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Abstract

Motivation: Identification of altered pathways that are clinically relevant across human cancers is a

key challenge in cancer genomics. Precise identification and understanding of these altered path-

ways may provide novel insights into patient stratification, therapeutic strategies and the develop-

ment of new drugs. However, a challenge remains in accurately identifying pathways altered by

somatic mutations across human cancers, due to the diverse mutation spectrum. We developed an

innovative approach to integrate somatic mutation data with gene networks and pathways, in order

to identify pathways altered by somatic mutations across cancers.

Results: We applied our approach to The Cancer Genome Atlas (TCGA) dataset of somatic muta-

tions in 4790 cancer patients with 19 different types of tumors. Our analysis identified cancer-type-

specific altered pathways enriched with known cancer-relevant genes and targets of currently

available drugs. To investigate the clinical significance of these altered pathways, we performed

consensus clustering for patient stratification using member genes in the altered pathways coupled

with gene expression datasets from 4870 patients from TCGA, and multiple independent cohorts

confirmed that the altered pathways could be used to stratify patients into subgroups with signifi-

cantly different clinical outcomes. Of particular significance, certain patient subpopulations with
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poor prognosis were identified because they had specific altered pathways for which there are

available targeted therapies. These findings could be used to tailor and intensify therapy in these

patients, for whom current therapy is suboptimal.

Availability and implementation: The code is available at: http://www.taehyunlab.org.

Contact: jhcheong@yuhs.ac or taehyun.hwang@utsouthwestern.edu or taehyun.cs@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In the last few years, studies using high-throughput technologies

have highlighted the fact that the development and progression of

cancer hinges on somatic alterations. These somatic alterations may

disrupt gene functions, such as activating oncogenes or inactivating

tumor suppressor genes, and thus dysregulate critical pathways con-

tributing to tumorigenesis. Therefore, precise identification and

understanding of disrupted pathways may provide insights into

therapeutic strategies and the development of novel agents. Many

large-scale cancer genomics studies, such as The Cancer Genome

Atlas (TCGA) and the International Cancer Genome Consortium

(ICGC), have performed integrated analyses to draft an overview of

somatic alterations in the cancer genome (Kandoth et al., 2013;

Lawrence et al., 2013, 2014; Tamborero et al., 2013). Many of

these studies have reported novel candidate cancer genes mutated at

high and intermediate frequencies in specific cancers as well as

across many cancer types (Lawrence et al., 2014). However, it is still

a challenge to translate somatic mutations in tumors into the path-

way model for clinical use (Baselga, 2011; Osmanbeyoglu et al.,

2014). Recently, in order to improve the clinical relevance and util-

ity of somatic mutation analyses, Hopfree et al. (2013) proposed

integrating somatic mutation data with molecular interaction net-

works for patient stratification. They demonstrated that inclusion of

prior knowledge, captured in molecular interaction networks, could

improve identification of patient subgroups with significantly differ-

ent histological, pathological or clinical outcomes and discover

novel cancer-related pathways or subnetworks. In a similar manner,

other network-based methods have demonstrated that incorporating

molecular networks and/or biological pathways can improve accur-

acy in identifying cancer-related pathways (Cerami et al., 2010;

Hwang et al., 2013; Vandin et al., 2011; Vaske et al., 2010).

One limitation of these network-based methods is that they are

not designed to fully utilize large-scale somatic mutation data from

multiple cancer types to determine which particular pathways are

altered by somatic mutations across a range of human cancers. In

addition, due to the incomplete knowledge of existing gene sets and/

or pathway databases, these methods are limited in detecting path-

ways based on a number of altered genes annotated in existing gene

set and pathway databases. Alternatively, the methods that build

pathways de novo without incorporating biological prior knowledge

can be applicable to detecting altered pathways, but these methods

were also not designed to detect cancer-type specific or commonly

altered pathways. To address these, we developed an algorithm

named NTriPath (Network regularized sparse non-negative TRI ma-

trix factorization for PATHway identification) to integrate somatic

mutation, gene–gene interaction networks and gene set or pathway

databases to discover pathways altered by somatic mutations in

4790 cancer patients with 19 different types of cancers.

Incorporating existing gene set or pathway databases enables

NTriPath to report a list of altered pathways across cancers, and

make it easy to determine/compare which particular pathways are

altered in a particular cancer type(s). In particular, the use of the

large-scale genome-wide somatic mutations from 4790 cancer pa-

tients enables NTriPath to explore modular structures of mutational

data within a cancer type and/or across multiple cancer types (using

matrix factorization) to identify cancer-type-specific or commonly

altered pathways. In addition, the use of gene–gene interaction net-

works with somatic mutation and pathway databases enables

NTriPath to classify genes, which were not annotated in existing

pathway databases, as new member genes of the identified altered

pathways based on connectivity in the gene–gene interaction

networks.

The questions that we investigate here are:

1. whether large-scale integrative somatic mutation analysis that

integrates somatic mutations across many cancer types with the

gene–gene interaction networks and pathway database can reli-

ably identify cancer-type-specific or common pathways altered

by somatic mutations across cancers;

2. whether the identified pathways can be used as a prognostic bio-

marker for patient stratification—with the assumption that the

altered pathways contribute to cancer development and progres-

sion and, thus, impact survival.

In these experiments, we demonstrated that the cancer-type-spe-

cific and commonly altered pathways identified by NTriPath are

biologically relevant to the corresponding cancer type and are asso-

ciated with patient survival outcomes. We also showed that cancer-

specific altered pathways are enriched with many known cancer-

relevant genes and targets of available drugs, including those already

FDA-approved. These results imply that the cancer-specific altered

pathways can guide therapeutic strategy to target the altered path-

ways that are pivotal in each cancer type.

2 Methods

In this section, we first describe the notations for the data. We then

review non-negative matrix tri-factorization (NMTF) and introduce

the framework of network regularized sparse non-negative tri-ma-

trix factorization for pathway identification.

2.1 Notations
We construct a binary data matrix X 2 R

n�m from the mutation

data, where n is the number of patients, m is the number of genes

and the ði; jÞth element of the matrix X; ½X�ij, is 1 if the ith patient

has a mutation on the jth gene, 0 otherwise. We construct a binary

matrix U 2 R
n�k1 denoting a patient cluster, where k1 indicates the

number of cancer types and ½U �ij ¼ 1 indicates the ith patient has jth

cancer type. We derive the adjacency matrix from the human gene–

gene interaction networks and denote it as A, where ½A�ij ¼ 1 if the

ith gene is interacting with the jth genes in the networks and 0 other-

wise. We define the graph Laplacian matrix by L ¼ D� A, where

each diagonal element in the diagonal matrix D is given by

½D�ii ¼
X

j
½A�ij. We construct a binary matrix V0 2 R

m�k2 from the

specific pathway database denoting pathway information, where k2
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is the number of pathways and ½V0�ij ¼ 1 if the ith gene is annotated

in the jth pathway as a member in the pathway database, otherwise

0. Since the current pathway database annotation is still incomplete,

we define a matrix V 2 R
m�k2 denoting newly updated pathway in-

formation, including newly added member genes by NTriPath. We

define a matrix S 2 R
k1�k2 denoting cancer type and pathway associ-

ations, where each element of ½S�ij represents the associations be-

tween the ith cancer type with the jth pathway. Higher values of

elements indicate stronger associations between cancer types and

pathways. The objective is to derive newly updated pathway infor-

mation V and cancer-type and pathway associations S based on X

and U (Fig. 1).

2.2 Non-negative matrix tri-factorization
NMTF aims to approximate a data matrix X by the product of three

matrices, such that X � USV > , where U 2 R
n�k1
þ ; S 2 R

k1�k2
þ and

V 2 R
m�k2
þ . Since the aim of our study is to discover altered path-

ways by somatic mutations across cancers, we can define the object-

ive function to estimate the factor matrix S, as

min
S�0

1

2
jjX � USV >

0 jj
2
F; (1)

where jjSjjF is the Frobenius norm of matrix S, and X; U ; S, and V0

denote somatic mutation data from patients, patient’s cancer type,

cancer-type and pathway associations, and cancer-related pathways,

respectively.

A limitation of this approach in Equation (1) is the sparsity of

somatic mutation matrix X (>98% of entries are 0) used to predict

cancer-type and pathway associations. Thus, the Frobenius norm in

Equation (1) might not be appropriate to evaluate the goodness of

the decomposition models since it is dominated by the errors on 0

entries when the data matrix X is sparse. In addition, due to the in-

completeness of current pathway database annotation, the predicted

cancer-type and pathway associations S might be biased toward

pathways containing mutated genes like those currently annotated

in existing pathway databases. A recent study suggests that incorpo-

rating biological prior knowledge, such as gene–gene interaction

networks, as a regularization term to NMTF could help to more ac-

curately identify new member genes in the existing pathways, as

well as an association matrix S (Hwang et al., 2012).

2.3 Network regularized sparse non-negative

tri-matrix factorization model
To address the above problems, we developed an approach called

NTriPath (Network regularized sparse non-negative TRI matrix fac-

torization for PATHway identification) to handle the sparsity of the

somatic mutation matrix and the incompleteness of current pathway

database annotation by incorporating the prior knowledge from

human gene–gene interaction networks.

We define a weighted loss function to deal with the sparseness of

the somatic mutation data matrix X . The weighted loss function en-

ables us to focus on approximating errors at nonzero entries (i.e.

somatic mutation). We introduce the graph Laplaican L and the ini-

tial pathway information V0, derived from human gene–gene inter-

action networks and current pathway databases, respectively.

Then we define a new objective function as follows:

min
S;V�0

jjW � ðX � USV > Þjj2F þ XðS;VÞ; (2)

where W 2 R
n�m is a weight matrix where ½W �ij ¼ 1 if ½X �ij > 0

otherwise 0. The operator � represents the element-wise multiplica-

tion. A regularization term X for V and S is as follows:

XðS;VÞ ¼ kSjjSjj21 þ kV jjV jj21 þ k0jjV � V0jj2F þ kLtrðV > LVÞ; (3)

where fk�g�0 denotes user-specific parameters and jjSjj1 denotes

the ‘1-norm of S, which is equal to the sum of the absolute values of

all the entries of S. The third term in the regularization term (3) is

introduced as a supervised way of minimizing the squared loss be-

tween the predicted newly updated pathway information V and the

initial pathway information V0. The fourth term introduces the

graph Laplacian L derived from the gene–gene interaction networks

as prior knowledge to guide the clustering of the genes. This term is

called the smoothness term, which encourages the connected nodes

(genes) in a graph to be assigned to the same cluster (pathway).

Algorithm 1 NTriPath

1: procedure NTRIPATH(X; U ; V0,kS,kV,kV0
; kVL

)

2: Initialization Set S 1 and V  minfV0; 10�6g,
where 1 2 R

k1�k2 is a matrix with all ones. Set the user speci-

fied parameters jtol ¼ e ¼ 10�10; j ¼ 10�6. =	 (In our ex-

periments, we used kS ¼ kV ¼ kVL
¼ 1 and kV0 ¼ 0:1.) 	=

3: while not converged do =	 (Iteratively update S and

V .) 	=

½S�ij  ð½S�ij þ jS
ijÞsS

ij; (4)

½V �ij  ð½V �ij þ jV
ij ÞsS

ij; (5)

where jM
ij is set to j if ½M�ij � jtol and sM

ij > 1, otherwise 0,

and

sS
ij ¼

½U > XV �ij
½U > ðW � ðUSV > ÞÞV �ij þ kSjjSjj1 þ �

;

sV
ij ¼

½X > USþ kLAV þ k0V0�ij
½ðW � ðUSV > ÞÞ > USþ k0V þ kLDV �ij þ kV jjV jj1 þ �

:

4: end while

5: return S and V .

6: end procedure

To estimate the optimal solutions of our minimization problem, we

adapt the multiplicative update method (Lee and Seung, 2001),

Fig. 1. Network regularized sparse non-negative tri-matrix factorization for

pathway identification. The binary mutation matrix X is factorized into prod-

ucts of three matrices, patient cluster U , pathway information V and cancer-

type and pathway association S. Prior knowledge is introduced from gene–

gene interaction networks A
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which can be derived from the gradient of the objective function (2)

with respect to each factor matrix. The following are the update

rules for the factor matrices, S and V :

Sij  Sij

½U > ðW � XÞV �ij
½U > Xb V �ij þ kSjjSjj1

; (6)

Vij  Vij

½ðW � XÞ > USþ kVL
AV þ kV0

V0�ij
½Xb> USþ kG0

V þ kVL
DV �ij þ kV jjV jj1

; (7)

where Xb¼W � ðUSV > ).

However, one of the issues of the multiplicative update rules is

that when an entry in the factors becomes 0, it is forever stuck at 0.

In theory, the entries should never become 0 provided that all the

entries in the factors are initialized with positive values. However,

due to the finite precision of calculations, 0 entries may well appear

in practice. To avoid this inadmissible zeros problem, we examine

the Karush–Kuhn–Tucker (KKT) conditions for the solution in each

update and then replace the inadmissible zeros entries with a small

positive number j (Chi and Kolda, 2012; Seung-Jun et al., 2012).

Note that the KKT conditions for the factor matrix S in Equation

(2) can be written in an element-wise form:

Sij�0; aD
ij � aN

ij �0; SijðaD
ij � aN

ij Þ ¼ 0; (8)

where aN
ij and aD

ij are the numerator and the denominator of the

multiplicative factor in Equation (6), respectively:

aN
ij ¼ ½U > ðW � XÞV �ij; (9)

aD
ij ¼ ½U > bX V �ij þ kSjjSjj1: (10)

The KKT conditions state that if Sij>0, the multiplicative factor

should be equal to 1; otherwise it should be 
1. Thus, we replace

the 0 entry whose corresponding multiplicative factor is >1 with j
to prevent the inadmissible 0 from occurring. The complete

NTriPath algorithm with the choice of parameters used in the ex-

periments is outlined in Algorithm 1. We have also proven the con-

vergence of the algorithm. See Supplementary Information for the

detailed proof of algorithm correctness and convergence.

Empirically, the algorithm converges fast within 50 iterations in the

experiments.

3 Results

We conducted simulation experiments using synthetic datasets to in-

vestigate the performance of NTriPath to discover cancer-type-

specific altered pathways and identify new member genes in the path-

ways. Then we performed experiments with TCGA mutation profiles

to identify cancer-type-specific altered pathways across cancers. In the

experiments using TCGA datasets, we first ran NTriPath to identify

cancer-type-specific altered pathways across cancers. To investigate

the clinical relevance of the identified cancer-type-specific pathways,

we collected gene expression data from TCGA and independent data-

sets and performed consensus clustering using the member genes in

the identified cancer-type specific pathways for patient stratification.

3.1 Simulation
We generated synthetic mutation datasets and performed experi-

ments using NTriPath. Specifically, we generated synthetic mutation

data containing five patient subgroups and 10 pathways. Each sub-

group included between one and seven altered pathways. We

generated the gene–gene interaction networks and member genes in

the pathway were densely connected with each other in the net-

works. We introduced a higher mutation rate to one of the sub-

groups to investigate whether different mutation rates for each

subgroup would affect the performance of NTriPath to discover

cancer-type-specific altered pathways. Experimental results indi-

cated that NTriPath could discover subgroup-specific altered path-

ways and new member genes in the altered pathways

(Supplementary Figs. S1 and S3). Additional experiments using

large-scale experiments (e.g. 12 000 genes) and with different muta-

tion rates also indicated that NTriPath could accurately identify sub-

group-specific altered pathways (Supplementary Table S1). We

summarize the results of the simulation in Supplementary

information.

3.2 TCGA somatic mutation profiles, pathway database

and gene–gene interaction networks preparation
3.2.1 Somatic mutation, gene–gene interaction networks and

pathway database

We collected the somatic mutation data (e.g. Mutation Annotation

Format files) for 4790 patients and 19 different cancer types from

the TCGA data portal on May 19, 2013 (strel’tsov et al., 2001) (see

Supplementary Table S1). Then we generated a binary matrix X of

4790 patients�25168 genes, with 1 indicating a mutation and 0 no

mutation. We constructed a matrix A representing the gene–gene

interaction networks by combining networks from Zhang et al.

(2011), the Human Protein Reference Database (December 2013)

(Keshava Prasad et al., 2009) and Rossin et al. (2011). The matrix A

contains 63898 binary undirected interactions between 12456

genes. We collected four sets of pathways: (1) 4620 conserved sub-

networks from the human gene–gene interaction network (Suthram

et al., 2010), (2) 186 KEGG, (3) 217 Biocarta and (4) 430 Reactome

gene sets from MsigDB (September 2010) (Subramanian et al.,

2005) to generate a matrix V0 representing the initial pathway infor-

mation. After preprocessing (i.e. removing genes not present in both

the somatic mutation and the gene–gene interaction networks), we

generated a dataset for 4970 patients in 19 cancer types with 11089

genes.

3.3 Cancer-type-specific altered pathway identification
We applied NTriPath to somatic mutation data from TCGA for

4790 patients and 19 different cancer types. NTriPath produced two

matrices as output; (1) newly updated pathways altered by mutated

genes V and (2) altered pathways by cancer type matrix S. We used

S matrix to identify cancer-type-specific altered pathways across

cancers. Specifically, we ranked pathways based on values of elem-

ents of the S matrix for each cancer type (e.g. rank pathways based

on all values of the ith row which indicate association scores be-

tween the ith cancer type and all pathways). In addition, to measure

the statistical significance of cancer-type and pathway associations,

we performed a permutation test (e.g. we randomly permuted som-

atic mutation data X and repeated the experiments 5000 times to

calculate empirical P-values) and defined cancer-type-specific

altered pathways based on the following strict criteria: (1) pathways

must be ranked within the top Kth compared with other pathways

in each cancer type based on their association scores in matrix S;

and (2) pathways must have significant BH-adjusted P-values

(Benjamini-Hochberg-adjusted P-values using a false discovery rate

cutoff of 0.1) (see Supplementary Table S2).
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3.4 Biological interpretation for the cancer-type-specific

altered pathways
In each cancer type, we selected the top Kth ranked altered path-

ways by statistical significance from NTriPath to generate cancer-

type-specific altered pathways. NTriPath accurately identified can-

cer-type-specific altered pathways that are biologically relevant for

each type of cancer using KEGG, Biocarta and Reactome pathway

datasets (Supplementary Table S3). However, those current pathway

databases cover only a small fraction of human genes (e.g. there are

1267, 5267 and 4159 genes in Biocarta, KEGG and Reactome path-

way databases from MSigDB Sept. 2010). To address this problem,

we used 4620 conserved subnetworks which cover 8470 genes as

additional pathway data. Thus, we reported the results of NTriPath

using 4620 conserved subnetworks for further analysis. In each can-

cer type, we selected the top three ranked altered pathways by statis-

tical significance from NTriPath with the 4620 subnetwork modules

to generate cancer-type-specific altered pathways (Supplementary

Table S4).

Interestingly, NTriPath was able to find altered pathways con-

taining not only genes that were frequently mutated but also genes

that were mutated in a small subset of patients in each cancer type

(Supplementary Table 3 and Fig. S1). Gene set enrichment analysis

using the genes from the top three altered pathways showed that the

altered pathways are significantly enriched with well-known cancer-

related genes from the COSMIC database (Forbes et al., 2015) and

known drug target genes as well as cancer-relevant biological proc-

esses (Supplementary Tables S5 and S6).

Focusing on kidney renal clear cell carcinoma (KIRC) as a proof

of concept, NTriPath identified the pathway consisting of VHL,

USP33, DIO2, TCEB1 and TCEB2 as the top-ranked altered path-

way in KIRC (Fig. 2a). The VHL (von-Hippel Lindau) gene is a

well-known tumor suppressor associated with KIRC, and is fre-

quently mutated in patients with KIRC (Nickerson et al., 2008;

Peña-Llopis and Brugarolas, 2013; Peña-Llopis et al., 2012; Sato et

al., 2013). VHL was the most frequently mutated gene in TCGA

KIRC, with 55.7% of patients harboring mutations in the gene.

TCEB1 is mutated at very low frequency in the TCGA KIRC cohort.

A recent study found that TCEB1 is mutated in �3% of the KIRC

patients without VHL inactivation, and found TCEB1 preventing

the binding of Elongin C to VHL, which inactivates the VHL path-

way (Sato et al., 2013). The second highest ranked pathway con-

tained EP300 and TP53. EP300 and TP53 were mutated in 8.1 and

5.2% of patients, respectively. EP300 has been identified as a co-ac-

tivator of hypoxia-inducible factor 1 alpha, whose activation is a

hallmark of KIRC tumors. TP53 was previously found to be associ-

ated with poor outcome in TCGA KIRC (The Cancer Genome Atlas

Research Network, 2013). The third highest ranked pathway con-

tains LRP1 and matrix metalloproteinases (MMPs) (MMP1,

MMP7, MMP9, MMP26). LRP1 is mutated in 10% of the TCGA

KIRC cohort, but matrix MMPs were not mutated in the TCGA

KIRC cohort. Biological and clinical relevance of LRP1 mutation in

KIRC has not been previously reported. MMPs have been impli-

cated in different types of cancer progression, including the acquisi-

tion of invasive and metastatic properties in many cancer types. The

aberrant expression of MMPs has been associated with poor patient

survival and prognosis in KIRC patients (Gialeli et al., 2011; Hwang

et al., 2013). Interestingly, recent studies suggested that LRP1 in-

duces the expression of matrix MMPs and thus promotes cancer cell

invasion and metastasis in many cancers, including KIRC (Duan

et al., 1995; Langlois et al., 2010; Sato et al., 2013; Staudt et al.,

2013).

NTriPath identified many new member genes in the top ranked

pathways, including TCEB2, JUN and SP1, as well as other tumor

suppressors such as CREBBP, SMAD3, BRCA1 and RB1. These

newly identified member genes by NTriPath were mutated at a very

low frequency or not mutated at all in TCGA KIRC patients.

Instead, these genes interacted with many frequently mutated genes

in the networks and were often dysregulated at the mRNA and pro-

tein levels in many KIRC patients (Fig. 2b). For example, TCEB2,

SP1 and JUN were not yet mutated but their expression was dysre-

gulated in 7, 10 and 2% of TCGA KIRC patients, respectively.

Previous studies have shown that dysregulation in TCEB2 is ex-

pected to disrupt the protein complex that ubiquitinates HIF1a, re-

sulting in the same phenotype as VHL inactivation by mutation or

promoter hypermethylation (Duan et al., 1995; Ohh et al., 2000;

Tanimoto et al., 2000). In addition, SP1 and JUN were previously

identified as major transcriptional regulators associated with signal-

ing circuits to promote tumor growth and invasion in KIRC

(Nickerson et al., 2008). Taken together, these results show the

feasibility of NTriPath to identify altered pathways that are bio-

logically relevant to KIRC, including known cancer genes mutated

at a high or intermediate frequency in the patients, as well as genes

mutated at a very low frequency or not mutated at all yet may be

fundamental role in the development and/or progression of KIRC.

3.5 Patient stratification using cancer-type-specific

altered pathways identified by NTriPath
We hypothesized that altered mRNA expression of the member

genes in the cancer-type-specific altered pathways reflect the mo-

lecular basis underlying the patient clinical outcomes. This would

allow us to use mRNA expression profiles of member genes in the

altered pathways as gene signatures to stratify patients into sub-

groups with different clinical outcomes for each type of cancer. We

first collected a dataset consisting of gene expression profiles from

3656 patients with their survival information from TCGA cohorts.

Specifically, we collected TCGA RNA-seq data for 10 different can-

cer types, including KIRC, HNSC, SKCM and lower grade glioma,

from cBioPortal using the CGDS MATLAB toolbox with RNA Seq

V2 RSEM option (Gao et al., 2013). We collected microarray gene

(a) (b)

Fig. 2. KIRC-specific altered pathways. (a) Diagrams of the top three ranked

altered pathways in patients with KIRC. Red color indicates genes that are fre-

quently mutated. A circular-shaped node represents the original member

genes annotated in the pathway database, and a diamond-shaped node rep-

resents newly identified member genes of the pathways by NTriPath. (b)

Protein and mRNA expression and mutation status for all genes identified in

the top three KIRC altered pathways. Each row represents a member gene in

the TCGA KIRC-specific altered pathway, and each column represents a pa-

tient sample in the TCGA KIRC cohort
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expression profiles for TCGA GBM from the TCGA dataportal

(strel’tsov et al., 2001) and TCGA OV and two others from Zhang

et al. (2013). We then used member genes in the top three ranked

cancer-type-specific altered pathways to perform consensus cluster-

ing for each cancer type. We generated Kaplan–Meier (KM) curves

based on the groups produced by consensus clustering and found

that patient survival was significantly different among the groups

(Fig. 3 and Supplementary Fig. S3). In TCGA KIRC, we found three

patient subgroups (A–C), with Group C having the poorest survival.

A log-rank test indicated that Groups A and C had significantly dif-

ferent survival outcomes (P-value¼1.840e�08, Hazard

ratio¼2.94) with median survival times of 41.9 months for Group

A compared with 30.8 months for Group C (Fig. 3a). Experiments

with other TCGA datasets, including those for BLCA, HNSC and

SKCM, consistently showed that the use of member genes in cancer-

type-specific altered pathways could serve as a prognostic biomarker

for patient stratification (Fig. 3b–d, and Supplementary Figs S2 and

S3). For comparison, we also attempted to cluster patients using sig-

nificant frequently mutated genes previously identified by the TCGA

Pan-Cancer study (Kandoth et al., 2013). The results of consensus

clustering using the NTriPath-derived pathway signatures and the

TCGA Pan-Cancer-derived mutated gene signatures showed that the

results from NTriPath-derived pathway signatures had higher sig-

nificance levels (based on P-value measured by the log-rank test

across different K groups for consensus clustering) for BLAC, BRCA

and KIRC, and comparable results for the GBM, HNSC and LUAD

cancer types (Fig. 4). These findings suggested that NTriPath-

derived altered pathways could be used as prognostic biomarkers

for better patient stratification.

3.6 Independent cohorts for the validation of the cancer-

type-specific altered pathways.
We performed multiple validations to evaluate the robustness and

the reproducibility of NTriPath. First, we evaluated the robustness

of the cancer-type-specific altered pathways identified in the TCGA

cohort for prognostic stratification. We generated gene expression

profiles of 102 HNSC patients from our institution and used the

member genes of the top three HNSC cancer-type-specific altered

pathways in the TCGA cohort for patient stratification. In addition,

we also used publically available gene expression data from two

ovarian cancer datasets, one lung cancer dataset and three colon

cancer datasets for a total of 1484 patients, and used the top three

cancer-type specific altered pathways for the corresponding cancer

type for independent validation. In the HNSC cohorts, we found six

patient subgroups (A through F), with Group F patients having the

poorest survival times (Fig. 5a). A log-rank test indicated that

groups A and F had significantly different survival outcomes (P-

value¼0.038, Hazard ratio¼1.88) with median survival times of

78.1 months for Group A and 26.7 months for Group F. Similarly,

we found patient subgroups having significantly different survival

outcomes in lung cancer, ovarian cancer and colorectal cancer

(Fig. 5b–d and Supplementary Fig. S4). Second, we verified the re-

producibility of NTriPath for the identification of the cancer-type-

(a) (b)

(c) (d)

Fig. 3. Cancer-type-specific altered pathways across cancers correlate with

survival outcomes. KM survival plots based on patient subgroups defined by

consensus clustering using genes from the top three altered pathways for (a)

kidney renal cell carcinoma (KIRC), (b) bladder urothelial carcinoma (BLCA),

(c) head and neck squamous carcinoma (HNSC) and (d) skin cutaneous mel-

anoma (SKCM)

Fig. 4. Comparing signatures with mutation-frequency-based signatures from

TCGA Pan-Cancer. This figure compares patient stratification using signa-

tures derived from NTriPath and mutation frequency reported in TCGA Pan-

Cancer (Kandoth et al., 2013). In each subplot, the x-axis represents the

number of cluster groups for consensus clustering (e.g. 3 means that we set

cluster number as three groups and ran consensus clustering) and the y-axis

represents �log10(P-value) calculated by the log-rank test. Higher values indi-

cate more significant patient subgroup identification

(a) (b)

(c) (d)

Fig. 5. Independent cohorts for patient stratification using cancer-type-

specific altered pathways. KM survival plots based on patient subgroups

defined by consensus clustering using genes from the top three altered path-

ways for (a) UTSW HNSC, (b) lung adenocarcinoma, (c) colon cancer and (d)

ovarian cancer
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specific altered pathways. We collected the level 2 somatic mutation

data from 19 human cancer types; those were updated after we col-

lected the initial dataset used in the original experiments from the

TCGA data portal. We found that there are 1891 newly updated pa-

tients’ mutation data from 15 cancer types (see Supplementary

Table S6). We re-ran NTriPath to identify cancer-type-specific path-

ways across 19 cancers using 6681 patients’ somatic mutation data,

including those of newly updated patients’ mutation data.

Interestingly, we found that many top ranked pathways identified

by NTriPath in the original experiments were consistently highly

ranked in the new experiments (see Supplementary Table S7). These

results may reassure the feasibility of the use of the altered pathways

identified by NTriPath as potential prognostic signatures for iden-

tifying patient subgroups with different survival outcomes across

multiple cancer types.

3.7 Identification of potential therapeutic targets

in poor prognosis patient subgroups
We further investigated whether we could identify potential targets

for therapy for the identified poor prognosis patient subgroups.

Interestingly, we found that many known drug targets in the cancer-

type specific altered pathways are often up-regulated in poor prog-

nosis patient subgroups across cancers (Supplementary Table S8).

For example, in TCGA KIRC cohort, MMP9, a target of the FDA-

approved drug Captopril, was significantly up-regulated in the poor

prognosis group compared with the good prognosis group (FDR-

adjusted P-value<0.05 with t-test). Captopril, an angiotensin-

converting enzyme inhibitor, inhibits MMP9 expression (Jones

et al., 2004; Okada et al., 2008; Williams et al., 2005; Yamamoto

et al., 2008). Therefore, the use of Captopril might be recommended

for renal cell carcinoma patients with high MMP9 levels. Another

notable example includes DNA Topoisomerase I (TOP1), a target of

well-known FDA-approved anticancer drugs such as Irinotecan and

Topotecan, identified by NTriPath as a new member gene in the

pathway containing TP53, EP300, AUKRA and CDK5. We found

that TOP1 was up-regulated in poor prognosis subgroups in HNSC

from both TCGA and UTSW cohorts. In addition, we also found

that some patients with overexpression of TOP1 in the TCGA

HNSC poor prognosis subgroup have developed therapy resistance

against single chemotherapeutic agent such as Cisplatin.

Interestingly, there is an ongoing trial in advanced HNSC showing

efficacy of TOP1 inhibitor Irinotecan with Cisplatin in a poor prog-

nosis patient subgroup (Gilbert et al., 2008). These observations

may suggest the feasibility of TOP1 inhibitors-based combinations

as an effective treatment option for HNSC patients with poor prog-

nosis and/or therapy resistance, which should be evaluated further

with multiple clinical samples.

4 Discussion

Systematic understanding of how somatic mutations influence clin-

ical outcomes is essential for the development and application of

personalized therapies. In particular, organizing alterations at the in-

dividual gene level and in the molecular pathways can correlate

altered pathways and vulnerabilities with specific genetic lesions,

and provide novel insights into cancer biology, biomarkers for pa-

tient stratification in clinical trials and potential targeted drug devel-

opment (Garraway and Lander, 2013). Here, we systematically

identified biological and clinical relevant cancer-type-specific path-

ways altered across multiple cancer types. In particular, the integra-

tion of somatic mutation with biological prior knowledge led to the

identification of altered pathways that contain recurrently mutated

genes as a hallmark of specific cancer types. We found that single

gene expression analysis, in particular those of frequently mutated

genes (e.g. TP53, EP300, BRCA1, etc.), in the commonly top-ranked

pathways across many cancer types do not show clear separation

into patient subgroups with different survival outcome. We also per-

formed KM survival analysis based on mutation status of each of

frequently mutated genes but did not find clear separation into patient

subgroups with different survival outcomes either. Interestingly, we

found that several genes, while not frequently mutated or not mutated

at all in patients, were part of cancer-type-specific altered pathways

that have been causally implicated in the development of correspond-

ing cancer types, and significantly associated with clinical outcomes

(Supplementary Fig. S5). For example, no mutation of MMP7 has

been reported, but high expression of MMP7 [P-value¼0.00191,

HR¼1.7 (95% CI 1.21–2.38)] is significantly associated with poor

survival in TCGA KIRC patients. Other examples include CABLES1

[P-value¼0.00272, HR¼0.486 (95% CI 0.301–0.787)] in TCGA

HNSC and LUAD, and GCH1 [P-value¼0.0000528, HR¼0.52

(95% CI 0.367–0.763)] in TCGA SKCM are not frequently or not

mutated, but low or high expression of those genes are significantly

associated with poor survival. In addition, we found that known drug

targets are not frequently mutated but often up-regulated in poor

prognosis patient subgroups across many cancers. These results fur-

ther corroborate that the integrative analysis of somatic mutations

with additional biological prior knowledge may elucidate potential

candidate genes associated with clinical outcomes and could be poten-

tially used to design targeted therapy, which cannot be readily identi-

fied by somatic mutation analysis alone. We performed additional

experiments using member genes present only in the original pathway

annotation to stratify patients and compared the performance of pa-

tient stratification to identify patient subgroups with different survival

outcomes with pathway signatures containing new member genes

identified by NTriPath. Interestingly, we found that the use of mem-

ber genes in the pathways with additional new member genes identi-

fied by NTriPath improved patient stratification results overall

(Supplementary Fig. S6). In our analysis, we did not remove synonym-

ous mutations or further select a shorter list of recurrent

mutated genes in cohorts with stringent criteria (Dees et al., 2012;

Lawrence et al., 2013). We performed additional experiments

exclusively using non-synonymous mutations to identify cancer-

type-specific altered pathways to stratify patients into subgroups.

Experimental results using pathway signatures identified by NTriPath

with non-synonymous mutations only and with synonymous muta-

tions to stratify patient subgroups showed comparable performance

(Supplementary Fig. S7). These findings may suggest that NTriPath-

derived altered pathways could lead to potential prognostic bio-

markers for better patient stratification. However, the clinical utility

of the altered pathways need to be rigorously validated independently

in multiple clinical samples.

To evaluate the impact of different network resources, we used

networks from the HPRD (Keshava Prasad et al., 2009) and Rossin

et al. (2011) and repeated experiments. We summarize the results of

altered pathways and patient stratification using different network

resources and provide them on our supplement website. Lastly,

NTriPath is a general computational algorithm and can be applied

to other data types such as gene expression, copy number alteration

and methylation to identify altered pathways by different types of

genomic aberrations. NTriPath can also be used to find altered path-

ways across associated with other cancer-related phenotypes (e.g.

patient groups having therapy resistance versus sensitivity, meta-

static versus non-metastatic).
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5 Conclusions

We have described an integrative somatic mutation analysis for dis-

covering altered pathways in human cancers. NTriPath integrates som-

atic mutation data and prior biological knowledge from the pathway

database and molecular networks to identify significantly altered path-

ways and their associations with specific cancer types. Specifically,

NTriPath effectively utilizes mutation patterns that exist in only a sub-

set of samples (or specific cancer types), thus revealing pathways

altered by complex mutation patterns across cancer types.

Furthermore, using gene–gene interaction networks and the pathway

database provide the potential to identify altered pathways enriched

with genes harboring mutations at high/intermediate frequencies, as

well as those not mutated per se but nevertheless playing critical roles

in tumorigenesis in network and pathway contexts. Thus, NTriPath is

uniquely suited to provide a global analysis of altered pathways by

somatic mutation across cancer types. We applied NTriPath to somatic

mutation data from 19 types of cancers, and discovered cancer-type-

specific altered pathways based on these mutations in human cancers.

Functional enrichment analysis of cancer-type-specific pathways dem-

onstrated that the identified cancer-type-specific altered pathways are

biologically meaningful to each cancer type. It also provided unique

pathway views of key biological processes underlying each cancer type.

Of particular significance, we identified a patient subgroup with poor

survival by cancer-type-specific altered pathway signatures from

TCGA cohorts, which in independent cohorts. These results implied

the potential utility of cancer-type-specific altered pathway signatures

to serve as a guide to tailored treatment in a patient subgroup.
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