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Abstract

Motivation: DNA methylation aberrations are now known to, almost universally, accompany the ini-

tiation and progression of cancers. In particular, the colon cancer epigenome contains specific gen-

omic regions that, along with differences in methylation levels with respect to normal colon tissue,

also show increased epigenetic and gene expression heterogeneity at the population level, i.e. across

tumor samples, in comparison with other regions in the genome. Tumors are highly heterogeneous

at the clonal level as well, and the relationship between clonal and population heterogeneity is poorly

understood.

Results: We present an approach that uses sequencing reads from high-throughput sequencing of

bisulfite-converted DNA to reconstruct heterogeneous cell populations by assembling cell-specific

methylation patterns. Our methodology is based on the solution of a specific class of minimum

cost network flow problems. We use our methods to analyze the relationship between clonal het-

erogeneity and population heterogeneity in high-coverage data from multiple samples of colon

tumor and matched normal tissues.

Availability and implementation: http://github.com/hcorrada/methylFlow.

Contact: hcorrada@umiacs.umd.edu

Supplementary information: Supplementary information is available at Bioinformatics online.

1 Introduction

DNA methylation (DNAm) is a gene regulatory mechanism where

silencing of gene expression is established by the chemical bond of

methyl groups to DNA at specific genomic regions (Holliday and

Pugh, 1975). It is the best understood heritable mechanism for gene

regulation that does not involve direct modification of DNA se-

quence itself. High-throughput sequencing of bisulfite-converted

DNA is used to measure DNAm modifications at base-pair level.

This approach has led to deeper understanding of the methylome’s

organization and its role in development (Lister et al., 2009) and dis-

ease (Hansen et al., 2011).

While single-cell methods to sequence bisulfite-converted DNA

are currently under development (Smallwood et al., 2014), the most

reliable current method to measure DNAm at the base-pair level

across the entire methylome is to bisulfite-convert and sequence

DNA from a population of cells. A number of existing computa-

tional methods may then be used to calculate the percentage of

DNA fragments that harbor a DNAm modification at specific gen-

omic loci (Hansen et al., 2012). In many normal human tissues, for

example, these percentages vary from the expected levels in a popu-

lation of diploid cells with identical DNAm modifications: 100%

(where all cells in the population are methylated at a specific locus),
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0% (where all cells in the population are unmethylated) or 50%

(where only one chromosome in all cells in the population are

methylated). For example, in the normal colon methylome, the

majority of the methylome is partially methylated at a level of

roughly 70–80% (Hansen et al., 2011). Similar patterns are

observed in other human tissues (Timp et al., 2014), and tissues in

other eukaryotes.

An obvious observation that follows from this is that cell popula-

tions in normal tissues are composed of epigenetically heterogenous

cells. Furthermore, when comparing DNAm across different tissues,

for example, colon normal tissue and colon tumor, Figure 1, or a

population of stem cells to a population of somatic cells, e.g. fibro-

blast (Lister et al., 2009), differences in DNAm percentages at a spe-

cific locus is indicative of a shift in the epigenetic composition of

these cell populations.

Computational and statistical methods to study the epigenetic

composition of cell populations have been proposed based on the

analysis of DNAm modifications at multiple consecutive genomic

loci spanned by single sequencing reads (Landan et al., 2012), where

they analyzed DNAm modifications at each group of four

contiguous CpG dinucleotides using sequencing reads that span all

four CpGs. They then calculate the proportion of reads compatible

with each of the 24 possible DNAm modifications over these four

positions. They summarize these 24 proportions to define the epipo-

lymorphism of each set of four contiguous CpGs.

While these approaches have yielded great insight into how cell

populations differ epigenetically across different tissues, they only

provide a general summary of the epigenetic composition of these

cell populations. For instance, distinguishing between the two types

of cell population shifts illustrated in 1 is limited to those differences

observed over four contiguous CpGs. To perform a comprehensive

analysis of these cell population shifts, the ability to reconstruct cell-

specific methylation patterns over longer genomic spans is required.

In this article, we present methylFlow, a novel computational

method to reconstruct cell-specific patterns using reads obtained

from sequencing bisulfite-converted DNA based on network flow al-

gorithms. We report on a simulation study characterizing the behav-

ior of our method. We then present an application of this method

using ultra-high coverage targeted sequence in a colon cancer study

(Hansen et al., 2011), and on whole genome sequencing of fully dif-

ferentiated B-cells and KSL and CLP progenitor cells (Kieffer-Kwon

et al., 2013). We also perform a validation study using bisulfite-

converted DNA from single cells (Smallwood et al., 2014). We be-

lieve that this method will allow for increased understanding of the

role of epigenetic heterogeneity at the cell population level in gene

regulation.

2 Methods

Our method uses sequencing reads from bisulfite-converted DNA to

reconstruct heterogeneous cell populations by assembling cell type-

specific methylation patterns spanning multiple CpGs from read

overlaps (Fig. 2). It jointly reconstructs these methylation patterns

and quantifies their abundance in heterogenous cell populations.

2.1 Problem formulation
Our method assumes a set of aligned reads from a bisulfite-

converted DNA sequencing run sorted by genomic starting location.

Fig. 1. Differences in DNAm percentage at a given locus are indicative of a

shift in the epigenetic composition of cell populations. (a) Base-pair-level

DNAm percentage estimate for three colon tumors and paired normal tissue

(Figure from Hansen et al., 2011). (b) Different shifts in the epigenetic com-

position of the cell population in a tissue lead to identical marginal differ-

ences of DNAm percentage at the base-pair level

Fig. 2. Overview of methylation pattern estimation: We assume that samples are obtained from cell populations (top left) that are epigenetically heterogeneous

as determined by distinct CpG methylation patterns along a genomic region (top right). Reconstruction is based on the overlap of bisulfite converted reads to a

reference genome (bottom left). Read overlaps and methylation calls are used to define a region graph (bottom right). Based on coverage (the number of reads

originating in each region), a minimum cost network flow problem to estimate the number and abundance of methylation patterns (paths in the graph)
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For this article, we only analyze on cytosine methylation so that

each CpG overlapped by a given aligned read can be determined to

be methylated (M) or unmethylated (U). Each aligned read r is thus

associated with a starting genomic position l and a specific methyla-

tion pattern over the CpGs it spans. The latter is defined by set

pr ¼ fhoffseti;miig where offseti specifies the location of the CpG

based on the read start position l and mi 2 fM;Ug specifies the

methylation status of the ith CpG covered by the read.

2.1.1 Overlap graph

Following existing methods from viral population reconstruction

(Eriksson et al., 2008), we build a read overlap graph based on read

starting location and compatibility of methylation patterns. Read

overlap graph Go ¼ fVo;Eog contains a node for each aligned read

lpr (as described above) originating from position l with methylation

pattern pr. A directed edge (lpr, mqs) between from source node lpr

to target node mqs is included in the graph if it satisfies the

following:

1. l<m: the starting position of the source is to the left of the start-

ing position of the target, and

2. methylation patterns pr and qs are equal on overlapping cpgs (if

any), and

3. there is no path between lpr and mqs in the graph unless this

edge is present, so there are no paths between ancestors of the

target node.

We denote the number of reads originating at position l with

methylation pattern pr as clpr
. This is the same construction as

Eriksson et al., 2008 with methylation patterns taking the place of

variants in reads obtained from virus sequencing.

2.1.2 Coverage normalization

To build a statistical model, we first normalize the coverage in the

overlap graph to account for variability introduced by non-uniform

sequencing coverage and copy number variations. The number of

reads for node lpr is normalized as follows:

Let cl ¼
X

pr
clpr

be the total number of reads originating in pos-

ition l, and let s ¼ medianlcl across a connected component of the

graph. The normalized number of reads for node lpr is defined as

ylpr
¼ clpr

cl
� s. After normalization, all positions l have total normal-

ized number of reads equal to s.

2.1.3 Region graph

Building a statistical model over position-specific coverage is diffi-

cult owing to variability in low coverage experiments. To alleviate

this issue, we use the fact that DNAm modifications show high spa-

tial consistency (Holliday and Pugh, 1975) and convert the read

overlap graph Go to a region graph G ¼ fV;Eg by collapsing non-

branching paths in the overlap graph Go so that nodes now span

multiple genomic loci. The total, normalized, number of reads origi-

nating in region v 2 V is defined as yv ¼
X

lpr2v
ylpr

. We define the

starting position lv of region v 2 V as minlflp 2 vg, i.e. the smallest

position l over nodes of the overlap graph Go contained in region v.

We also merge read methylation patterns into region methylation

patterns (because by definition these are consistent), so that each re-

gion also defines a methylation pattern pv ¼ [lpr2vpr.

To complete the region graph, we add a source node s connected

to every region in the graph without an incoming edge, and a sink

node t connected to every region in the graph without an outgoing

node. Cell-specific methylation patterns p are defined by paths in

the region graph from start node s to end node t each with a specific

methylation pattern defined by the methylation patterns of the re-

gions in the path. We denote the abundance of cell-specific methyla-

tion pattern p, equivalently path p, as hp.

Given this notation, the total abundance of methylation patterns

consistent with region v 2 V is given by the sum of the abundances

of paths that include v:
X

fp:p�vghp. Note that by construction the

following three sets are equal

fp : p�vg ¼ [
fu:ðv;uÞ2Eg

fp : p�ðv; uÞg ¼ [
fu0 :ðu0 ;vÞ2Eg

fp : p�ðu0; vÞg

This just states that the set of paths going through node v 2 V

can be enumerated as the union of all paths going through all outgo-

ing edges fðv;uÞ 2 Eg, or as the union of all paths going through all

incoming edges fðu0; vÞ 2 Eg. This implies

X
fp:p�vg

hp ¼
X

fu:ðv;uÞ2Eg

X
fp:p�ðv;uÞg

hp ¼
X

fu0 :ðu0 ;vÞ2Eg

X
fp:p�ðu0 ;vÞg

hp (1)

We will use relationship 1 in our estimation procedure.

2.1.4 Statistical model

We introduce a statistical model that motivates our reconstruction

algorithm based on fitting the normalized observed number of reads

yv originating in region v 2 V of the region graph. This is similar to

statistical models used in viral population reconstruction methods

(Eriksson et al., 2008), or RNA-seq (Bernard et al., 2014).

Our goal is to estimate Eyv, the expected number of reads origi-

nating from region v as a function of the abundances hp of unob-

served methylation patterns p. To do so, we need to define the

effective length of region v in pattern p, which we denote ‘vp. As

every methylation pattern p corresponds to a path p through region

graph G, the effective length of region v 2 V within pattern p is

determined by outgoing edge ðv; uÞ 2 p. Specifically, the effective

length ‘vp ¼ ‘vu ¼ lu � lv for every path p such that ðv; uÞ 2 p and lu
and lv are the starting positions of regions u and v, respectively. As

Eyv corresponds to the expected number reads originating in region

v, it is proportional to the effective length of the region.

Using this notation we model

Eyv ¼
X
fp:v2pg

‘vphp ¼
X

fu:ðv;uÞ2Eg
‘vu

X
p:p�ðv;uÞ

hp:

Using a regularized method of moments, we estimate parameters

hp corresponding to every possible path p through region graph G

by minimizing loss function

min
hp

X
v2V

jyv �
X

fu:ðv;uÞ2Eg
‘vu

X
fp:p�ðv;uÞg

hpj þ k
X

p

hp (2)

where p ranges over all paths in the region graph and k is a regular-

ization term. This formulation is similar to the IsoLasso (Li et al.,

2011) model defined for RNA-seq transcript assembly and quantifi-

cation. In our case, we use absolute loss to implement robust median

regression (instead of least squares regression).

2.2 Algorithmic solution
The regularized method of moment estimator yields a linear opti-

mization problem over a large number of unknowns, namely, the

number of possible paths through the region graph G ¼ ðV;EÞ. We

follow the idea behind the FlipFlop method (Bernard et al., 2014)

developed for transcript assembly from RNA-seq data using regular-

ized loss functions. We do not explicitly solve over all possible paths

p, instead we introduce variables fvu for each edge ðv;uÞ 2 E defined
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as fvu ¼
X

fp:p�ðv;uÞghp and rewrite the method of moments estimat-

ing equation 2 as

min
fvu

X
v

jyv �
X

fu:ðv;uÞ2Eg
‘vufvuj þ k

X
u:ðu;tÞ2E

fut (3)

with regularization term k
X

p
hp in Equation 2 rewritten using edge

variables fut where t is the sink node in G. Because all paths p end at

sink node t we have
X

p

hp ¼
X

fu:ðu;tÞ2Eg

X
fp:p�ðu;tÞg

hp ¼
X

fu:ðu;tÞ2Eg
fut.

To ensure variables fuv correspond to the sum of methylation

pattern abundances, equivalently paths, that include edge (v, u),

we add the following constraints, which follow directly from

Equation 1:

X
fu:ðv;uÞ2Eg

fvu ¼
X

fu0 :ðu0;vÞ2Eg
fu0v (4)

Because we are using absolute deviation as our method of mo-

ments estimating criterion we obtain a linear optimization program

with linear constraints. It corresponds to a network flow problem

where variable fuv is the flow assigned to edge uv and constraints in

Equation 4 correspond to standard network flow balance

constraints.

2.3 Implementation
Our software takes as input a set of aligned bisulfite-converted

reads, which may be obtained using existing bisulfite-aware read

mappers (Hansen et al., 2012; Krueger and Andrews, 2011). It as-

sumes the input is in SAM files as produced by the Bismark (Krueger

and Andrews, 2011) aligner. We solve the dual problem

(Luenberger, 1973) of the above linear optimization problem using

the GLPK (Makhorin, 2008) linear programming solver and the

LEMON (Dezs}o et al., 2011) Cþþ library to represent and manipu-

late the read overlap and region graphs. Source code is freely avail-

able at http://github.com/hcorrada/methylFlow as Cþþ source

code, and includes a small R package for reading, visualizing and

manipulating resulting methylation patterns and their abundances.

3 Simulation

We performed a simulation study to evaluate the performance of

our algorithm based on how well it predicts the number of cell-

specific patterns, how many methylation calls are reconstructed cor-

rectly in each pattern and how well it predicts the abundance of

each pattern.

3.1 Simulation
Our simulation has two separate steps: first, we simulate n cell-spe-

cific methylation patterns over a genomic region and then simulate

the sequencing process to produce short reads using uniform sam-

ples across the simulated pattern. We call these simulated patterns

as true patterns.

3.1.1 Simulating true patterns

We use three different settings of increasing difficulty to simulate the

cell-specific true patterns:

• Simple: Number of true patterns is n ¼ 2, one with 75% of

abundance and the other with 25% of abundance. The two pat-

terns share almost no CpGs with the same methylation status.

• Moderate: Number of true patterns is n ¼ 4, with 15%, 15%,

30% and 30% of abundances, respectively. Patterns share a

moderate number of CpGs with the same methylation status.
• Hard: Number of true patterns is n ¼ 10, all with 10% of abun-

dances and only a small number of CpGs have distinct methyla-

tion status across patterns.

Further detail on the simulation process is included in

Supplementary Material.

3.2 Error metrics for simulation
Error metrics are based on first matching each simulated pattern

with one or more of the patterns estimated by our method, and then

determining error in abundance estimates or methylation calls for

the estimated patterns based on this matching. We note that these

error metrics are only applicable in simulation settings where true

patterns and abundances are known.

To match estimated patterns to simulated patterns, we build a bi-

partite graph ðfS;Tg;EÞ: each node in S represents simulated pattern

with abundance hi while set T has a node for each estimated pattern

with abundance hj. Each edge connecting node i 2 S to node j 2 T

has weight wij equal to the total number of methylation call differ-

ences between patterns i and j. wij equals the number of overlapping

CpGs with different methylation status plus the number non-

overlapping CpGs. wij is zero if pattern i 2 S exactly matches pattern

j 2 T in all their methylation calls and have no non-overlapping

CpG sites. We then solve a minimum weight matching problem on

the bipartite graph so that the matching node of simulated pattern i

is the estimated pattern j in set T, which has the smallest weight wij

among neighbors of node i. Below we use indicators xij equal to 1 if

i and j are matched and is equal 0 otherwise.

To better understand the behavior of error metrics, we report

errors for multiple thresholds based on weights wij. If the number of

methylation call errors between estimated and simulated patterns is

above the threshold, then the match is not used when calculating

error metrics below.

3.2.1 Abundance error

Based on the resulting matches for each estimated pattern, we deter-

mine a score to evaluate how well our algorithm predicts the average

abundance of patterns as follows:

Average abundance error ¼ 1

n

X
i2S

X
8j2T:xij¼1

hi � hj

hi

� �2

This error metric shows how well our algorithm predicts the

abundance of simulated patterns. Because the abundance of patterns

is different in different settings, we compare the abundance of true

patterns by their matched estimated patterns and scale them by the

abundance of true patterns. This gives us the relative error between

the abundance of true and estimated patterns.

3.2.2 Methylation call error

Our second error metric evaluates the prediction of methylation

calls for estimated patterns. We use the same bipartite graph and

same matching problem we did for calculating the average abun-

dance error. Hence, based on our bipartite graph and the matches

for every simulated pattern, we determine a score to evaluate how

well our algorithm predicts the methylation patterns as follows:
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Average methylation call error ¼ 1

n

X
i2S

X
j2T:xij¼1

wij

The average methylation call error shows how well the estimated

patterns are matched to true patterns. It is equal to the average num-

ber of methylation status errors between simulated and their

matched estimated patterns. Because we are using these weights to

discard matched patterns, we expect that the methylation call error

is less than the corresponding threshold.

3.2.3 Minimum cost network flow error

Our third error metric evaluates performance based on both methy-

lation call error and pattern abundance estimates. In this metric

there is no threshold used to filter pattern matches between simu-

lated and estimated patterns. Instead, we run a minimum cost net-

work flow problem that matches every true pattern to a set of

estimated patterns on the same bipartite graph. Further details are

included in Supplementary Material.

4 Results

4.1 Simulation study
To evaluate the performance of our algorithm, we need to consider

the average abundance error and average methylation call error sim-

ultaneously, as abundance errors may increase as more stringent

thresholds are placed on methylation call error. In Figure 3 (A–C),

average abundance error versus average methylation call error is

shown for the moderate simulation setting as we test the effect of

coverage, number of CpGs and read length on the reconstruction al-

gorithm. We show the effect of using different methylation call error

thresholds on matched patterns and the error metrics.

We observed that abundance error decreases and methylation

call error increases as read length and coverage increases. Increasing

coverage and read length help to decrease the problem complexity

and have a more accurate reconstructed pattern. In particular, we

observed that while doubling coverage from 5� to 10� significantly

decreases error, doubling coverage from 10� to 20� has much less

pronounced effect. Increasing the number of CpGs increases the

complexity of the problem and both average abundance and average

methylation call error increase. In this Figure 3D, CpG, read length

and coverage are fixed, while pattern complexity is varied.

Methylation call error and average abundance error increase as the

complexity of patterns increases.

Supplementary Figure 1 shows the minimum cost network flow

error metric for our three simulation settings as a function of cover-

age, number of CpGs and read length. By increasing coverage and

read length, as we expect, the complexity of reconstruction de-

creases and the error decreases consequently with error decreasing

sharply from 5� to 10� coverage, with slower decrease after that.

Because we are reading CpG positions from a real data set, increas-

ing the number of CpG sites are expanding the genomic region but

the density of CpG sites remains almost the same. Hence, we see a

slight increase in the error.

Our algorithm is less dependent on the number of CpGs. The

performance of our algorithm slightly decreases by increasing num-

ber of CpGs and that is mainly because of the extension in the length

of reconstructed region. Coverage has more significant effect on the

performance of our algorithm. We see more errors in low coverage

regions. Also our algorithm performs better if we could have longer

sequencing reads and less ambiguity between cell-specific patterns.

We also evaluate sensitivity of our algorithm to error in sequenc-

ing CpG methylation status. Figure 4 shows that the minimum cost

flow error increases by increasing the probability of noise. Note that

when the noise level is 50, i.e. pðerrorÞ ¼ 0:5 in sequencing, then the

short reads are random, and thus the output will be random, i.e. the

minimum cost flow error is around 0.5. The regularization param-

eter k indirectly controls the number of estimated patterns. As can

be seen in Figure 4, the methylFlow algorithm is not sensitive to

regularization parameter in a wide range of k. In particular,

methylFlow achieves consistently good performance with k varying

from 0 to 100 for different types of simulated data. This is an inter-

esting property because we do not need to tune the regularization

parameter precisely in the real data sets.

4.2 Single-cell sequencing data
We also evaluated our algorithm using a single-cell bisulfite sequenc-

ing (scBS-seq) dataset (Smallwood et al., 2014). Smallwood et al.

performed scBS-Seq on mouse embryonic stem cells (ESCs) cultured

either in 2i (2i ESCs) or serum (serum ESCs) conditions to determine

whether scBS-Seq can reveal DNAm heterogeneity at the single-cell

level. To evaluate the performance of our algorithm, we ran our al-

gorithm separately on 2i and serum single-cell datasets that were

aligned to GRCm38 mouse genome using Bismark in single-end

mode. We observed that our algorithm reconstructed a single pat-

tern for 93% of the regions covered and obtained two patterns for

6% of covered regions. We also ran methylFlow on a mixture of 2i

and Serum samples. For 79% of regions, methylFlow recovered

Fig. 4. (Left) Sensitivity to the noise level in the input. Minimum cost flow

error for various noise levels, probability error in sequencing, of the input

data. (Right) Sensitivity to regularization parameter k. Minimum cost flow

error for various values of the regularization parameter

A B

C D

Fig. 3. Average abundance error versus average methylation call error in dif-

ferent setting of simulation and various thresholds in moderate complexity of

patterns. Points correspond to increasing threshold on methylation error be-

tween matched patterns. Panels show the effect of different (A) coverage, (B)

number of CpG sites and (C) short read length on error. (D) Average abun-

dance error versus average methylation call error in different simulated pat-

tern complexity with fixed coverage, number of CpG and short read length
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exactly the same number of patterns as expected from the mixture.

For 17% of the regions, methylFlow recovered one fewer pattern

than expected from the mixture. This result suggests that

methylFlow is capable of identifying long-range methylation pat-

terns in an epigenetically heterogeneous cell population.

Unfortunately, coverage for single-cell sequencing data is too low to

reliably estimate our algorithm’s performance in estimating the

abundance of patterns in a heterogeneous cell population.

4.3 Ultra-high coverage-targeted sequencing
We applied our method to data from a targeted bisulfite sequencing

experiment on three colon tumors and matched normal tissue

(Hansen et al., 2011). Read lengths in this dataset are either 73 or

80 bp, and we used the provided read alignments with a post-

processing script (available on request) to resolve strand-aware

methylation status as reported by the alignment tool before construct-

ing the read overlap graph. We were able to reconstruct cell-specific

methylation patterns with median length 110–200 bp (Fig. 5. Patterns

longer than 350 bp were reconstructed in each sample).

Because the true cell-type methylation patterns are not known,

the error metrics presented in Section 3.2 are not applicable. In real

datasets, we instead report performance by comparing marginal

methylation percentage of estimated patterns at CpG level to those

estimated from short reads directly. Because we are not using this in-

formation in reconstructing patterns, similar beta value (marginal

methylation percentage) could evaluate the performance of our

method. Figure 5, panels C and D, shows the marginal methylation

percentage from estimated patterns are highly correlated with mar-

ginal methylation estimates from short reads (correlation 0.89).

As illustration of the type of inference provided by our method,

we show in Figure 6 the patterns estimated for a differentially

methylated region. We obtained the most differentially methylated

region in chromosome 13 using bumphunter software (Jaffe et al.,

2012). The Figure depicts the estimated patterns in every sample

along with their abundances in this hyper-methylated region. We

observed that populations in tumor are more heterogenous than in

normal (which itself is heterogenous to a small degree), and that

dominant patterns in the normal population are present in the tumor

population.

4.4 Whole genome sequencing
We also applied our method to a whole genome bisulfite sequencing

(WGBS) data on mouse wild-type activated B cells and mouse CLP

and KSL cells (Kieffer-Kwon et al., 2013) aligned using bis-

mark_v0.11.1. The length of short reads is 50 bp, and all analyses

were done relative to the mm10/GRCm38 assembly of the mouse

genome. We were able to reconstruct cell-specific methylation pat-

terns with median length 200–750 bp (Supplementary Fig. S2).

Patterns longer than 750 bp were reconstructed in each sample.

Again, we report the performance of our method using the mar-

ginal methylation percentage of estimated patterns at CpGs to those

obtained from short reads directly. Supplementary Figure 2, panels

C and D, shows the marginal methylation estimates from patterns to

those obtained from short reads (correlation 0.92 and 0.91).

5 Discussion and Conclusion

We have presented an algorithmic method to reconstruct cell-

specific methylation patterns using overlap and coverage of sequenc-

ing reads of bisulfite-treated DNA. Our method allows researchers

to probe intra-cellular epigenomic heterogeneity from a standard

sequencing experiment of pooled cells. This work opens new av-

enues in the analysis of epigenomes as statistical extensions to our

work here can start addressing questions of differential presence of

cell-specific methylation patterns across phenotypes of interest, and

begin to understand specific changes in the epigenomic complexity

of cell communities.

Some cell-devoncolution methodologies like methylPurify

(Zheng et al., 2014) use regions with bisulfite reads showing dis-

cordant methylation levels to infer tumor purity from tumor samples

alone. They do not assume any genomic variation information or

prior knowledge from other datasets. Some restrictions in their

method is that they infer the fraction of normal cells within tumor

samples by assuming that there are only two component of normal

and tumor cells. They also detect differentially methylated regions

from tumor and normal cell lines, under assumption of homoge-

neous tumor and normal cell lines. Because they only consider CpG

sites, they expect to see consistent methylation level within short

Fig. 6. Differentially methylated region between colon tumors and matched

normal pairs with corresponding patterns and their abundances across differ-

ent samples. The top panel shows the marginal methylation percentage and

the average curve of marginal methylation percentage as estimated by bump-

hunter. The bottom panel depicts the methylation patterns of samples. Blue

bars represent the abundance of corresponding patterns. The abundances

are normalized by sum of the abundances of all patterns in selected region

Fig. 5. Pattern estimation in targeted bisulfite sequencing of three colon

tumors and matched normal tissue in chromosome 13. (A) Length distribu-

tions of reconstructed cell-specific methylation patterns. (B) Distributions of

the number of CpGs per reconstructed cell-specific methylation patterns. (C

and D) CpG methylation percentage estimated from reconstructed cell-spe-

cific methylation patterns (pattern methyl Percentage) versus observed CpG

methylation percentage (region methyl Percentage) for a single tumor sam-

ple and matched normal
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intervals (300 bp). Houseman et al. (2012) also present a statistical

method to infer the distribution of different cells in a subpopulation

and similarly, methylMix (Gevaert, 2015) developed a computa-

tional algorithm to identify differentially methylated genes that are

also predictive of transcription. The two latter methods used the

Illumina Infinium HumanMethylation 27k or 450k BeadChip.

Our simulation study shows that our methodology is sensitive,

as other similar methods for sequencing data, to sequencing depth.

Figure 3 indicates that that our approach works well at depths of

�10�. Our software outputs total coverage per connected compo-

nent in the region graph. In practice, regions that have <10� aver-

age coverage should be removed for downstream analysis.

While we have not applied our method to Reduced

Representation Bisulfite Sequencing (RRBS) data (Meissner et al.,

2005), it should directly apply as presented in this manuscript, under

the same caveats regarding coverage discussed above. RRBS is de-

signed for high-density regions, and usually tends to yield higher

coverage than WGBS, which makes it suitable for our methodology.

Our method requires single-fragment methylation calls as input as

provided by sequencing assays, which makes it unsuitable for array-

based assays, tiling (Irizarry et al., 2008) or based on Bisulfite con-

version as signal in this case depends on the number of methylated

and unmethylated fragments in a pool of cells (Bibikova et al.,

2011). While we believe that our normalization method somewhat

alleviates coverage biases stemming from sequence or amplification

effects, a normalization model that incorporates relevant technical

covariates could significantly improve any instability in our estima-

tion method stemming from coverage biases.

As presented here, our method only performs reconstruction of

patterns for single samples (e.g. a single tumor sample). A consider-

ation for future work is to establish an algorithm that jointly esti-

mates cell-specific methylation patterns across samples. However,

our graph matching procedures described in Section 3.2 can be used

to associate estimated patterns across individual samples in subse-

quent analyses.
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