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Abstract

Glycosylation chemistry of 3-deoxy-D-manno-oct-2-ulosonic acid units has been considerably 

developed within the last decade. This review covers major achievements with respect to improved 

yields and anomeric selectivity as well as suppression of the elimination side reaction via selection 

of dedicated protecting groups and appropriate activation of the anomeric center.

Keywords

Kdo; Oligosaccharide; Synthesis; Glycal; Glycosyl donor

Introduction

3-Deoxy-D-manno-oct-2-ulosonic acid (Kdo) is a non-mammalian higher-carbon saccharide 

which occurs in the cell wall glycans of Gram-negative bacteria, but has also been found in 

plants and algae.1–3 Kdo residues are of particular biomedical importance as constituents of 

bacterial lipopolysaccharides (LPS) as well as capsular polysaccharides.4 Due to their non-

mammalian origin, Kdo units are recognized by components of the native and adaptive 

immune system as demonstrated by binding studies and crystal structures of liganded Kdo 

units in the binding sites of germ-line encoded antibodies and in complex with Toll-like 

receptor 4/MD-2.5 In LPS, Kdo is part of the structurally conserved inner core region, which 

interlinks the lipid A region to the outer core sugars and the O-antigenic polysaccharide. 

Figure 1 illustrates the most relevant Kdo-structures in the inner core of Gram-negative 

bacterial LPS.4 The synthesis of these oligosaccharide ligands and neoglycoconjugates 

derived therefrom is thus regarded as a highly relevant task for development of glycoarrays, 

immunoreagents and vaccines.

The synthesis of glycosides of Kdo shares several features with the structurally related 5-N-

acetyl neuraminic acid (Neu5Ac), albeit with the difference that Kdo glycosides have been 

found in both anomeric configurations. Most of the synthetic work on Kdo chemistry in the 

past had been directed to the preparation of α-glycosides. Glycosylation reactions of Kdo 

donors are impaired by facile formation of a 2,3-dehydro product (glycal ester), the strong 

deactivation of the anomeric position by the adjacent carboxylic group and the absence of a 

stereodirecting group next to the anomeric center which limits stereochemical control of 
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product formation. In addition, the increased steric load being present across a ketosidic 

linkage and the instability of the ketoside under acidic conditions has to be considered (Fig 

2). Glycosylation reactions of Kdo monosaccharide derivatives with primary alcohols and 

reactive glycosyl acceptors, however, are usually doable in good yields and anomeric 

selectivities.

The unfavorable properties, however, are much more demanding in the assembly of Kdo 

oligomers such as those depicted in Figure 1, resulting in many cases in poor to modest 

yields only and requiring substantial efforts in product purification. A number of reviews 

covering the synthesis of Kdo and important Kdo-containing bacterial oligosaccharides have 

been published previously and the reader should consult these for further information.6 The 

present review summarizes and highlights recent accomplishments, which have been 

reported in the past decade in the field of Kdo-oligosaccharide synthesis with a focus on α-

ketosides, but will also cover selected examples for β-Kdo glycosides. The synthesis of the 

Kdo monosaccharide is beyond the scope of this review, but the reader is referred to a past 

review and two reports for multigram-preparation of Kdo.7–9

Kdo halide donors

Kdo bromide donors have mostly been used in the 1980ies and 1990ies under Koenigs-

Knorr and Helferich conditions with varying success in the synthesis of Kdo 

oligosaccharides. The donors are easily available by reaction of the anomeric acetate in HBr/

AcOH or TiBr4 in CH2Cl2 and are fairly stable when stored at low temperature. The use of 

toxic heavy-metal based promoters, the modest stereoselectivities and facile elimination side 

reaction leading to glycal ester byproducts, however, limits the use of Kdo bromide donors, 

in particular for preparation of oligosaccharides in a larger scale.

Kdo fluoride donors are accessible from the respective hemiketal precursors such as 1 and 3 
by reaction with DAST, which leads to preferential formation of the α-anomeric fluorides, 

while reaction of 3 with N,N-diethyl-α,α-difluoro-(m-methylbenzyl)amine (DFMBA) 

mainly gives the β-anomeric product 4.10 Both reactions proceed with concomitant 

formation of glycal ester byproducts 5 and 6. Another option is the conversion of the 

anomeric acetate 7 with HF in pyridine to yield the α-fluoride 8 (Scheme 1).11

The groups of Kusumoto and Fukase have to be credited for developing these Kdo fluoride 

donors into a methodology, which is suitable for efficient coupling to protected lipid A 

derivatives. As a highlight, the total synthesis of Re-LPS from Escherichia coli is to be 

mentioned, wherein the Kdo fluorides served for constructing the α-(2→6)-linkage to the 

glucosamine disaccharide backbone as well as introduction of the lateral Kdo unit in an α-

(2→4)-linkage.12 The introduction of bulky silyl substituents, or alternatively, the locking 

of the pyranose ring in a skew/boat conformation by an isopropylidene group at O-4 and 

O-5, allowed for significant improvement of the α-selectivity in the glycosylation reaction, 

presumably by sterically shielding the β-face.13 In general, however, an excess of donor and 

promoter has to be employed and significant amounts of glycal ester byproducts 5 and 6 
were formed. A useful feature of the fluoride donors is the option of a glycodesilylation 
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approach induced by liberation of HF from the BF3·Et2O promoter. Two recent examples are 

illustrated in schemes 2 and 3.

In 2007, Fukase et al succeeded in synthesizing an LPS fragment from Helicobacter pylori.
10 Coupling of the 6-O-triethylsilyl protected disaccharide acceptor 9 was performed using 

10 equivalents of promoter and 2.6 equivalents of fluoride donor 4 to give a high yield of the 

α-(2→6)-linked trisaccharide 10. Molecular sieves 5Å had been added to scavenge HF, 

which was formed in the reaction (Scheme 2). In 2008, the group of Boons synthesized a 

trisaccharide corresponding to a Kdo-lipid A fragment of Neisseria meningitidis LPS along 

similar lines (Scheme 3).14

Coupling of donor 2 to 3’-O-acylated disaccharide acceptor 11 was achieved with only a 

slight excess of promoter (relative to 11) and produced a 9:1 α/β mixture of trisaccharide 12. 

Separation of the anomeric mixture was achieved after 4’-O-phosphotriester formation with 

Watanabe reagent, which gave 13 in 88% yield.

The reactivity of these Kdo donors, however, also depends on their protecting group 

patterns. “Disarming” substituents introduced at the side chain lead to decreased yields in 

glycosylation reactions. In 2011, Ichiyanagi et al employed the 7,8-di-O-benzoyl protected 

donor 14 for coupling reactions to 4-OH and 8-OH Kdo acceptors (Scheme 4).15 Again, a 

large excess of promoter was employed and triethylamine was added to capture released HF 

and to increase the product yield. While coupling to the 4-OH group of diol acceptor 15 
produced a good yield of the disaccharide 16 and in fair anomeric selectivity, the α-(2→8)-

linked disaccharide 18 was obtained in a rather poor yield only. The authors did not disclose 

the amount of elimination product 19 formed.

3-Iodo-Kdo fluoride donors

In order to work around the lack of stereochemical control, auxiliary stereodirecting groups 

at C-3 such as 3-iodo, 3-phenylselenyl and 3-thio groups had previously been used for Kdo-

glycoside formation, but also in the field of neuraminic acid chemistry.17,18 Recently the 

favorable stereodirecting effect of a 3-iodo substituent has been combined with a fluoride 

leaving group. In contrast to fluoride donors 2, 4 and 14, 3-iodo-Kdo donors do not require 

bulky or acetal type protecting groups at O-4 and O-5, which tend to increase the formation 

of the elimination products. Furthermore, these donors are easily accessible in good overall 

yields from Kdo glycal esters via an acetoxyiodination reaction to give mainly the 2,3-trans-

diaxial products followed by treatment with HF-pyridine (Scheme 5).19,20 This way, 

fluoride 22 was obtained as single anomer and was bench-stable at room temperature for 

several weeks.

The favorable glycosylation properties were demonstrated then in the assembly of the α-

(2→4)- and α-(2→8)-linked Kdo disaccharides 26 and 29, respectively.21 Reaction of an 

equimolar amount of fluoride 22 with diol 23 afforded 24 as single anomer with only minor 

formation of glycal ester byproduct (4%). The glycodesilylation approach was equally 

effective using the 8-O-TES derivative 27 to yield 28 in 62% yield. Both 3-iodo 

disaccharides were reduced in excellent yields to the corresponding Kdo-derivatives 26 and 
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29, respectively, using atom transfer hydrogenation with lauroyl peroxide in refluxing 

cyclohexane, thereby avoiding the use of toxic tin reagents.22

Eventually donor 22 was applied to prepare the Chlamydia and Chlamydophila specific Kdo 

trisaccharides (Scheme 6). Indeed, glycosylation of the tetraol 30 could be directed in a 

regioselective fashion to provide the 4,8-branched trisaccharide. The use of 2.4 equivalents 

of donor 22 was sufficient to give trisaccharide 31 in 58% yield accompanied by isolation of 

the α-(2→7)-linked regioisomeric trisaccharide (7%) and elimination product 20 (11%). 

Subsequent O-acetylation and deiodination was straightforward to give the branched Chl. 
psittaci trisaccharide 31 in high yield and in a minimum number of steps. The strategy was 

then further elaborated to include a disaccharide fluoride donor derived from the respective 

disaccharide glycal and again capitalizing on a glycodesilylation approach (Scheme 7). 

Reaction of the 8-O-TES glycal ester 34 with donor 22 afforded disaccharide glycal ester 

intermediate, which was directly subjected to acetoxyiodination giving 35 in 57% yield. 

Conversion into fluoride 36 followed by TMSOTf-promoted coupling to diol 23 proceeded 

smoothly (→ 37) as well as the subsequent steps (→ 38, 39).

While the electron-deficient double bond in glycal ester 34 was fully compatible with the 

glycosylation conditions, electron rich alkenes compete via an iodonium ion transfer 

reaction which leads to significant consumption of donor due to formation of the elimination 

product 20. This feature excludes allyl protecting groups on 3-iodo-Kdo glycosyl donors and 

glycosyl acceptors.23

As seen from the previous examples, glycosylation of Kdo 4,5-diol acceptors never gave any 

(2→5)-linked products, due to the steric crowding at the acceptor site as well as expected 

for a ketosidic linkage being close to an ester group at the anomeric center of the donor. In 

fact, donor 22 also failed in forming a 5-O-substituted product when subjecting the “armed” 

4,7,8-tri-O-benzyl Kdo acceptor 40 to the aforementioned glycosylation conditions. Hence, 

the “armed” glycosyl donor 42 was elaborated, and under careful temperature control the 

first successful 5-O-glycosylation with a Kdo donor derivative to produce 43 was 

accomplished in 71% yield, again with no β-product detected and only very minor formation 

of glycal ester 41.24 The ensuing sequence of hydrogenation/reacetylation and global 

deprotection gave the α-(2→5)-linked Kdo disaccharide 44 (Scheme 8). This approach 

opens future perspectives for the assembly of larger fragments of the Acinetobacter 
baumannii LPS core region.

Kdo glycal donors

Kdo glycal ester derivatives can also directly serve as glycosylating agents of reactive 

glycosyl acceptor derivatives upon suitable activation, mostly using triflic acid as promoter. 

The merit of this approach is seen in a straightforward introduction of spacer groups on Kdo 

monosaccharide units allowing for subsequent application in neoglycoconjugate synthesis 

and generation of ligands for glycoarray preparation. As examples, following the first 

reports by Achiwa et al,25 reaction of glycal ester 20 with primary alcohols 45 and 47, 

respectively, promoted with AgOTf/TMSOTf and exploiting the stereochemical control of a 
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temporary phenylselenyl auxiliary group were high-yielding and α-selective and furnished 

the protected spacer glycosides 46 and 48.26,27

In 2006, the group of Takahashi developed a high-yielding and α-selective methodology on 

the basis of the electron-rich glycal ester 49, which -in the presence of triflic acid as 

promoter- could directly be activated leading to 3-iodo-Kdo glycosides when reacted with 

“armed” glycosyl acceptors (Scheme 10).28 This way, the 3-iodo-Kdo-(2→6)-, (2→3)- and 

(2→8)-linked gluco-, galacto- and Kdo-disaccharides 50-52 were isolated in very good 

yields and α-selectivities.

A similar α-glycoside formation of 3-iodo-Kdo had previously been observed by Oscarson 

in a TfOH-promoted reaction of glycal ester 20 with a spacer alcohol nucleophile.26

An iterative sequence was then elaborated starting from 2,3-di-O-benzyl-4,5-O-benzylidene 

mannitol 53, which was converted into the open-chain Kdo precursor 54. NIS/TfOH 

promoted coupling with the perbenzyl Kdo donor 49 gave an excellent yield of the α-

(2→8)-pseudodisaccharide 55 followed by ring-closure and elimination of the thio-appendix 

to regenerate the glycal ester moiety (56). Repetition of the sequence and coupling of 

trisaccharide glycal 57 to glucoside acceptor 58 was carried out with reduced yield and 

anomeric selectivity to give tetrasaccharide 59. Removal of the iodo and benzyl substituents 

and ester hydrolysis afforded 60. It might be noted that α-(2→8)-Kdo trimers have not yet 

been found in nature.

Recently, the group of Mong developed a strategy towards β-Kdo glycosides exploiting 

similar reactions of the bis-isopropylidene protected Kdo glycal ester 61.29 Reactions of 61 
with various glycosyl aceptors was promoted by NIS/TMSOTf and led to preferential 

formation of β-glycosides 62a-e, due to the stereodirecting effect of the equatorial 3-iodo-

group (Scheme 12). The predominant formation of the D-glycero-D-galacto configuration at 

C-3 can be rationalized on the basis of a steric collision of the incoming nucleophile with 

one of the methyl groups of the 4,5-O-isopropylidene group, which effectively shields the 

top position. The ratio of epimeric iodo products was also influenced by the choice of 

solvent and amount of NIS in the reaction. The presence of 2 equivalents of NIS and a 

MeCN-CH2Cl2 solvent mixture led to improved β-selectivity. Dehalogenation of 63a-e 
under radical conditions generated the corresponding Kdo-glycosides 64a-e.

The methodology was further expanded to include β-(2→7)-linked Kdo di- and trimers, 

which correspond to fragments of capsular polysaccharides from E. coli, N. meningitidis and 

Sinorhizobium meliloti strains (Scheme 13).30,31 First, the glycal glycosyl acceptor 65 was 

derived from 61 via selective cleavage of the side-chain acetonide with aqueous Zn-nitrate 

followed by regioselective 8-O-benzylation and conversion into the methyl β-ketoside 66 in 

a 6:1 diastereomeric ratio. Reaction of 66 with glycal ester 61 afforded disaccharide 67 in 

60% yield. The sequence of protecting group manipulation was repeated (→68) followed by 

a third glycosylation step and eventually provided the trimer 69. Simultaneous removal of 

three iodo-substituents under radical conditions gave trisaccharide 70, which, however, was 

not deprotected.
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Kdo thioglycoside donors

Kdo thioglycoside donors allow for various activation protocols using thiophilic promoters, 

but are susceptible to pronounced elimination reactions with less reactive glycosyl acceptors. 

These donors have mainly been applied for the preparation of spacer glycosides, in 

particular of those with a β-anomeric configuration.32,33 In 2007, Oscarson et al published 

a detailed and systematic model study with several Kdo thioglycoside donors equipped with 

acetyl, benzoyl and isopropylidene protecting groups in different solvents and with 

variations of reaction temperature and activating agents such as 

dimethyl(methylthio)sulfonium trifalte (DMTST), NIS/AgOTf, NIS and IBr.34 In short, this 

investigation showed preferential formation of β-ketosides at low temperatures, a shift 

towards higher α/β ratios in ether solvents (at the expense of reduced yields). Preferred 

formation of α-glycosides was again seen when using 4,5-O-isopropylidene protected 

donors. The moderate anomeric selectivities with thioglycoside donors are also evident in a 

pentasaccharide synthesis by Baasov, wherein the Kdo fluoride 8 was coupled to acceptor 71 
to give the α-(2→8)-linked Kdo disaccharide thioglycoside 72 in 65% yield, but subsequent 

coupling to a triglucosamine acceptor 73 resulted in a 1:1 mixture of anomeric 

pentasaccharide 74 in moderate yield only (Scheme 14).35

In 2015, however, a new type of conformational locking of Kdo was introduced by the Yang 

group, who elaborated a multistep synthesis of 5,7-O-tethered thioglycosyl donors.36 These 

donors exert excellent α-selectivity but also suffer from significant elimination, which 

require 2-4 equivalents of donor in order to achieve high yields. This was even the case with 

reactive glycosyl acceptors and primary alcohols and since the preparation of the donor is 

lengthy (Scheme 15), precious donor material is wasted. Nevertheless, this strategy is of 

significant value, as demonstrated in successful coupling of these donors to all acceptor 

positions of Kdo, including the unreactive 5-OH group.

Donor synthesis started from selective protection of position 8 of the ethyl 2-β-thio ketoside 

75 by dimethoxytrityl (→76) and TBS (→77) groups, respectively, followed by introduction 

of a 5,7-O-DTBS or benzylidene tether to give the ethyl β-thioglycosides 78, 82 and 84 in 

high to modest yields. 4-O-Benzoylation gave 79, 83 and 85, respectively, and allowed for 

subsequent preparation of the 8-OH glycosyl acceptors via selective cleavage of the 

respective 8-O-protecting group (→80). Reprotection of 80 by a 2-naphthylmethyl group 

was followed by cleavage of the 4-O-benzoyl group to give the 4-OH acceptor 82. The allyl 

glycosides 86-88 were then prepared from donors 81, 83 and 85, respectively, using tris(4-

bromophenyl)ammoniumyl hexachloroantimonate (TBPA) as promoter in MeCN. Notably, 

the 5,7-O-benzylidene protected donor 85 led to a poor anomeric ratio of the allyl glycoside 

88, whereas the DTBS donors 81 and 83 affored only the α-products 86and 87.

The Chlamydia-specific Kdo trisaccharide, disaccharide fragments derived therefrom, and 

the α-(2→5)-linked Kdo disaccharide were then prepared in a protected form (Scheme 16). 

Acceptor 89 was derived from allyl glycoside 87 by Zemplén transesterification and coupled 

with 2 equivalents of donor 81 in the presence of TBPA to give the α-(2→4)-linked 

disaccharide 90 in 72% yield (based on acceptor 89). DDQ-oxidation then afforded the 

alcohol 91, which was reacted with 81 under NIS/TfOH promotion to yield trisaccharide 93 
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in a respectable yield. The glycosylation of the β-allyl acceptor 94 was explored using both 

promoter systems. Again, the TBPA activation was superior in the glycosylation of the 

“armed” but still unreactive acceptor 94, as seen in the lower product yield of the NIS/TfOH 

promoted reaction and conversely, the higher amount of isolated elimination product 92. In 

view of the difficult and challenging formation of the α-(2→5)-linkage, this is an excellent 

result.

Eventually the authors also applied these new donors for the preparation of a protected 

trisaccharide corresponding to the inner core of Burkholderia and Proteus LPS (Scheme 17).

The primary alcohol 96 generated from 86 upon DDQ-oxidation was coupled with 4-

amino-4-deoxy-L-arabinosyl donor 97 in very high yield but poor anomeric selectivity to 

give disaccharide 97.37,38 Subsequent removal of the 4-O-benzoyl group was followed by 

coupling of 98 with donor 81 in the presence of TBPA to give a good yield of the branched 

trisaccharide 99.

A similar trisaccharide had previously been obtained with minimized protecting group 

manipulation via coupling of alcohol 100 with 97 to give an anomeric mixture of 101 and 

eventually an isolated overall yield of 36% for the 4,5,7-triol 102.38 Regioselective 

glycosylation of 102 was then achieved with 1 equivalent of the Kdo bromide donor 103 to 

give trisaccharide 104 in low yield.

Kdo trifluoroacetimidate donors

A few reports have been published describing the use of N-phenyltrifluoroacetimidate 

(NPTFA) donors of Kdo, which can be activated with TfOH or TBSOTf and TMSOTf as 

promoters. Fukase et al investigated the glycosylating properties of Kdo imidates 105 and 

106, equipped with protecting groups identical to the previously used Kdo fluorides 2 and 

4.39 Coupling of these donors to position 6 of mono- and disaccharide glucosamine 

acceptors 107 and 110 gave a fair anomeric selectivity but needed considerable excess of 

donor to achieve high yields of disaccharides 108, 109 and trisaccharide 111. Cyclopentyl 

methylether as well as acetonitrile as solvents led to an improved α-selectivity, and the use 

of microfluidic conditions reduced formation of the undesirable elimination product 

(Scheme 18). Trisaccharide 111 was then further transformed into a Helicobacter pylori LPS 

fragment.40

In addition, coupling of donor 105 to Kdo allyl glycoside 112 was performed under similar 

conditions to give Kdo disaccharide 113 in fair anomeric selectivity (Scheme 19).

A similar anomeric ratio was also observed by Ichiyanagi using the 7,8-di-O-benzoyl 

protected imidate 114 to give disaccharide 16.41 The authors also employed a related Kdo-

phosphite donor, which, however, exhibited poor glycosylating properties.

Kdo 1-C-Arylglycal donors

Recently, an indirect method toward β-linked Kdo glycosides was developed via formation 

of a glycal containing an anomeric carbon-linkage to an electron-rich aromatic group via 

Kosma Page 7

Tetrahedron Lett. Author manuscript; available in PMC 2016 June 03.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



ring-closure of olefin 115.42 Thus, NIS-treatment of 115 afforded an epimeric mixture of 2-

iodo-2-deoxy-C-glycosides 116, which were converted into the corresponding p-

methoxyphenyl glycal 117 under basic conditions (Scheme 20). Subsequent reaction with a 

series of alcohols in the presence of NIS proceeded via preferred formation of 2-iodo β-

glycosides 118. The selective formation of the β-glycosides was rationalized on 

stereoelectronic grounds and on the skewed conformation enforced by the 4,5-O-

isopropylidene group, thereby preventing the NIS attack from the top face and eventually 

leading to a pseudo trans-diaxial arrangement of the iodo-group and the anomeric OR group 

(see also Scheme 13). Radical deiodination of the methyl glycoside gave 119 and was 

followed by oxidative removal of the aromatic appendix to generate the carboxylic function 

leading to 120.

Conclusions and Outlook

As illustrated in this review, remarkable progress has been achieved in the past in the 

synthesis of α-glycosides of Kdo. In particular, locking of the pyranose ring conformation 

by 4,5-O-isopropylidene or 5,7-O-TDBS groups provides mainly the α-ketosides, albeit at 

the cost of a more pronounced elimination side reaction. The 3-iodo-Kdo fluoride donors 

have been proven to be versatile donors in α-Kdo oligomer assembly with options for block 

and regioselective synthesis, but have some limitations in selection of protecting groups. As 

a main very recent accomplishment the first syntheses of α-(2→5)-linked Kdo disaccharides 

should be mentioned. The stereodirecting temporary 3-iodo-group has also been of value in 

the construction of β-anomeric Kdo glycosides. Still, the chemistry of β-Kdo units needs to 

be further developed in the future and presently lags behind its α-anomeric counterparts.
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Figure 1. 
Numbering scheme for Kdo and structures of selected Kdo oligosaccharides from 

pathogenic bacteria.
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Figure 2. 
Glycosylation products of Kdo donors.
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Scheme 1. 
Synthesis of Kdo fluoride donors.
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Scheme 2. 
Glycosylation of a 6-O-TES-protected diglucosamine acceptor.
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Scheme 3. 
Glycosylation of a diglucosamine acceptor en route to Kdo-lipid A of Neisseria 
meningitidis.
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Scheme 4. 
Glycosylation of 17 with a peracetylated Kdo bromide donor was also low-yielding 

according to a previous report.16
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Scheme 5. 
Synthesis of Kdo disaccharides.
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Scheme 6. 
Synthesis of a 4,8-dibranched Kdo trisaccharide.
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Scheme 7. 
Synthesis of the linear Chlamydia-specific Kdo trisaccharide 39.
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Scheme 8. 
Synthesis of the α-(2→5)-linked Kdo disaccharide 44.
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Scheme 9. 
Synthesis of spacer α-glycosides from glycal ester 20.
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Scheme 10. 
Activation of benzyl glycal ester with NIS/TfOH.

Kosma Page 21

Tetrahedron Lett. Author manuscript; available in PMC 2016 June 03.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Scheme 11. 
Synthesis of α-(2→8)-Kdo trimers.
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Scheme 12. 
Synthesis of β-Kdo derivatives.
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Scheme 13. 
Synthesis of a β-(2→7)-linked Kdo trimer.
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Scheme 14. 
Synthesis and glycosidation of a Kdo disaccharide donor
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Scheme 15. 
Synthesis of 5,7-O-locked Kdo thioglycoside donor and acceptor derivatives.
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Scheme 16. 
Synthesis of the Chlamydia-related Kdo trisaccharide and the α-(2→5)-linked Kdo 

disaccharide.
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Scheme 17. 
Synthesis of Burkholderia and Proteus-related LPS core structures.
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Scheme 18. 
Glycosylation reactions with Kdo N-phenyl trifluoroacetimidates.
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Scheme 19. 
Kdo disaccharide synthesis with Kdo N-phenyl trifluoroacetimidates.
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Scheme 20. 
β-Kdo synthesis from 1-C-aryl glycal.
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