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Abstract

Motivation: The three-dimensional structure of the genome is an important regulator of many cel-

lular processes including differentiation and gene regulation. Recently, technologies such as Hi-C

that combine proximity ligation with high-throughput sequencing have revealed domains of self-

interacting chromatin, called topologically associating domains (TADs), in many organisms.

Current methods for identifying TADs using Hi-C data assume that TADs are non-overlapping, des-

pite evidence for a nested structure in which TADs and sub-TADs form a complex hierarchy.

Results: We introduce a model for decomposition of contact frequencies into a hierarchy of nested

TADs. This model is based on empirical distributions of contact frequencies within TADs, where

positions that are far apart have a greater enrichment of contacts than positions that are close to-

gether. We find that the increase in contact enrichment with distance is stronger for the inner TAD

than for the outer TAD in a TAD/sub-TAD pair. Using this model, we develop the TADtree algorithm

for detecting hierarchies of nested TADs. TADtree compares favorably with previous methods,

finding TADs with a greater enrichment of chromatin marks such as CTCF at their boundaries.

Availability and implementation: A python implementation of TADtree is available at

http://compbio.cs.brown.edu/software/

Contact: braphael@cs.brown.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The 3D architecture of the genome influences key cellular processes

such as gene regulation, replication timing and differentiation

(Cavalli and Misteli, 2013). Chromosome conformation capture

(3C) technologies use proximity ligation of DNA to elucidate gen-

ome structure at high resolution (De Wit and de Laat, 2012).

Recently, techniques such as Hi-C that couple proximity ligation

and high-throughput sequencing have revealed megabase-sized do-

mains of self-interacting chromatin called topologically associating

domains (TADs) in both mammals and fruit flies (Dixon et al.,

2012; Hou et al., 2012; Nora et al., 2012; Sexton et al., 2012).

Conserved across cell types and species, TADs may partition the

genome into functional units and help regulate the distribution of

epigenetic marks (Symmons et al., 2014; Tanay and Cavalli, 2013).

Hi-C uses proximity-based ligation to measure the frequency of

physical interaction between pairs of genomic loci (Lieberman-Aiden

et al., 2009). Typically, the raw read pairs generated by a Hi-C

experiment are assigned to bins of fixed width (e.g. 40 kb),

resulting in a contact matrix A, where Aij is the number of con-

tacts between bins i and j, normalized for experimental bias.

Several methods have been developed for the identification of

TADs from Hi-C data. These methods may be roughly classified

into two categories: (i) methods that define a one-dimensional

(1D) test statistic from the contact matrix Aij and (2) methods

that exploit the two-dimensional (2D) structure of the contact

matrix.

Dixon et al. (2012) compute a 1D ‘directionality index’ (DI)

from the contact matrix. This index defines whether contacts have

an upstream bias, downstream bias or no bias. Next, they use a hid-

den Markov model (HMM) to partition the genome into regions

defined by changes in the DI. Each transition into downstream bias
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marks the start of a domain and the next transition out of upstream

bias marks its end. Sauria et al. (2014) introduce a 1D statistic called

the ‘boundary index’ (BI) which captures sudden shifts in interaction

preference. Sauria et al. (2014) identify domain boundaries by call-

ing peaks in the BI, but do not explicitly pair these boundaries into

domains, leaving the domain structure ambiguous.

Recently, a number of methods have been introduced to identify

chromatin domains using the full 2D contact matrix. Filippova et al.

(2014) use dynamic programing to find domains with maximal

intra-domain contact frequency. This method includes a tunable size

parameter and outputs the set of non-overlapping domains that are

most robust to changes in the parameter value. More recently, Lévy-

Leduc et al. (2014) developed a 2D model that fits a block diagonal

matrix to observed contacts using maximum likelihood. This

method is based on a generative model where the expected contact

frequency across a TAD is uniform.

All the methods above assume that TADs are non-overlapping.

However, several studies have observed a hierarchical chromatin

organization including both TADs and sub-TADs within them

(Fig. 1). Although TADs are conserved across cell types, sub-TADs

are thought to vary between cell types and may facilitate changes

in gene regulation during differentiation (Phillips-Cremins et al.,

2013) and development (Berlivet et al., 2013). In addition, distinct

combinations of proteins such as CTCF, Mediator and Cohesin

may demarcate TAD and sub-TAD boundaries (Phillips-Cremins

et al., 2013; Zuin et al., 2014). The distinct properties of TADs

and sub-TADs highlight the need for methods that can detect both

simultaneously. A very recent development in this direction is the

‘Arrowhead’ algorithm (Rao et al., 2014). Although this algorithm

can identify overlapping domains, it does not explicitly require

that overlapping domains be nested, and it is at present not pub-

licly available.

In this article, we introduce the TADtree algorithm, which de-

tects nested hierarchies of TADs. In contrast to previously published

methods that rely on ad hoc assumptions about the structure of

TADs, we derive a straightforward model for the frequency of con-

tacts within TADs. Our model is based on the empirical observation

that within TADs, the enrichment of contacts over background

grows linearly with the distance between bins, but at a rate that de-

pends on the TAD length. Thus, every TAD can be characterized by

two parameters: b, the baseline enrichment for contacts between ad-

jacent bins within the TAD and d, the rate at which contact fre-

quency increases with distance between bins. Using reported TADs

from previous studies, we derive relationships between the values of

b and d when one TAD is nested inside another. From these observa-

tions, we propose a model for TAD hierarchies.

We combine our model for contact enrichment within TADs

with a 1D BI similar to the one used by Sauria et al. (2014). We for-

mulate and optimize an objective function that scores a hierarchy of

nested TAD trees according to both the fit to the observed contact

matrix and the BI of each TAD and sub-TAD in the hierarchy. We

demonstrate that our resulting TADtree algorithm outperforms

existing methods on real data, predicting TADs that have greater en-

richment for binding of factors known to delineate chromatin or-

ganization, and showing greater overlap with high-resolution data.

2 Methods

2.1 Model
Background contact frequencies

Consider a chromosome of length J (in bins) and a J� J symmetric

matrix A, where Aij is the frequency of contact between bins i and j.

Typically, Aij represents a normalized count of paired sequencing

reads, where each read represents a ligation event between DNA

fragments derived from bins i and j, respectively. Based on A, we

form a ‘background’ function B giving the mean contact frequency

for bins at each distance d. Formally,

BðdÞ ¼ 1

J � d

XJ�d

i¼1

Ai;iþd: (1)

Modeling TADs

A TAD, D, is modeled by the quadruple D ¼ ðLD;RD; dD;bDÞ, spe-

cifying an interval ½LD;RD� of bins and two parameters dD and bD,

which determine the expected contact frequency at each intra-TAD

bin pair, as follows:

~ADðl; kÞ ¼ ððk� lÞdD þ bDÞBðk� lÞ for LD� l�k�RD: (2)

~AD expresses the expected enrichment of contacts over background
~ADðl;kÞ
Bðk�lÞ as a linear function of the distance jk� lj, having slope dD and

intercept bD.

This model is motivated by the observed properties of TADs

identified by Dixon et al. (2012). We grouped TADs with similar

sizes and computed the enrichment of contacts over background for

Fig. 1. Illustration of hierarchical TAD structure. A Hi-C contact map is shown on the left, with a close-up of the diagonal top-right. TADs and sub-TADs are anno-

tated as triangles. The corresponding DNA structure is illustrated below
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bin pairs in each group. We observed that across many TAD groups,

contact enrichment increases linearly with distance (Fig. 2A), with

slope dependent on the size of the TAD. Although small deviations

from linearity are observed for pairs of bins near TAD boundaries

(Fig. 2B), a linear model is favored for the sake of simplicity.

Because contact enrichment increases with distance, we require

dD > 0. The positive correlation between contact enrichment and

distance may arise from looping interactions between TAD bounda-

ries, or because local interactions due to sequence proximity pro-

duce most of the contacts between closely spaced bins, drowning

out the contacts that arise from the higher order structure imposed

by TADs.

Modeling sub-TADs

Consider two TADs, D ¼ ðLD;RD; dD;bDÞ and D0 ¼ ðLD0 ;RD0 ;

dD0 ;bD0 Þ, such that D0 lies within D (i.e. LD�LD0 < RD0�RD).

Because D0 represents a proper subset of the bins in D, the param-

eters dD0 ; bD0 may differ from dD;bD. We investigated this difference

systematically using pairs of TADs from Filippova et al. (2014) and

Dixon et al. (2012) where a TAD from one dataset was contained

by a TAD from the other dataset. We find that enrichment over

background ( Alk

Bðk�lÞ) rises with distance at a higher rate for inner

TADs than for their respective outer TADs, that is dD0 > dD

ðP < 10�29; Fig. 2C). This inequality is not just a consequence of

TAD size, because it does not hold for nested pairs with randomized

positions (P¼0.3). In contrast, the values bD and bD0 for the outer

and inner TADs show no systematic difference, but are strongly cor-

related ðr ¼ 0:88;P < 10�35; Fig. 2D).

Based on these observations, we define D0 to be a sub-TAD of D

provided

1:LD �LD0 < RD0 �RD ði:e:D0 � DÞ:

2: dD0 > dD:

Thus, sub-TADs are defined as local regions within a larger TAD

that have a different distribution of contacts, characterized by higher

rate of increase in contact frequency with distance (Fig. 3A). In the

same way that a single TAD D specifies an expected contact

frequency function ~AD, a TAD/sub-TAD pair T ¼ fD;D0g has an

expected frequency function ~AT , defined below. For convenience,

we write ðl; kÞ 2 D when LD�l < k�RD.

~ATðl;kÞ ¼
~AD0 ðl;kÞ if ðl; kÞ 2 D0

~ADðl; kÞ if ðl; kÞ 2 DnD0

(
(3)

Note that ~AT is defined for all bin pairs ðl;kÞ 2 D, because D is the

union of the domains of ~AD and ~AD0 , respectively. ~AT is identical to
~AD outside the sub-region defined by D0, where it becomes identical

to ~AD0 . This definition reflects the role of sub-TADs in capturing

local regions within an existing TAD that have a distinct distribution

of contacts, characterized by higher d.
Generalizing the TAD/sub-TAD arrangement shown in

Figure 3A, we allow a single TAD to have multiple sub-TADs, and

also allow sub-TADs to have their own sub-TADs. Formally, define

a TAD tree T to be a rooted hierarchy of TADs, such that for each

D;D0 2 T where D0 � D, dD0 > dD. A collection of disjoint TAD

trees is called a TAD forest (Fig. 3B). Each TAD forest F specifies a

map ~AF of expected contact frequencies. Because sub-TADs model

the local distribution of contacts, which differs from that of the

enclosing TAD, the expected contact frequency for each pair of bins

in a TAD forest F is modeled using the minimal TAD D 2 F that

contains them both or by background if there is no such TAD.

Fig. 2. TADs from a previous study (Dixon et al., 2012) were each rescaled to

match the closest of four sizes (400 kb, 800 kb, 1.2 Mb, 1.6 Mb) using bilinear

interpolation. (A) The superposition of all TADs in the 1.2 Mb size class shows

that contact enrichment increases with increasing distance between bins. (B)

For each size class, the average enrichment of intra-TAD contacts increases

linearly with distance. This linear function has slope d and intercept b.

Average enrichment for a set of random intervals is shown in red for compari-

son. Next, combining TADs from Filippova et al. (2014) and Dixon et al. (2012)

revealed 114 nested pairs D 0 � D, where D 0 had length 400–600 kb and D had

length 800 kb to 1.2 Mb. (C) Nearly all nested pairs (black dots) had d0 � d (left),

while this relationship was not true for nested pairs with randomized pos-

itions (right). (D) No similar inequality holds for values of b, although b and b0

are strongly correlated for both real and randomized nested pairs. (E)

Rescaling nested TADs so that D 0 was 500 kb and D was 1 Mb shows that

average contact enrichment for D 0 (green) and D (black) follows the linear

model [Equation (2)] with d0 > d and b0 ¼ b. (F) Examples of nested pair

(above) with contact enrichment plotted against distance (below)

Fig. 3. (A) When one TAD lies inside another, the enrichment of contacts in-

creases at a faster rate for the inner TAD (green line) than for the outer TAD

(black line), that is dD 0 > dD . (B) Example of a TAD forest containing TAD trees

T1, T2 and T3. (C) The squared error EðT Þ for a TAD tree T with root D and

sub-tree T 0 is obtained as EðT Þ ¼ EðDÞ þ EðT 0Þ � EC , where EC is an ‘error

compensation’ term that corrects double counting of the squared error over

bin pairs in T 0
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Formally, let minFðl;kÞ denote the minimal D 2 F such that

ðl; kÞ 2 D, where minFðl; kÞ ¼ ; if there is no such D. Then

~AFðl;kÞ ¼
~ADðl; kÞ if minFðl; kÞ ¼ D

Bðk� lÞ if minFðl; kÞ ¼ ;:

(
(4)

Boundary index

So far we have described a model for the distribution of contacts

within TADs, requiring that intra-TAD contact frequencies are en-

riched over background, especially for bins that are far apart.

Another important feature of TADs is that their boundaries mark

a shift in interaction preference. Dixon et al. (2012) use this fea-

ture as the basis for an HMM that predicts TADs by detecting

shifts from upstream to downstream preference. Here, we define a

1D test statistic called the BI that measures local shifts in inter-

action preference. Note that Sauria et al. (2014) recently posted a

preprint that also uses the term BI for their 1D statistic, which has

a more complicated form. For constants p, q representing the scale

and persistence of interaction shift, we define the BI Bp;q as

follows:

Bp;qðiÞ ¼
Xiþq

l¼i�q

j
Xp

k¼1

Al;iþk � Al;i�kj: (5)

The BI measures the shift in contacts around an interval i.

Specifically, in an interval of length p containing i, the BI Bp;q totals

the differences in contact frequencies up to q bins upstream and

downstream of i. Let Bp;qðiÞ :¼ ðBp;qðiÞ �meanðBp;qÞÞ=varðBp;qÞ be

the Z-score of Bp;q, where mean and variance are taken over all bins

on the given chromosome. We define Bp;q for a TAD forest as

follows:

Bp;qðFÞ ¼
X
D2F

Bp;qðLDÞ þ Bp;qðRDÞ: (6)

Because the end points of TADs should have high BI, we say that

D has valid boundaries if Bp;qðLDÞ > 0 and Bp;qðRDÞ > 0.

2.2 Fitting TAD trees to data
Given a matrix A of observed contacts, we aim to find a TAD forest

F that best fits the data. Specifically, we want a TAD forest F that

has high BI and minimizes the error between A and the expected

contact frequency function ~AF. We measure the latter using the sum

squared error,

EðFÞ ¼
X
l;k

ð ~AFðl; kÞ � AlkÞ2 (7)

Finally, we require that F has valid boundaries in order to exclude

false-positive TAD calls in regions of the genome that have high con-

tact frequencies but low BI. We combine these criteria into the fol-

lowing optimization problem.

PROBLEM 1: Given N 2 N and c 2 Rþ, find a TAD forest F, with

jFj ¼ N and each D 2 F having valid boundaries, that maximizes the

objective functionOcðFÞ ¼ cBp;qðFÞ � EðFÞ.

Here, N and c are user-defined parameters controlling the num-

ber of TADs and the balance between E and Bp;q, respectively.

We now define a recursive algorithm that solves Problem 1.

First, we note that any TAD forest can be decomposed into a set

of non-overlapping TAD trees. Thus, we will first show how to

find TAD trees that locally maximize the objective Oc. To

that end, we define an objective function Uði; j;N; dÞ over inter-

vals ½i; j�.

DEFINITION 1: Given the interval ½i; j� and parameters N 2 N and

d 2 Rþ, let Uði; j;N; dÞ :¼ max OcðTÞ over all TAD trees T such that

(i) T is rooted at the interval ½i; j�; (ii) T contains N TADs ðjTj ¼ NÞ;
(iii) each D 2 T satisfies dD > d and (iv) each D 2 T has valid

boundaries.

We will compute Uði; j;N; dÞ by dynamic programing. At each

step, beginning with the interval ½i; j�, we must make optimal choices

of the following.

1. Parameters dD, bD defining the root TAD D ¼ ði; j; dD; bDÞ.
2. A collection of non-overlapping sub-intervals ½ix; jx� which define

the locations of the top-level sub-trees in T.

3. For each interval ½ix; jx�, a ‘multiplicity’ nx representing the total

number of TADs in that sub-tree. Note that in order for T to

have N TADs, the multiplicities nx must satisfy
P

nx ¼ N � 1.

To implement the steps above, one must be able to compute the

optimal score for a TAD tree having the specified root and first-

level sub-trees. Recall that OcðTÞ ¼ cBp;qðTÞ � EðTÞ, where E is

the sum squared error defined in Equation (7). Suppose T is a

TAD tree consisting of a root TAD D and a single sub-tree T 0.

From Equation (6), we have Bp;qðTÞ ¼ Bp;qðDÞ þ Bp;qðT 0Þ.
However, EðTÞ 6¼ EðDÞ þ EðT 0Þ, because pairs of bins within the

sub-tree T 0 contribute to both EðT 0Þ and EðDÞ, and are double

counted when these terms are summed. Because the expected

contact frequency for a pair of bins is modeled using the smallest

TAD that contains them both [Equation (4)], we retain the con-

tribution to squared error made by the sub-tree T 0, and subtract

the contribution to squared error from the root TAD D (Fig.

3C). Thus, if T 0 spans the interval ½i0; j0�, then EðTÞ ¼
EðDÞ þ EðT 0Þ � ECði0; j0;DÞ, where ECði0; j0;DÞ is the error compen-

sation term defined below.

DEFINITION 2: Consider a TAD D and interval ½i; j� � ½DL;DR�. Let

the error compensation ECði; j;DÞ be

ECði; j;DÞ ¼
Xj

l¼i

Xj

k¼l

ð ~ADðl; kÞ � AlkÞ2: (8)

Using the error compensation, we derive an expression for the score

of a TAD tree in terms of its root TAD and sub-trees.

PROPOSITION 1: Let T be a TAD tree consisting of a root TAD D

and a collection of non-overlapping sub-trees T1; :::;Tm,

spanning the intervals ½i1; j1�; :::; ½im; jm�. The score OcðTÞ can be

decomposed as

OcðTÞ ¼ OcðDÞ þ
Xm
x¼1

ðOcðTxÞ þ ECðix; jx;DÞÞ: (9)

We now describe Steps (1–3) above in greater detail. To perform

step (1), recall that a TAD is defined by four parameters

ðLD;RD; dD; bDÞ. Thus, in choosing the root TAD D, two param-

eters are given ahead of time ð½LD;RD� ¼ ½i; j�Þ, meaning we only

need to select optimal values for dD and bD. Next, for a given choice

of dD and bD, we must choose a set of non-overlapping sub-trees,

defined by sub-intervals ½ix; jx� and multiplicities nx (steps 2–3). To

that end, let Iði; j;NÞ be the collection of sets fðix; jx;nxÞg that

satisfy the following properties: (i) ½ix; jx� are non-overlapping

sub-intervals of ½i; j�; (ii)
P

nx ¼ N � 1 and (iii) ix and jx are valid
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boundaries. Using Iði; j;NÞ as a search space, we evaluate

Uði; j;N; dÞ as follows.

PROPOSITION 2: For each interval ½i; j� and positive integer N,

Uði; j;N; dÞ ¼ max
fðbD ;dDÞjdD>dg

OcðDÞ þ max
ðix ;jx ;nxÞg2Iði;j;NÞ

X
x

Wx

 ! !

whereWx ¼ Uðix; jx; nx; dDÞ þ ECðix; jx;DÞ:
(10)

To our knowledge, there is no efficient algorithm for evaluating

Equation (10). To see why, note that Wx depends on both ðix; jx;nxÞ
and ðbD; dDÞ, meaning the two maximizations cannot be performed in-

dependently. To perform the maximizations jointly, we could proceed

in two directions. On the one hand, we could enumerate interval sets

from the collection Iði; j;NÞ and optimize ðbD; dDÞ for each. This is

not practical, however, because Iði; j;NÞ is very large: ðjIði; j;NÞj 	
Oððj� iÞNÞ. Going in the other direction, we could discretize the space

R� Rþ and test a finite set of pairs ðdD;bDÞ, optimizing the interval

set fðix; jx; nxÞg for each. This method has the advantage that the opti-

mization over interval sets can be performed efficiently using a version

of weighted interval scheduling (described below). However, there

would still be a very large set of ðdD;bDÞ pairs to check, making

this approach impractical as well. Therefore, instead of evaluating

Uði; j;N; dÞ exactly, we approximate it, using pre-computed values for

ðdD; bDÞ rather than true argmax. The pre-computed values are chosen

to be optimal in the trivial case where D has no sub-TADs.

DEFINITION 3: For each interval ½i; j�, let

ðb̂ði; jÞ; d̂ði; jÞÞ ¼ argmin
ðb;dÞ2R�Rþ

Eðði; j; d; bÞÞ: (11)

We define a TAD D to be locally fitted if dD ¼ d̂ðLD;RDÞ and

bD ¼ b̂ðLD;RDÞ. Thus, D is locally fitted if its parameters are opti-

mal in the case where D has no sub-TADs. We use D̂ij to denote the

unique locally fitted TAD spanning ½i; j�. Using d̂ði; jÞ and b̂ði; jÞ as

pre-computed TAD parameters is convenient because they are easily

found by linear regression. By restricting to locally fitted TADs, we

obtain a simpler optimization problem which admits an efficient

algorithm.

PROBLEM 2: Given N 2 N and c 2 Rþ, find the TAD forest F that

maximizes the objective OcðFÞ ¼ cBp;qðFÞ � EðFÞ such that jFj ¼ N,

and each D 2 F is locally fitted and has valid boundaries.

Once again, our first step in solving Problem 2 will be to find op-

timal TAD trees over every interval.

DEFINITION 4: Given N 2 N and the interval ½i; j�, define Ûði; j;NÞ :¼
max OcðTÞ over all TAD trees T such that (i) T is rooted at the interval

½i; j�, (ii) T contains N TADs ðjTj ¼ NÞ and (iii) each D 2 T is locally

fitted has valid boundaries.

In contrast to Uði; j;N; dÞ; Ûði; j;NÞ does not take d as an argu-

ment, because it maximizes over TAD trees whose d values are fixed

by the requirement that they be locally fitted. This leads to the fol-

lowing proposition, which shows how to evaluate Ûði; j;NÞ.

PROPOSITION 3: For each interval ½i; j� and positive integer N,

Ûði; j;NÞ ¼ OcðD̂ijÞ þ max
fðix ;jx ;nxÞg2Iði;j;NÞ

X
x

Wx

 !
(12)

where

Wx ¼
Ûðix; jx; nxÞ þ ECðix; jx; D̂ijÞ if d̂ðix; jxÞ� d̂ði; jÞ

�1 otherwise:

(

2.3 Algorithm
To evaluate Equation (12), we must choose a set of non-overlapping

intervals ½ix; jx� and multiplicities nx that maximize
P

xWx and satisfyP
nx ¼ N � 1. Similarly, to assemble a TAD forest from TAD trees,

we will likewise be choosing a non-overlapping set of intervals (leaves

of TAD trees) with multiplicities (number of TADs in each tree) such

that the sum of their scores is maximized and the multiplicities sum to

a predefined N. These tasks are both similar to the weighed interval

scheduling problem (Kleinberg and Tardos, 2005), which asks for the

highest weight set of non-overlapping intervals from a given collec-

tion. However, the two tasks described above have the added require-

ment that the interval multiplicities sum to a predefined value.

Therefore we define a variant of weighted interval scheduling called

weighted interval scheduling with multiplicities (WISM).

DEFINITION 5: WISM: Let f½ia; ja� j a 2 Ag be a set of intervals with

multiplicities ka and weights wa. For a given integer N, the WISMN

problem asks for the subset B � A that maximizes
P

a2Bwa subject

to the following constrains: (i) the intervals f½ia; ja� j a 2 Bg are non-

overlapping and (ii)
P

a2Bka ¼ N.

We solve the WISM problem using a dynamic programing ap-

proach based on the following recurrence.

PROPOSITION 4: Let N be an integer and let f½ia; ja� j a 2 Ag be a set

of intervals with multiplicities ka and weights wa. Let WISMNðnÞ be

the score of the solution to the WISMN problem, restricted to inter-

vals that end before n. When n < mina ia, then clearly

WISMNðnÞ ¼ 0. In all other cases

WISMNðnÞ ¼ max
maxfajja¼ngðWa þWISMðN�kaÞðiaÞÞ

WISMNðn� 1Þ:

(
(13)

TADtree algorithm

We now outline an algorithm for solving Problem 2, which we call

TADtree. (Fig. 4) Consider a chromosome with a J� J contact matrix

A. Let N be the number of TADs in the desired TAD forest. To con-

strain runtime, we limit the maximum TAD size to S and the number

Fig. 4. Overview of TADtree algorithm. (A) Beginning with contact matrix A,

we compute the fold-enrichment over background for each pair of positions.

(B) For each interval ½i; j �, we estimate parameters d̂ði; jÞ; b̂ði ; jÞ. (C) Next, for

each genomic position i we compute the BI, a 1D statistic that looks for local

shifts in interaction frequency at TAD boundaries. (D) Finally, a dynamic pro-

gram finds TAD trees that maximize the BI and best fit the contact matrix A,

then selects an optimal set of TAD trees to form a TAD forest
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of TADs in each tree to M. The TADtree algorithm contains WISM as

a subroutine, for which we do not provide pseudocode. The runtime of

TADtree is OðJN2 þ JS3M2 þ JS5Þ. Beyond the contact matrix A,

TADtree accepts six user-defined parameters: N;M; S; c;p and q. We

do not provide a rigorous procedure for setting these parameters, but

have detailed the rationale for our choices in Section 3.

Algorithm 1: TADtreeðA;N;M; S; c;p;qÞ

Input : Matrix A of length J and parameters N, M, S, c, p, q.

Output: TAD forest F representing solution to Problem 2.

T ¼ ½ � // list of optimal TAD trees

for i 2 f1; :::; J � 1g do

for j 2 fi; :::; iþ Sg do

compute d̂ði; jÞ and b̂ði; jÞ by linear regression

if Bp;qðiÞ > 0; Bp;qðjÞ > 0 and d̂ði; jÞ > 0 then

Ûði; j; 1Þ  OcðD̂ijÞ
S ¼ ½ � // list of sub-trees

for i0 2 fi; :::; j� 1g do

for j0 2 fi0 þ 1; :::; jg do

if Bp;qði0Þ > 0; Bp;qðj0Þ > 0 and

d̂ði0; j0Þ > d̂ði; jÞ then

for m0 2 f1; :::;M� 1g do

W  Ûði0; j0;m0Þ þ ECði0; j0; D̂ijÞ
S  append ði0; j0;m0;WÞ

for m 2 f2; :::;Mg do

Ûði; j;mÞ  WISMðm;SÞ
T  append ði; j;m; Ûði; j;mÞÞ

return WISMðN;T Þ

Algorithm 2: WISMðn;J Þ

Input : n 2 N and list J containing tuples ði; j;m;WÞ repre-

senting intervals ½i; j� with multiplicity m and weight

W. Assume that J is ordered by the right end points

of its constituent intervals.

Output: Highest weight subset of J with non-overlapping

intervals whose multiplicities sum to n.

3 Results

We used TADtree to analyze Hi-C data from Dixon et al. (2012) for

mouse embryonic stem cells, which had been binned at 40 kb and nor-

malized for sequencing bias using the method from Yaffe and Tanay

(2011). This dataset included a matrix of contact frequencies for each

chromosome (available at http://yuelab.org/hi-c/download.html).

3.1 TADtree parameters
For each contact matrix A, we ran TADtree (Algorithm 1) with the

following parameters. We set the maximum TAD size to be 2 Mb

(S¼50 bins), because TADs were originally defined at a scale of

1 Mb. We note that chromatin ‘megadomains’ larger than 2 Mb

have been observed (Lieberman-Aiden et al., 2009), but the current

focus is on TADs. In theory, it is desirable to use a large value of S in

order to avoid biasing the solution by prior assumptions on TAD

size. However, in practice, the OðS5Þ runtime of TADtree makes

large values of S impractical.

We allowed at most M¼10 TADs per TAD tree. We find that

TAD trees almost never attain this limit for the number of TADs

(data not shown), implying that our choice for M did not limit the

complexity of our output. We hypothesize that setting M¼10

allows our algorithm to detect the full complexity of TAD structure

in the underlying Hi-C data used in this study, although higher reso-

lution Hi-C data may warrant larger values of M.

For the remaining parameters, we used the following values:

c¼500, p¼3 (120 kb) and q¼12 (480 kb). These values were

chosen based on visual inspection of output for small subsets of the

full Hi-C contact maps. Although we do not have a rigorous proced-

ure for choosing values of p and q, we observed that larger values of

p and q make the BI insensitive to small-scale boundaries, while

smaller values result in the algorithm outputting many TADs and

sub-TADs, many of which are likely noise.

We varied the total number N of TADs to examine the tradeoffs

in sensitivity and specificity (see below). Because TADtree runs inde-

pendently on each chromosome, we chose N for each chromosome

such that the number of TADs per megabase was consistent, using a

range of densities (0 TADs/Mb, up to 6 TADs/Mb) across the differ-

ent runs. For large values of N, we observed some duplicate TAD

calls defined as pairs of TADs whose boundaries are both within

1 bin (40 kb) of each other (Fig. 5A). We filtered these duplicates by

removing the inner TAD from each pair. Because of the dynamic

programing approach used in TADtree, computing the optimal

TAD forest for a given value N¼N0 also entails computing optimal

TAD forests for all N < N0. Thus our implementation of TADtree

outputs a duplicate-filtered set of TADs (as well as the percentage of

duplicates in the unfiltered set) across a user-specified range of val-

ues of N. Because a high percentage of duplicates suggests that

TADtree is saturating the space of TAD forests, users can examine

this percentage—or other relevant data—to choose a final value of

N for downstream analysis.

3.2 TAD nesting
We found that the TADs returned by TADtree show extensive nest-

ing. We define the order of a TAD as the number of TADs that con-

tain it: TADs with no sub-TADs are order 0, sub-TADs have order

1, sub-sub-TADs have order 2 and so on. When we run TADtree

with N¼2200 TADs, which is the number identified by Dixon et al.

(2012), we find that 13% have order greater than 0. When we allow

5200 TADs, which is close to the number identified by Filippova et

al. (2014), 45% have order greater than 0 (Fig. 5B). Although TADs

of high order (up to 4) are observed, they are relatively rare. For ex-

ample, with 5200 TADs, 10% have order �2 and only 1.4% have

order �3. As expected, TADs of increasing order have decreasing

size (Fig. 5C) and decreasing genomic coverage (Fig. 5D).

3.3 Comparison with previous studies
We compared the TADs from TADtree with those found in two pre-

vious studies (Dixon et al., 2012; Filippova et al., 2014) that ana-

lyzed the same contact matrices. To compare TADs from different

approaches, we compared the partitions of bins determined by TAD

end points using the variation of information (VI) measure (Meilă,

2003). The VI is a distance measure for set partitions, and thus

lower values of VI mean that two partitions of bins into TADs are

more similar. We find that the VI between TADtree TADs with

N¼2200 and TADs from Dixon et al. (2012) was 0.82, compared

to 1.72 when the positions of our TADs were randomly shuffled.

Similarly, we find that VI¼0.99 between TADtree TADs with

N¼5200 and those reported in Filippova et al. (2014), compared
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with 1.73 when our TADs were shuffled. Interestingly, the VI¼1.2

is much higher between Dixon et al. (2012) TADs and Filippova

et al. (2014) TADs. This higher VI is likely a consequence of differ-

ing size preference. The method used by Dixon et al. (2012) tends to

favor large TADs, while the approach used by Filippova et al.

(2014) tends to favor small TADs. The greater similarity between

our TADs and those from both Dixon et al. (2012) and Filippova et

al. (2014) highlights the ability of TADtree to robustly identify

TADs across a range of scales.

As an additional comparison between TADs from Dixon et al.

(2012) and TADtree, we computed precision-recall curves, treating

the Dixon et al. (2012) TADs as the true set. We performed the com-

parison in two ways: first counting bins inside TADs as true posi-

tives (Fig. 5E) and then counting the positions of TAD boundaries

(Fig. 5F), where boundaries within one bin (40 kb) of each other

were considered to match. TADtree obtained a recall of 89% at a

precision of 95% in determining which bins were inside TADs, and

a recall of 85% at a precision of 41% in determining TAD bounda-

ries. Note that a low precision in the later comparison is expected

since a large fraction of TAD boundaries predicted by TADtree be-

long to sub-TADs, and therefore lie between the boundaries of

TADs called by Dixon et al. (2012).

As an independent measure of the quality of TADs output by the

three approaches, we compared them to the TADs identified by Rao

et al. (2014) in higher resolution Hi-C data. Specifically, Rao et al.

(2014) generated Hi-C maps for mouse lymphoblasts at 5 kb reso-

lution. Because this increased resolution allows significantly more

data for estimating TADs, the TADs from these data are a useful

benchmark for evaluating the accuracy of TAD calls based on the

lower resolution (40 kb) contact maps used here. Fixing the number

of TAD output by TADtree to the same as the other approaches, we

find that the TADtree TADs are more similar to the TADs in the

higher resolution (Rao et al., 2014) data than those from the other

methods. The difference is relatively small in comparison with

Dixon et al. (2012): VI¼1.24 for TADtree versus 1.27 for Dixon et

al. (2012), and not statistically significant (P¼0.3) using a paired t-

test that compares the values across individual chromosomes. A

larger difference was observed in comparison with Filippova et al.

(2014): VI¼1.28 for TADtree versus 1.54 for Filippova et al.

(2014) (P < 10�6). Interestingly, we also observe that the lowest VI

occurs when TADtree is run with N¼2600 TADs, a number in be-

tween the number of TADs in Dixon et al. (2012) and Filippova et

al. (2014) (Fig. 5H).

3.4 Enrichment of chromatin marks
As another measure of the quality of TADs produced by each algo-

rithm, we examined the enrichment of Chip-Seq derived binding

sites of several proteins and chromatin marks that were shown by

Dixon et al. (2012) to cluster at domain boundaries. Specifically, we

examined binding sites of the transcription factor CTCF, an insula-

tor protein that has been shown experimentally to contribute to

TAD boundary formation (Zuin et al., 2014). We also examined the

presence of PolII sites, as well as H3K4me3 marks—a transcription-

associated chromatin mark—because TAD boundaries are fre-

quently gene dense sites of active transcription (Hou et al., 2012)

and have been shown to be enriched for housekeeping genes (Dixon

et al., 2012). These marks were also used by Filippova et al. (2014)

to validate their TAD predictions. We downloaded ChIP-Seq data

for mES cells from ENCODE (GEO accession ID GSE29184). Peak

calling for these data was performed in their initial publication

(Shen et al., 2012). For each dataset, we counted the average num-

ber of ChIP-Seq peaks within 50 kb of a TAD boundary. Below, we

present summary statistics for the whole genome, but compute P

Fig. 5. (A) Total number of unique TAD output by TADtree (solid green curve) as a function of the value of N, the desired number of TADs. Dotted line is equality.

(B) Number of TADs of each order as a function of total number of TADs. As the total number of TADs increases, the number of zero-order TADs (indicating new

positions not covered by TADs) start to plateau and high order TADs appear. (C) Higher order TADs have smaller sizes and (D) lower coverage of the genome,

consistent with their nesting inside larger TADs. (E, F) Precision-recall curves comparing TADs found by TADtree with those reported in Dixon et al. (2012). (G)

Example of TADs from TADtree (bottom) and two previous studies (Dixon et al., 2012; Filippova et al., 2014). (H) TADs found by TADtree (black line) are more

similar (lower VI) to those found in a recent analysis of higher resolution Hi-C data (Rao et al., 2014), compared with TADs reported in Dixon et al. (2012) (blue

square) and Filippova et al. (2014) (red disk). (I) Number of ChIP-seq peaks for CTCF, PolII and the histone modification H3K4me3 within 50 kb of TAD boundary

(y-axis) versus total number of TADs (x-axis) for TADtree TADs (black line), Dixon et al. (2012) (blue square) and Filippova et al. (2014) (red disk). TADtree shows

greater enrichment for all four chromatin marks
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values using a paired t-test that compares the values across each

chromosome. We found that TADs from TADtree show a signifi-

cantly greater enrichment for all four ChIP-Seq signals than TADs

from previous studies. For PolII and H3K4me3, our TADs have at

least 14% more ChIP-seq peaks within 50 kb of a TAD boundary

than the TADs from Dixon et al. (2012) and Filippova et al. (2014)

when controlling for number of TADs (Fig. 5I) (P<0.005 for 4/4

comparisons). Although our TAD boundaries show a similar enrich-

ment of CTCF as those from Dixon et al. (2012), they have a 30%

greater enrichment compared with TADs from Filippova et al.

(2014) (P < 10�6). Enrichment of these marks decreases as we in-

crease the total number of TADs, indicating a tradeoff between sen-

sitivity and specificity. However, the robust improvement compared

with previous methods over a large range of TAD numbers demon-

strates the advantages of the hierarchical decomposition performed

by TADtree.

4 Discussion

Hi-C and other approaches that combine high-throughput sequenc-

ing with 3C are becoming widely used to probe the 3D organization

of the genome. There is increasing evidence that sub-TAD structure

varies between cell types and contributes to changes in gene regula-

tion during differentiation and development (Berlivet et al., 2013;

Phillips-Cremins et al., 2013). TADtree is the first publicly available

algorithm that detects nested hierarchies of TADs in Hi-C data.

Thus, TADtree will enable further research into the organization of

TADs and sub-TADs.

TADtree employs a straightforward linear model of contact en-

richment that is derived from earlier annotations of TADs. TADtree

finds the best TAD hierarchy via a dynamic programing algorithm,

using an approximation of this model. We demonstrate that

TADtree outperforms earlier methods on real Hi-C data. In particu-

lar, we show that TADs determined by TADtree on lower resolution

(40 kb) data match more closely to TADs derived on higher reso-

lution (5 kb) Hi-C data from Rao et al. (2014). Moreover, we find

that TADtree-derived TADs have a higher enrichment at their boun-

daries for binding sites of factors such that CTCF than are known to

demarcate chromatin boundaries.

Although the TADtree algorithm demonstrates that TAD hier-

archies can be informative, there are several areas where the algo-

rithm can be improved. First, TADtree finds only an approximate

best fit to our model. Tests on smaller datasets using a brute force

search suggest that the approximate solution differs little from the

true solution (data not shown). Nonetheless, finding an exact solu-

tion in polynomial time—or proving that this cannot be done—

may be an interesting problem for future research. A second limita-

tion of TADtree is the rapid increase in runtime 	 OðS5Þ with max-

imum TAD size S. Third, although our use of a parameter N

specifying the number of TADs returned by TADtree is a novel

contribution compared with previous methods, we have not

included a procedure for model selection, leaving the choice of N

to the user.

Chromatin structure is highly dynamic and varies widely from

cell to cell (Lanctot et al., 2007). Because approaches such as Hi-C

typically pool contacts from across a whole population, it is unclear

to what extent the TAD trees identified in this article represent true

chromosomal structures within individual cells. Although efforts

have been made to deconvolve Hi-C contacts computationally (Sefer

et al., 2015), this remains a challenging problem. In the future, ad-

vances in microscopy and single cell Hi-C (Nagano et al., 2013) may

shed light on whether TAD trees are true chromosomal structures or

artifacts of super position.

The emerging field of higher order chromatin organization is

providing a new lens for viewing the regulatory landscape of cells.

Chromatin structure may provide a missing link for understanding

the regulatory changes that occur during differentiation and disease

(Andrey et al., 2013; Jäger et al., 2015). Because megabase-scale

TADs appear to be highly conserved across both cell types and spe-

cies, it is likely that key changes in chromatin organization occur at

the sub-TAD scale. For example, changes in the structure of sub-

TADs could fine-tune opportunities for contact between genes and

enhancers. Therefore, methods for deciphering the hierarchical

structure of chromatin will be important for linking genome archi-

tecture to cellular state.
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