Pt
3, Pt

4 and Pt
5: Moreover,

it increases the low-frequency (near f ¼ 0 Hz) value of

Pt
Yz because it causes the response to be more localized,

thus it has a higher amplitude at its centre. Furthermore,

each Pt
j reaches peak values at certain resonance frequen-

cies v0j: The value of v0j can generally be calculated by taking

the derivative of Pt
jðvÞ with respect to v and equating it to

zero, which results in

ð
d2k

ð2pÞ2
jajðkÞj2

[jv0 j � vjðkÞj2]
2

{v0j � Re½vjðkÞ�} ¼ 0, ð4:6Þ

where Re[.] denotes taking the real part. For j ¼ 3, 4, 5, wherevj

is independent of k, the solution for equation (4.6) can be

obtained analytically such that

v0j ¼ Re½vj�, ð4:7Þ

which coincides with the results of our resonance calculation

in equation (4.3). Upon substitution of nominal parameter

values, we get v03=2p ¼ �0:089, v04=2p ¼ þ0:089 and

v05=2p ¼ 0 Hz, which give the frequencies of the peaks of

Pt
3, Pt

4 and Pt
5 in figure 4. However, for j ¼ 1, 2, where vj is
k-dependent, equation (4.6) is not analytically tractable and

we need to use numerical methods to get the exact values of

v01 and v02: However, for cases when Re½vjðkÞ� ¼ 0, such as

for vb –G pairs (1.0 mm s–1, 0.6 s– 1) and (2.5 mm s– 1, 0.6 s– 1),

v01;2=2p � 0 Hz, which is evident in figure 4d,e. We further

note that v01 and v02 move to higher values as vb and G

are increased.

On the log–log scale used in the plot of spatial power

versus spatial frequency k shown in figure 5, the general

shape of Ps
j for G ¼ 1 s21 is constant at low k and asymptoti-

cally approaches a power law of exponent –4 for higher k as

expected from our theoretical formulae. The transition point

between the flat and decreasing spectral regions moves to

lower k as vb increases, because the haemodynamic waves

are able to propagate faster and are not limited to local

dynamics. For G ¼ 0.6 s21 combined with vb ¼ 1 mm s21 or

2.5 mm s– 1, the constant-to-power law transition still occurs

for Ps
5 and Ps

Yz: However, for Ps
1, Ps

2, Ps
3 and Ps

4, we see a con-

stant spectrum for lower k followed by a maximum at an

intermediate k before it decreases with an asymptotic power

law of exponent –4 for higher k. The frequency k0j of the maxi-

mum, if it exists, can generally be calculated by taking the

derivative of Ps
j ðkÞ with respect to k and equating it to zero,

which yields

k01;2 ¼
1

nb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G 2 � k2

zn
2
b

q
, ð4:8Þ

k03;4 ¼
1

nb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

f �
1

2
k� G

� �2

þ G 2 � k2
zn

2
b

s
ð4:9Þ

and k05 ¼ 0, ð4:10Þ
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Upon substitution of nominal parameter values, equations

(4.8)–(4.10) predict the frequencies of the peaks in figure 5.

In §4.3, we study the mechanism behind the occurrence of

maximum spatial power by relating k0j to the resonances

of aj(k).
4.3. Singularity of aj (k)
The form of aj(k) in equation (3.17) is proportional to [vj(k) 2

vm(k)]21 which will produce singularities if vj(k) ¼ vm(k) for

j = m. This is not applicable for j, m ¼ 3, 4, 5, because v3, v4

and v5 are k-independent constants having different values.
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However, for the case of j, m ¼ 1, 2, v1(k) and v2(k) are

k-dependent quantities that have the same value at a critical

spatial frequency kc. In figure 6d,e, we simultaneously

plot the real and imaginary parts of v1(k) and v2(k) and

show that a solution for kc exists when G ¼ 0.6 s21 and

vb 	 2.5 mm s21. We also observe that the real parts of

v1(k) and v2(k) remain zero for k 	 kc, showing that the

poles are purely imaginary and correspond to damped

responses. However, in figures 6a,b,c,f, where vb and G are

varied, v1ðkÞ= v2ðkÞ for all k. These results imply that the

existence of kc depends strongly on the parameters vb and G.

We can easily calculate the value of kc by setting v1(kc) ¼

v2(kc). Substituting equations (3.12) and (3.13), the equality

holds when

kc ¼+
1

nb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2 � k2

zn
2
b

q
: ð4:11Þ

This result tells us that for G . kzvb, kc is real such that v1(k)

can have the same value with v2(k) in the real k-space; thus,

singularity of aj(k) can be observed. To obtain an idea of

the range of values kc may have, we show in figure 7 the

values of kc for various combinations of vb and G. Figure 7

shows a solid boundary line that separates the vb – G

parameter space into two regions where kc is either real or

imaginary. The equation of the line is G ¼ �k0nb þ Czb=t,

which can be obtained by imposing kc ¼ 0 and substituting

the nominal values from table 1. The importance of this

line is that we can immediately discern the nature of kc for

a given pair of vb and G even without calculating its explicit
value. If the pair falls to the left side of the boundary line, kc is

immediately real, and we would expect singularities in aj(k).

With the discovery of the boundary line in the vb– G par-

ameter space, it is easy to see that G ¼ 1.0 s21 combined with

any vb falls to the right side of the boundary line, thus leading

to imaginary-valued kc. This will result in non-intersecting
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v1(k) and v2(k), as shown in figures 6b,c. The same analysis is

true when G ¼ 0.6 s21 is paired with vb ¼ 5 mm s21, as verified

in figure 6f. However, when G ¼ 0.6 s21 is combined with any

vb , 2.58 mm s21, they fall to the left side of the boundary line,

thus kc is real and v1(kc) ¼ v2(kc), as shown in figure 6d,e.

We now describe the behaviour of aj(k) in figure 8 by

calculating its modulus and argument, using vb ¼ 1 mm s21

and different damping rates. The damping rates chosen are

G ¼ 0.6 and 1.0 s– 1 to investigate the properties of aj(k)

when kc is either real or imaginary. In figure 8a,b, where

vb ¼ 1 mm s21 and G ¼ 1.0 s21, kc is imaginary, thereby lead-

ing to monotonic changes in jaj(k)j. Also, we see that ja1(k)j
overlaps with ja2(k)j, as well as ja3(k)j with ja4(k)j, which can

be attributed to the similarity in the forms of their corre-

sponding poles. The discontinuous jumps in the plot of

Arg[aj] are artefacts of the restriction of the range of Arg to

[2p, p), and can easily be removed by translating the

range to [0, 2p).

On the other hand, for vb ¼ 1 mm s21 combined with G ¼

0.6 s21 (figure 8c,d ), kc is real. This is why we see a sharp res-

onance for ja1(k)j and ja2(k)j at k ¼ k01;2 ¼ kc � 510 m�1, where

k01;2 is defined in equation (4.8). We also observe a resonance

for ja3(k)j and ja4(k)j at k ¼ k03,4 � 706 m�1, with k03,4 from

equation (4.9). These resonances are responsible for the occur-

rence of the peaks in the spatial power spectra in figure 5,

because Ps
j ðkÞ is proportional to aj(k).
5. Blood oxygen-level dependent response to a
localized neural activity: Green function

In the previous sections, we analytically decomposed the

total transfer function TYz(k, v) into components and ana-

lysed their characteristics, in order to retrieve and describe

the underlying modes of oscillation of the BOLD response

Y. We now want to explore the effects of the nature of these

modes on the haemodynamic response. However, instead

of calculating the effect of Tj(k, v) on the BOLD response

using the Fourier transform method of §2.3, we relate it to

the Green function, also called the stHRF. In general, the

Green function characterizes the response of a system to the

presence of an impulse source. Because any distribution of

source can be written as a combination of impulse sources,

knowing how the system reacts to an impulse source pro-

vides significant information as to how the system will

react to a distribution of source. In this paper’s context, the

two-dimensional Green function G(r, t) is the BOLD response

to neural activity that is localized in space and time, i.e.

zðr, tÞ ¼ dðrÞdðtÞ, ð5:1Þ

where d(.) is the Dirac delta function. Once we have the Green

function, we can immediately find the two-dimensional

BOLD response Y(r, t) to an arbitrary stimulus z(r, t) by

performing a convolution over space and time, with

Yðr, tÞ ¼ Gðr, tÞ 
 zðr, tÞ

¼
ð

d2r0
ð

dt0Gðr� r0, t� t0Þzðr0, t0Þ, ð5:2Þ

where 
 is the convolution operator and the integrals are

over all space r0 and time t0. This is an alternative to the Four-

ier transform method of equation (2.11). The same principle is

used to get the one-dimensional BOLD response Y(x, t) from

the one-dimensional Green function G(x, t). In this section,
we describe the integral forms of the Green function corre-

sponding to each transfer function component. We also

analytically derive closed forms of the Green function com-

ponents for poles v3, v4 and v5, which will significantly

reduce the complexity of calculating the BOLD response in

applications.
5.1. General form of the Green function
Here we describe how to calculate the Green function corre-

sponding to Tj(k, v). We start by considering that the

Fourier transform of equation (5.1) is z(k, v) ¼ 1. When sub-

stituted in equation (2.11), this gives the general integral form

of the two-dimensional Green function G(r, t) as

Gðr, tÞ ¼
ð

d2k

ð2pÞ2
ð

dv

2p
TYzðk, vÞeiðk�r�vtÞ, ð5:3Þ

which shows that the Green function is just the inverse Four-

ier transform of the transfer function. Following the

decomposition of TYz(k, v) and Y(r, t) in equations (3.1)

and (3.18), respectively, we can express the Green function

as the linear sum

Gðr, tÞ ¼
X5

j¼1

Gjðr, tÞ, ð5:4Þ

where

Gjðr, tÞ ¼
ð

d2k

ð2pÞ2
ð

dv

2p
Tjðk, vÞeiðk�r�vtÞ: ð5:5Þ

Figure 9 shows the two-dimensional Green function com-

ponents Gj(r, t) in coordinate space using nb ¼ 1 mm s�1 and

G ¼ 1 s�1: We first note that G1(r, t) and G2(r, t) have wave-

like responses propagating in a small spatial range with

speeds comparable to vb. The structure of the wavefronts will

be seen more clearly in one dimension (figure 10a,b) as the

waves are able to propagate further in space because they

only spread in one direction, as opposed to two for two dimen-

sions. Thus, the effective amplitude of a one-dimensional wave

will fall off proportional to e�jxj instead of r�1=2e�r for two

dimensions. On the other hand, G3(r, t), G4(r, t) and G5(r, t)
remain as non-propagating responses, agreeing with the results

of §4.1. Surprisingly, G1(r, t)–G4(r, t) have non-zero imaginary

parts, whereas G5(r, t) is negative and purely real. This does not

follow a simple expectation that the components must be real-

valued functions, because the total Green function Gsum(r, t)
is real. However, upon closer inspection, we find that the

components follow the relations: Re½G1ðr, tÞ� ¼ Re½G2ðr, tÞ�,
Re½G3ðr, tÞ� ¼ Re½G4ðr, tÞ�, Im½G1ðr, tÞ� ¼ �Im½G2ðr, tÞ� and

Im½G3ðr, tÞ� ¼ �Im½G4ðr, tÞ�, where Re[.] and Im[.] denote

taking the real and imaginary parts, respectively. Thus, the com-

bined responses G1ðr, tÞ þ G2ðr, tÞ and G3ðr, tÞ þ G4ðr, tÞ
produce real-valued functions and can potentially be related

to observable haemodynamic quantities. These results account

for why the total BOLD response Gsum(r, t) remains real

(figures 9f,l).
Another interesting result is the non-zero response of

Gj(r, t) at t ¼ 0 and 0 	 r ¼ jrj & 4 mm (figure 9a–e,g–k).

These non-zero responses appear even though the neural

stimulus used to get the Green functions is localized

and non-zero only at t ¼ 0 and r ¼ 0 and seem to violate

causality. However, we verify that they are not artefacts of

the numerical implementation of equation (5.5). We then
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tried adding G1(r, t)–G5(r, t) and found that the responses at

t ¼ 0 and r = 0 perfectly cancel each other to produce the

expected zero response of Gsum(r, t) at t ¼ 0 for any r = 0

(figure 9f ).

Finally, we emphasize that the behaviour of Gj(r, t) we see

in figure 9 is general but the exact spatio-temporal variation

depends strongly on the chosen properties of the vasculature,

particularly the wave propagation speed vb and damping rate

G; the spatial range of the responses increases for higher vb
and decreases for higher G.

Similarly, the Green function in one dimension G(x, t) is

Gðx, tÞ ¼
X5

j¼1

Gjðx, tÞ, ð5:6Þ

where

Gjðx, tÞ ¼
ð

dkx

2p

ð
dv

2p
Tjðkx, vÞeiðkxx�vtÞ: ð5:7Þ

Figure 10 shows the one-dimensional Green function

components Gj(x, t) in coordinate space using vb ¼
1 mm s21 and G ¼ 1 s21. We see that Gj(x, t) has a symmetric

activity on both sides of x ¼ 0 but the shape is generally simi-

lar to its two-dimensional counterpart Gj(r, t). However, the

responses are stronger and have larger spatio-temporal

extent, in agreement with the findings of [13,15]. We also

note that G1(x, t) and G2(x, t) still correspond to travelling

waves with propagation speeds comparable to vb, because

the wavefronts move almost parallel to the guide line

shown in figure 10a,b, whereas G3(x, t), G4(x, t) and G5(x, t)
are non-propagating responses, similar to the findings of

figure 9. More importantly, we still see the unique
characteristics of the components such as (i) non-zero imagin-

ary parts for G1(x, t)–G4(x, t) and (ii) the paradoxical

non-zero response of Gj(x, t) at t ¼ 0 and x = 0. The imagin-

ary parts then cancel each other such that G1(x, t) þ G2(x, t)

and G3(x, t) þ G4(x, t) are real. In addition, combining all

Gj(x, t), the response at t ¼ 0 and x = 0 vanishes as expected

for the BOLD response (figure 10f,l).
The results we get from the two- and one-dimensional

Green functions provide a comprehensive picture of the fea-

tures we would expect from a BOLD response. We show

both cases here to better appreciate that our theory can be

compatible with future fMRI experiments, which may be

measured in a preferred dimensionality (either two- or one

dimension), as what we will illustrate in §6.
5.2. Simplifying the integral form of the Green
functions

In §5.1, we derived the integral form of the Green function.

Because we know the general form of the component transfer

function Tj, we can reduce the complexity of equations (5.5)

and (5.7) by analytically evaluating the v integral. In this sec-

tion, we show how this can be done using contour integration.

For the two-dimensional case, the transfer function Tj(k, v)

is radially symmetric in k, thus Gj(r, t) will also be radially

symmetric such that equation (5.5) becomes

Gjðr, tÞ ¼
ð1

0

dk
2p

kJ0ðkrÞ
ð

dv

2p
Tjðk, vÞe�ivt, ð5:8Þ

with r ¼ jrj and J0(kr) is the zeroth-order Bessel function of

the first kind [29]. Upon substituting equation (3.2) into (5.8),
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we get

Gjðr, tÞ ¼
ð1

0

dk
2p

kJ0ðkrÞajðkÞ
ð

dv

2p

1

v� vjðkÞ
e�ivt: ð5:9Þ

The vj poles in equations (3.12)–(3.16) lie in the lower half

of the complex plane, so we evaluate the v integral using

Cauchy residue theorem and the contour shown in

figure 11a to enclose vj(k). This simplifies Gj(r, t) to

Gjðr, tÞ ¼ �i

ð1

0

dk
2p

kJ0ðkrÞajðkÞe�ivjðkÞtQðtÞ, ð5:10Þ

where QðtÞ is the Heaviside function that expresses causality.

Equation (5.10) is known as the Hankel transform and is less

complex and faster to evaluate than the three-dimensional

Fourier transform in equation (5.5). Many numerical imple-

mentations are available in the literature that can evaluate

the Hankel transform efficiently, such as the method proposed

in [30].

For the one-dimensional case, we substitute equation (3.2)

into (5.7) and rearrange to get

Gjðx, tÞ ¼
ð

dkx

2p
ajðkxÞeikxx

ð
dv

2p

1

v� vjðkxÞ
e�ivt: ð5:11Þ

As in the two-dimensional case, we evaluate the v integral

using the contour in figure 11a and simplify Gj(x, t) to

Gjðx, tÞ ¼ �i

ð
dkx

2p
ajðkxÞei[kxx�vjðkxÞt]QðtÞ: ð5:12Þ

Equation (5.12) is a single Fourier transform and is less com-

plex and faster to evaluate than the two-dimensional Fourier

transform in equation (5.7).

5.3. Analytic derivation of the Green function for j ¼ 3,
4 and 5

Equations (3.14)–(3.16) imply that for j ¼ 3, 4, 5, the vjðkÞ are

independent of k, so that we can write vjðkÞ ¼ vj: This allows

us to derive analytical closed forms for G3–G5. We begin by

expressing equation (3.17) as a product of k-independent and

k-dependent terms, as follows

ajðkÞ ¼
iv2

j Pþ vjQþ iRQ5
m¼3 ½vj � vm þ d jm�

1

½vj � v1ðkÞ�½vj � v2ðkÞ�

� �
,

ð5:13Þ
where the term in the curly brackets is k-dependent. Substi-

tuting equations (3.12) and (3.13) into (5.13), we find

ajðkÞ ¼ �
1

n2
b

iv2
j PþvjQþ iRQ5

m¼3 ½vj�vmþ d jm�
1

k2þ 1=n2
bðk2

zn
2
b�v2

j � 2ivjGÞ
,

ð5:14Þ

for j ¼ 3, 4 and 5. If we define, the constant

lj ¼
1

nb
ðk2

zn
2
b � v2

j � 2ivjGÞ1=2, ð5:15Þ

we can rewrite equation (5.14) as

ajðkÞ ¼ �
1

n2
b

iv2
j Pþ vjQþ iRQ5

m¼3 ½vj � vm þ d jm�
1

k2 þ l2
j
: ð5:16Þ

For the two-dimensional case, we substitute equation

(5.16) into (5.10) and rearrange to obtain

Gjðr, tÞ ¼ i
2pn2

b

iv2
j Pþ vjQþ iRQ5

m¼3 ½vj � vm þ d jm�
e�ivj tQðtÞ

�
ð1

0

dk
kJ0ðkrÞ
k2 þ l2

j
: ð5:17Þ

Consider the instance when

Re[k2
zn

2
b � v2

j � 2ivjG] . 0, ð5:18Þ

where Re[.] denotes taking the real part. Equation (5.18)

implies that Re½lj� . 0: An integral relation, only true for

Re½lj� . 0 and r � 0, is

K0ðljrÞ ¼
ð1

0

dk
kJ0ðkrÞ
k2 þ l2

j
, ð5:19Þ

where K0 is the zeroth-order modified Bessel function of the

second kind [31]. Using equation (5.19), the closed-form

solution of equation (5.17) becomes

Gjðr, tÞ ¼ i
2pn2

b

iv2
j Pþ vjQþ iRQ5

m¼3 ½vj � vm þ d jm�
e�ivjtK0ðljrÞQðtÞ: ð5:20Þ

For situations where condition in equation (5.18) is not satis-

fied, that is Re[k2
zn

2
b � v2

j � 2ivjG] , 0, our derivation is still

valid upon using the transformation lj ! �ilj:
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For the one-dimensional case, we substitute equation

(5.16) into (5.12) and rearrange to obtain

Gjðx, tÞ ¼ i
2pn2

b

iv2
j Pþ vjQþ iRQ5

m¼3 ½vj � vm þ d jm�
e�ivj tQðtÞ

�
ð

dkx
1

k2
x þ l2

j
eikxx: ð5:21Þ

For x . 0, we can evaluate equation (5.21) by using the

Cauchy residue theorem and the contour shown in

figure 11b to enclose the pole kx ¼ þilj: This results in

Gjðx, tÞ ¼ i
2pn2

b

iv2
j Pþ vjQþ iRQ5

m¼3 ½vj � vm þ d jm�
e�ivjtQðtÞ p

lj
e�ljx:

ð5:22Þ

On the other hand, for x , 0, we use the contour in figure 11c
to enclose the pole kx ¼ �ilj: This results in

Gjðx, tÞ ¼ i
2pn2

b

iv2
j Pþ vjQþ iRQ5

m¼3 ½vj � vm þ d jm�
e�ivjtQðtÞ p

lj
eljx: ð5:23Þ

Combining the results of equations (5.22) and (5.23), the

closed-form solution of equation (5.21) is

Gjðx, tÞ ¼ i
2pn2

b

iv2
j Pþ vjQþ iRQ5

m¼3 ½vj � vm þ d jm�
e�ivjt p

lj
e�lj jxjQðtÞ:

ð5:24Þ

We emphasize that the analytical forms of equations

(5.20) and (5.24) are only true for j ¼ 3, 4 and 5, because

they correspond to the k-independent poles, which is

required for our derivation to work. Furthermore, we verified

that for any nb and G value, equations (5.20) and (5.24) per-

fectly match the results when equations (5.5) and (5.7) are

numerically integrated using fast Fourier transform, serving

as a check of the accuracy of our results. We can use these

analytical results to significantly reduce the complexity of

determining the BOLD response to an arbitrary neural stimu-

lus, because our remaining task is only to numerically solve

for G1 and G2 instead of all five Gj.
6. Illustrative applications
We showed in §3.2 that decomposing the linear BOLD

transfer function into components Tjðk, vÞ allowed us to

recover the components Yj of the linear BOLD response to a

neural drive, each corresponding to a mode of frequency

vj(k). The components Tj are then used to analytically

derive the Green function component Gj, both in two dimen-

sions and in one dimension, that will significantly reduce

the complexity of calculating the BOLD response to any

neural drive. In this section, we illustrate how our theoreti-

cal derivations can be used to calculate the components of

the haemodynamic response to a specific neural stimulus;

in this case, we use a spatio-temporal Gaussian neural

stimulus. We also show an example neural stimulus, a

spatio-temporally varying sinusoidal stimulus, that can

potentially enhance a BOLD response component of interest.

For illustration purposes, we will restrict our analysis to

one-dimensional haemodynamics.
6.1. Haemodynamic response to a spatio-temporal
Gaussian neural stimulus

In this section, we obtain the spatio-temporal haemodynamic

response to a neural stimulus that is localized and low in

amplitude. This kind of stimulus has been shown to produce

a linear BOLD response on the human visual area V1. To test

the model results experimentally, we compare our theory

with fMRI data previously collected from a visual experiment

[13]. In that study, the authors used a visual stimulus consist-

ing of flickering concentric rings to measure the linear BOLD

response on V1. They then used a wavefront phase estimation

technique to quantitatively obtain the speed and damping

rate of the haemodynamic waves observed for each subject.

We use their estimations of vb and G to predict the BOLD

response of one subject and compare with their data. We

will then study the properties of the resulting decomposed

BOLD components.

We model the stimulus mathematically as

zðx, tÞ ¼ 1

sx
ffiffiffiffi
p
p e�x2=s2

r
1

st
ffiffiffiffi
p
p e�ðt�t0Þ2=s2

t , ð6:1Þ

where sx and st are the spatial and temporal widths, respect-

ively, and t0 is a temporal parameter to match the neural

stimulus’ centre. In this case, we use sx ¼ 1=
ffiffiffiffiffiffiffiffi
ln 2
p� �

mm

and st ¼ 1=
ffiffiffiffiffiffiffiffi
ln 2
p� �

s to have fixed full widths at half

maximum of 2 mm and 2 s, and fix t0 ¼ 4 s, to emulate

the neural response elicited by the experiment of [13]. We

then convolve equation (6.1) with the one-dimensional

Green functions (equations (5.12) and (5.24)), using vb ¼
2.01 mm s21 and G ¼ 0.72 s21, to get the responses for one

subject as shown in figure 12. Note that the chosen values

of the parameters vb and G are taken from the experimental

estimates of [13].

We first note that the time to peak of the simulated BOLD

response in figure 12b has a small offset relative to the exper-

imental data in figure 12a. We attribute this temporal

discrepancy to potential factors such as influences of astro-

cytic delays and other neurovascular coupling processes

[32,33]. Incorporating these factors requires additional theor-

etical groundwork and is beyond the scope of this paper.

However, we will implement model extensions related to

astrocyte activity in a subsequent study to improve fits.

If we disregard the small temporal discrepancy, the

general shape of the simulated response is similar to

the result of the experiment especially in replicating the

spatio-temporal width of the positive part of the signal.

This demonstrates that the neural stimulus chosen is

well grounded.

To study the components, we extended the spatial region of

interest from [–5, 5] to [–10, 10] mm to be able to note obscured

properties away from the origin. The responses show similar

dynamics to the Green function components in figures 9 and

10, but with notable increases in spatial and temporal extent.

In particular, Y1 and Y2 still correspond to travelling wave

components, whereas Y3–Y5 correspond to non-propagating

components of the BOLD signal. Moreover, Y1–Y4 have

non-zero imaginary parts and follow the relations:

Re½Y1� ¼ Re½Y2�, Re½Y3� ¼ Re½Y4�, Im½Y1� ¼ �Im½Y2� and

Im½Y3� ¼ �Im½Y4�, where Re[.] and Im[.] denote taking

the real and imaginary parts, respectively. These relations

enable the imaginary parts of Y1–Y4 to cancel each other

producing real functions Y1 þ Y2 and Y3 þ Y4 resulting to a
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Figure 12. Experimental and simulated BOLD response to a spatio-temporal Gaussian stimulus. Each panel shows a contour plot in x (distance from centre of
stimulus) and t (time from stimulus onset) space of the normalized response as indicated by the colour bars. (a) Experimental BOLD response, (b) simulated
BOLD response using parameters vb ¼ 2.01 mm s21 and G ¼ 0.72 s21 fitted to experiment, whereas the components of the simulated BOLD response are
(c) Re[Y1(x, t)], (d ) Re[Y2(x, t)], (e) Re[Y3(x, t)], ( f ) Re[Y4(x, t)], (g) Re[Y5(x, t)], (h) Im[Y1(x, t)], (i) Im[Y2(x, t)], ( j ) Im[Y3(x, t)], (k) Im[Y4(x, t)] and (l )
Im[Y5(x, t)]. Note that Im[Y5(x, t)] is exactly zero everywhere. (Online version in colour.)
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BOLD signal that is purely real. From this decomposition,

we can clearly see that the local dynamics near x ¼ 0

of the simulated BOLD response is dictated by the non-

propagating components, whereas the spatial extent is

highly influenced by the travelling wave component. This

provides an exhaustive picture of the constituents of the

BOLD response.
6.2. Enhancement of blood oxygen-level dependent
response components

One of our goals is to demonstrate the potential to selectively

enhance or suppress particular modes that underlie the

BOLD response. We show in this section one way to enhance

the relative amplitude of a BOLD response component by

using a moving spatio-temporal sinusoid as neural stimulus.

We mathematically model the neural stimulus as

zðx, tÞ ¼ sinðksx� vstÞ, ð6:2Þ

where ks and vs are the real-valued spatial and temporal fre-

quencies of the stimulus, respectively. In frequency space, the

Fourier transform of equation (6.2) is a combination of Dirac

delta functions

zðkx, vÞ ¼ 1

2i
[dðkx � ksÞdðv� vsÞ � dðkx þ ksÞdðvþ vsÞ]:

ð6:3Þ

In order to get the jth component of the BOLD response,

we either convolve equation (6.2) with Gj(x, t) or substitute
equation (6.3) into equation (3.23), resulting in

Yjðx, tÞ ¼ 1

8p2i
[Tjðks, vsÞei(ksx�vst) � Tjð�ks, � vsÞe�i(ksx�vst)]:

ð6:4Þ

We further simplify equation (6.4) by substituting equation

(3.2) and exploiting the fact that aj(k) and vj(k) are even

functions, to get

Yjðx, tÞ ¼
ajðksÞ
8p2i

1

vs � vjðksÞ
ei(ksx�vst) þ 1

vs þ vjðksÞ
e�i(ksx�vst)

	 

,

ð6:5Þ

where aj(k) is defined in equation (3.17). Equation (6.5) can be

simplified to

Yjðx, tÞ ¼
ajðksÞ
4p2

vjðksÞ sinðksx� vstÞ � ivs cosðksx� vstÞ
v2

s � v2
j ðksÞ

,

ð6:6Þ

and we can separate v2
j ðksÞ into its real and imaginary parts,

with

v2
j ðksÞ ¼ {Re½vjðksÞ�2 � Im½vjðksÞ�2}

þ 2iRe½vjðksÞ�Im½vjðksÞ�: ð6:7Þ

We can see from equation (6.6) that there are two ways

to enhance the response of Yj(x, t). First, we can vary the spatial

frequency ks of the neural stimulus such that it is tuned to the

resonance of aj(k). That is, we use ks ¼ k0j, where k0j is the

analytical resonance frequency we derived in equations
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(4.8)–(4.10). However, for pairs of vb and G where G , kznb, k0j
becomes imaginary and this technique will not be applicable.

Second, we can manipulate the temporal frequency vs to mini-

mize the denominator of equation (6.6), such that v2
s ¼ v2

j ðksÞ:
However, because vs is real-valued, it can only have

v2
s ¼ Re½v2

j ðksÞ� as its limiting value.

We can approximate the degree of enhancement of the

second method by taking the ratio of the absolute value

of equation (6.6) when v2
s ¼ Re½v2

j ðksÞ� to its value when

the stimulus is almost stationary in time; vs is very small

or v2
s � Re½v2

j ðksÞ�: An approximate value of this ratio at

positions and times where sinðksx� vstÞ ¼ 1 and

cosðksx� vstÞ ¼ 0 is

ratio �
Re½vjðksÞ�2 þ Im½vjðksÞ�2

2jRe½vjðksÞ�Im½vjðksÞ�j

¼ 1

2

Re½vjðksÞ�
Im½vjðksÞ�

����þ 1

2

���� Im½vjðksÞ�
Re½vjðksÞ�

����
����, ð6:8Þ

which always greater than 1 for any j. Note that ratio is a con-

stant for j ¼ 3, 4 and 5, because v3, v4 and v5 are constants.

For j ¼ 1 and 2, ratio� 1 for very weak or very strong damp-

ing of v1(ks) and v2(ks). This proves that a sinusoidal stimulus

is able to enhance the response of the jth component of the

BOLD response, as long as its frequency is tuned appropri-

ately. This illustrative application will be implemented in

future works to test its accuracy.
7. Summary and conclusions
We have analysed the transfer function from a physiologi-

cally based poroelastic haemodynamic model [13–15], to

provide a deeper understanding of the linear BOLD response

to neural activity. In particular, we have developed quantitat-

ive tools to uncover the fundamental components that

contribute to the overall structure of the haemodynamic

response to a localized impulse input. The main results of

this study are as follows:

(i) We analytically decomposed the linear BOLD transfer

function into components corresponding to frequency

poles via partial fractions. The poles are responsi-

ble for resonances of the transfer function and are

associated with modes of the BOLD response. Each

mode has a distinct dispersion relation, as shown in

equation (3.3).

(ii) The derived component transfer functions were

characterized in terms of frequency responses, power

spectra and calculation of resonances. We found

from the frequency responses that the BOLD transfer

function consists of three components that are non-

propagating and two components that represent

waves travelling in opposite directions. Each compo-

nent has resonance frequencies that we calculated

analytically in equation (4.3) and illustrated in

figure 2. Analysis of spatial and temporal power spec-

tra show that the damping rate G restricts significant

responses in r – t space to a localized region because

it increases flow losses owing to blood drainage. We

also found that the components have peak values

tuned to selected frequencies v 0j and k 0j ; exact values

of which are shown in equations (4.6)–(4.10). The

origin of the peak values is related to the properties
of aj(k). Because aj(k) is proportional to the inverse of

the differences of vj(k) pairs, critical spatial frequen-

cies kc where the equality v1(k) ¼ v2(k) is achieved

can lead to resonances that enhance the responses.

We further showed how kc changes, from real to ima-

ginary values, as a function of propagation speed vb
and damping rate G.

(iii) We used the transfer function components to derive

and decompose the BOLD response to a localized

neural impulse—i.e. the Green function or stHRF.

Our technique analytically decomposes the Green

function into component responses that can be related

to different physiological phenomena. This provides

an efficient method to calculate the linear BOLD

response to any kind of neural activity that is less com-

plex and faster to implement than direct Fourier

transform methods.

(iv) The analytical results were used to demonstrate how

the BOLD response to a spatio-temporal Gaussian

neural stimulus can be decomposed into response

components. For spatial and temporal widths of the

stimulus matching the analysis of an experiment by

[13], we decomposed the linear BOLD response into

travelling waves and non-propagating components,

which enabled us to clearly identify the origin of the

shape and characteristics of the BOLD response in

terms of underlying physiology.

(v) An illustrative application was provided to show how

a moving sinusoidal neural stimulus can be used to

alter the effect of different components of the BOLD

response. This was done by tuning the spatial and

temporal frequencies of the stimulus to the preferred

resonance frequencies of particular components. We

estimated the potential increase in the response and

quantitatively showed that our method is capable of

enhancing the component corresponding to the

chosen resonance frequency.

Overall, our present work establishes new methods to

quantitatively understand the spatio-temporal properties

of haemodynamic responses to various neural stimuli.

It provides basis for further analyses and predictions for com-

parison with experiment. For example, it has the potential to

aid in designing experiment protocols that can selectively

enhance or suppress spatio-temporal resonances to increase

or decrease signal amplitude of some responses. One could

potentially design a visual stimulus, such as a contrast-

reversing grating with sinusoidal contrast modulation [34],

to elicit a neural response similar to the example in §6.2

and highlight the corresponding BOLD response component.

In addition, because we found that the BOLD response con-

sists of wave-like and non-propagating components, our

results can also be used to design experiments to improve

measurement of vascular properties such as vb and G by

exploring the wave components of the BOLD response and

disregarding the non-wave components.

Another promising application is to derive the modes

underlying the BOLD response to different types of stimulus.

A recent study by [35] developed a method, based on

the model we used, to deconvolve fMRI data and extract

spatio-temporal patterns of neural activity. The formulated

deconvolution technique would be able to separate neural

and haemodynamic contributions on fMRI maps to gain
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insights of various physiological phenomena such as detection

of stimulus orientation in human primary visual cortex [36].

This is crucial to obtain accurate neural activity maps that

can disambiguate real neural dynamics from spatially distribu-

ted connectivity delays [37]. As advances in fMRI scanner

hardware continue to improve, we can use the deconvolution

technique to obtain an estimate of neural activity z. The esti-

mated z can then be convolved with the Green function

components Gj to calculate the response modes Yj. Exploration

of this application and possible nonlinear BOLD dynamics is

left for future work.
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