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The NOXs are a family of flavocytochromes whose basic structure has been lar-

gely conserved from algae to man. This is a very simple system. NADPH is

generally available, in plants it is a direct product of photosynthesis, and

oxygen is a largely ubiquitous electron acceptor, and the electron-transporting

core of an FAD and two haems is the minimal required to pass electrons across

the plasma membrane. These NOXs have been shown to be essential for

diverse functions throughout the biological world and, lacking a clear mechan-

ism of action, their effects have generally been attributed to free radical

reactions. Investigation into the function of neutrophil leucocytes has demon-

strated that electron transport through the prototype NOX2 is accompanied by

the generation of a charge across the membrane that provides the driving force

propelling protons and other ions across the plasma membrane. The conten-

tion is that the primary function of the NOXs is to supply the driving force

to transport ions, the nature of which will depend upon the composition

and characteristics of the local ion channels, to undertake a host of diverse

functions. These include the generation of turgor in fungi and plants for the

growth of filaments and invasion by appressoria in the former, and extension

of pollen tubes and root hairs, and stomatal closure, in the latter. In neutro-

phils, they elevate the pH in the phagocytic vacuole coupled to other ion

fluxes. In endothelial cells of blood vessels, they could alter luminal volume

to regulate blood pressure and tissue perfusion.
1. Introduction
1.1. NOX2 of the neutrophil microbicidal oxidase—the prototype NOX
In 1978, the first NOX was described [1] in human neutrophils. These are the

most numerous of the white blood cells, with prime responsibility for killing

bacteria and fungi which they engulf into an inverted sac of plasma membrane

called the phagocytic vacuole. The phagocytosis of the organisms is associated

with a burst of non-mitochondrial respiration [2], called the respiratory burst,

that generates O�2 [3] and is important for the efficient killing of the microbes.

When this process is defective, it leads to the profound immunodeficiency

syndrome of chronic granulomatous disease (CGD) [4].

It transpired that the neutrophil oxidase consists of a flavocytochrome b,

gp91phox, located in the membrane of the vacuole, which requires a number of

accessory proteins to enable electron transport from NADPH [5] in the cytosol

to O2 in the vacuole [6]. Loss, or defective function, of gp91phox [7], or of one of

these accessory proteins [8–10] leads to failure of the oxidase, resulting in CGD.

1.2. The NOX2 electron-transporting cassette
gp91phox is a short electron transport chain that is perfectly adapted to transfer

electrons across a membrane. The structure has not been derived directly but
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Figure 1. Models for structures of various subtypes of NOX-family enzymes. From [26]. These molecules have a common structure with six transmembrane helices
within which are two haems, close to either surface of the membrane. The C-terminal cytosolic tail contains the NADPH and FAD binding sites. Cylinders represent
six transmembrane a-helices. EF—Ca2þ-binding EF-hand motif. PRR—proline-rich region, Src homology-3 domain. DUOX1 and DUOX2 were called dual oxidases
because they have an additional ‘peroxidase’-like motif at their N-terminus on the outer surface of the membrane [27]. The product of the DUOXs is H2O2 rather than
the O�2 produced by most other NOXs, indicating that these peroxidase domains are in fact acting as superoxide dismutases. Myeloperoxidase can serve the same
function in neutrophils [28].
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largely through homology with functionally similar molecules.

There are six transmembrane a-helices linked by three external

and two cytosol-facing loops and a long cytosolic tail. It had

been shown that gp91phox itself contained the binding sites

for NADPH and FAD [11]. The cytosolic C-terminus has

strong homology to ferredoxin NADP reductase that was

used as a template to model the NADPH and FAD binding

sites in this region [12]. We showed FRE1 ferric reductase of

Saccharomyces cerevisiae to be a cytochrome b similar to

gp91phox [13], and were able to define the haem binding sites

on the transmembrane helices by mutating the relevant histi-

dines, which placed the haems about 12 amino acids apart,

near either surface of the membrane [14]. The location of carbo-

hydrate binding sites helped identify structures located on the

external surface of the membrane [15].

There is a second membrane component, p22phox, attached

to gp91phox [16,17] with which it is in stoichiometric equi-

valence [18], and both proteins are missing as a result of a

damaging mutation in either [19], indicating their mutual inter-

dependence for stability. In neutrophils, the cytoplasmic tail

of p22phox acts as a docking mechanism for phosphorylated

cytoplasmic p47phox [20].
1.3. Other NOXs and homologues exist in animals,
plants and fungi

The proliferation of genome sequencing gave rise to the realiz-

ation that several homologous NOXs existed in man, and then

soon after they were also described in other forms of life as
diverse as plants and fungi [21–24] which predated them on

land [25], suggesting that a common ancestor of the NOX

genes emerged at an early stage in the evolution of eukaryotes

[26]. The fundamental structure of the electron-transporting

cassette initially described in gp91phox is conserved in all these

molecules. Greater variation is observed in the mechanisms

involved in activating electron transport (figure 1).

Homologues of NOX-family proteins also exist in plants

where they are referred to as respiratory burst oxidase homol-

ogues (Rboh). The plant oxidases all share FAD and NADPH

binding sites, six membrane-spanning domains and calcium-

binding EF-hand motifs. This organization most closely

resembles the mammalian NOX5 subfamily; no ancestral

type of DUOX isoforms has been found in plants.

Fungi contain two NOXs, A and B [29]. Their electron-

transporting cassette is homologous to gp91phox, and NoxD

is the fungal equivalent of p22phox [30].

1.4. Activating mechanisms
Electron transport can be induced by adding NADPH to the

purified, relipidated, mammalian NOX2, which indicates that

this molecule comprises the complete electron-transporting

apparatus of the O�2 -forming NADPH oxidase [31]. The sup-

plementary molecules required by the diverse systems must

activate electron transport by inducing conformational

changes in the flavocytochrome.

These activation mechanisms are of two main types.

The first is the recruitment of activating proteins to interact

with the electron-transporting cassette. In mammalian cells,
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activation involves movement of proteins from the cytosol to

the membranes where they interact with gp91phox and

p22phox [32]. These activating proteins include p67phox [33]

which is present in the cytosol complexed to p40phox from

which it dissociates [33], an interaction that is promoted by

the Rho GTPase Rac [34], that must itself dissociate from an

inactivating protein GDI [35] and p47phox (figure 2).

NOX5 and DUOX1 and 2 have additional EF-hand

motifs at the N-terminus, suggesting their regulation

by Ca2þ binding [43]. In addition, calcium-dependent

kinases, such as protein kinase C and/or Ca2þ/calmodulin-

dependent protein kinase II, are known to phosphorylate

and activate NOX5 and DUOXs. DUOXs do not use such

complex activation networks, but have two EF-hand calcium

binding motifs in the N-terminal cytosolic domain [26] and

are activated by the influx of Ca2þ [44].

A fungal homologue of p47phox has not been identified,

but homologues of the cytosolic p67phox (NoxR) and Rac

have been identified in fungi and the scaffold protein Bem1

might be a fungal analogue of p40phox.

In contrast to many of the mammalian NOX proteins,

regulation of the Rboh proteins is primarily effected through

post-translational modifications, such as conformational

changes induced by Ca2þ binding to their EF-hand motifs

[43] and by phosphorylation by Ca2þ-dependent protein

kinases [40,41,45], receptor-like cytoplasmic kinases and

mitogen-activated protein kinases [42].
2. NOXs as signalling molecules
It is generally believed that NOXs play an important role in

‘signalling’ in fungi [46], plants [47] and mammalian cells

[48,49]. The concept of a signalling role for these molecules

has arisen because they generate reduced oxygen species

(ROS) such as O�2 and/or H2O2. When the NOXs are activated

and ROS are generated, a biological effect is observed. When

the NOX is missing or inhibited and the ROS are not generated,

the biological effect is seen to be absent. The biological effect is

then attributed to a direct influence of the ROS, rather than to

some other influence of the NOX. As I will detail below, elec-

tron transport by NOXs, across the plasma membrane of

cells, has dramatic effects upon the pH on either side of the
membrane, and on electrochemical-driven ion fluxes into and

out of the cell, that themselves influence cellular function with-

out the need to implicate ROS or free radical reactions. In

addition, inhibitors of NOXs, such as diphenylene iodonium

(DPI) [50], are used in cellular systems to provide evidence

that the NOXs are exerting a specified influence on cell func-

tion. It is often not appreciated that these inhibitors are not

specific. DPI is a general flavoprotein inhibitor and disrupts

mitochondrial function [51], with all the subsequent effects

on cellular metabolism.
2.1. Many mechanisms exist to destroy reactive
oxygen species

NOXs transfer electrons across the plasma membrane to O2

outside the cell. The O�2 will then be exposed to the extracellu-

lar medium, the composition of which is very variable

depending upon the specific NOX involved. In root hairs, it

will be the soil water solution, in endothelial cells, the blood

plasma which has strong antioxidant properties [52] and in

fungi, the growth medium. In these situations, O�2 will diffuse

rapidly away from the site of generation, and the chances of

dismutation to form H2O2, which is concentration dependent,

will rapidly diminish.

O��2 þHþO O2H�

The protonation/deprotonation equilibrium exhibits a pKa

of 4.88, so that under most circumstances the O�2 is charged and

thereby inhibited from passing across membranes.

The surviving H2O2 and O�2 are exposed to the catalase

and superoxide dismutase effects of the elements and com-

pounds in the extracellular medium [52] and react with the

contained organic materials.

Vitamin E, a potent peroxyl radical scavenger, is a chain-

breaking antioxidant that prevents the propagation of free

radicals in membranes and in plasma lipoproteins [53]. It is

regenerated by vitamin C in the cytosol, itself a potent antiox-

idant [54], by acting as a soluble reducing agent. Cells living

in an oxygen-rich environment have a wide array of anti-

oxidants [55] that remove oxidants such as O�2 and H2O2

that penetrate into the cytosol. Cytosolic superoxide dismu-

tase converts O�2 to H2O2 and catalase breaks down H2O2
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to H2O and O2. Glutathione and glutathione peroxidase add

another arm of reducing power to react with these oxidants

[56]. When oxidized, glutathione and ascorbic acid are regen-

erated from NADPH which is produced in plants by

photosynthesis [57] and under other circumstances from

glucose by the hexose monophosphate shunt [58].

In addition, to prevent the production of the highly reac-

tive OH2 radical by the reaction of O�2 and H2O2 in the

presence of metals such as Cu and Fe, metal binding proteins

chelate-free metal [59].

These factors make it very unlikely that free radicals gen-

erated extracellularly will be able to function as a reliable and

scalable messaging system.
3. The biology of the neutrophil phagocytic
vacuole as an exemplar of NOX function
as an electrochemical pump

The neutrophil was the first biological system in which super-

oxide generation was recognized as an important biological

process [3]. It was initially thought that O�2 itself, its dismuta-

tion product H2O2, and OH2 produced by the interaction of

these products catalysed by Fe2þ or Cu2þ were themselves

directly microbicidal, but it has subsequently been recog-

nized that O2
2 and H2O2 are not reactive enough to kill

microbes [60] and free iron and copper are chelated in the

vacuole by lactoferrin [59]. So, how does the NOX2 system

promote the killing of ingested microbes?

The neutrophil granules make up about 10% of the total cel-

lular protein, which they release into the vacuole containing

the ingested microbe. Among their contents are a wide variety

of digestive enzymes, the most abundant of which are cathep-

sin G and elastase, and myeloperoxidase (MPO). There are two

main theories as to how the NOX2 oxidase promotes microbial
killing, which will not be dealt with in depth here. The dogma

has been that it generates H2O2 as substrate for MPO to oxidize

Cl2 to microbicidal HOCl [61]. An alternative view is that the

role of the oxidase is to optimize the pH and ionic conditions

within the vacuole for the killing and digestive functions of

the neutral proteases [62], and that these conditions are entirely

inappropriate for the peroxidatic activities of MPO [63]. It is

important to note that the enzymology of MPO is complex

and that it can function other than as a peroxidase, having

superoxide dismutase [28] and catalatic [64] actions.

NOX2 passes electrons across the membrane of the

phagocytic vacuole onto O2, to produce O�2 (figure 3). The

transport of electrons into the phagocytic vacuole is electro-

genic, causing a large, rapid membrane depolarization which

will itself curtail further electron transport unless there is com-

pensatory ion movement [65] by the passage of cations into the

vacuole and/or anions in the opposite direction. The nature of

the ions that compensate the charge will have a direct effect on

the pH within the vacuole and the cytosol. The cytoplasmic

granules are very acidic, with a pH of about 5.5, and they down-

load their acid contents into the vacuole. The electrons that pass

into the vacuole produce O�2 which dismutates to form per-

oxide (O2�
2 ) that is then protonated to form H2O2. The source

of these protons will govern the alterations in the vacuolar

pH. If all the charge is compensated by protons passing into

the vacuole, then none of the protons released into the vacuole

from the granules will be consumed, and the pH will remain

acidic. In fact, most of the charge is compensated by protons

passing from the cytoplasm into the vacuole through the

HVCN1 channel, because if this channel is knocked out in

mice the vacuolar pH becomes grossly elevated to about 11

(fig. 1 in [62]). Under normal physiological conditions, about

5–10% of the compensating charge is contributed by non-

proton ions, some of which is Kþ passing into the vacuole

[66]; the residual ion flux could be the egress of chloride.

These non-proton ion channels remain to be identified.
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The plant response to infection and wounding shows

remarkable similarities to the neutrophil oxidase. Damage to

plants is followed by a response to isolate the exposed cells

and tissues from the external environment by generating a pro-

tective barrier by the deposition of callose and polymerized

phenolics, cell wall cross-linking and cell wall suberinization

[67], which reduce water loss and protect against infection.

The damage is rapidly followed by the influx of Ca2þ into

the cytoplasm and damage-associated molecular pattern or

pathogen associated molecular pattern receptor activation

[68]. The binding of this Ca2þ to EF-hand motifs or phosphoryl-

ation [69] activates RbohD and RbohF [70,71] (and RbohC in

roots [72]) to release O�2 and Kþ into the apoplastic space

between the plasma membrane and the cell wall, the pH of

which becomes elevated owing to the consumption of protons

[73–75]. The apoplast contains superoxide dismutase [76],

which produces H2O2 as substrate for apoplastic anionic per-

oxidase, a type III peroxidase [77] that cross-links substrates

producing the suberization and lignification [78] to heal the

wound. When the cells are damaged and normal metabolic

homeostasis is disrupted, the normal cellular processes for

regenerating reducing capacity will be impaired, and thus

the antioxidant capability, which is dependent upon the

constant reduction of molecules such as ascorbate and gluta-

thione that are oxidized directly or indirectly by oxygen, is

compromised. This allows the accumulation of H2O2 for the

construction of the cross-linked barrier.
4. NOXs in the chemiosmotic generation
of turgor

In filamentous fungi, filament growth, sporulation and pen-

etration of the cuticle and cell wall of plants by germinating

spores, and the opening of stomata by guard cells, extension

of root hairs and growth of pollen tubes in plants are all

processes that require the development of intracellular

turgor. All these processes are also dependent upon the

active participation of NOXs.

An examination of what we know of the neutrophil oxidase

can explain how this turgor might be generated. The passage of

electrons across the membrane depolarizes the membrane [65]

and generates a charge that must be compensated to allow

further electron transport. Whereas the electrons themselves,

or charge compensating protons, do not have any osmotic

consequences, other charge compensating ions do. In the neu-

trophil vacuole, the accumulation of cations, such as Kþ, in the

phagocytic vacuole causes this compartment to swell [62]. In

these cells, most of the charge is compensated by protons, so

the ratio of osmotic effects to electron transport is much

lower than would be the case if charge compensation was

accomplished by other ions, as might be the case if the primary

function of the oxidase were to increase tonicity. Although ion

fluxes directly linked to NOXs at the plasma membrane of

plants and fungi have not been measured directly, they must

occur to compensate the charge generated across the plasma

membrane by the electrogenic electron transport.

4.1. Fungi
Most fungi occur in the hyphae form as branching, threadlike

tubular filaments. Genome sequencing of filamentous fungi

showed early on that they have subfamilies of NOX enzymes
sharing similarity to their mammalian homologues. NOX1

(NoxA) and NOX2 (NoxB) are homologues of the mamma-

lian catalytic subunit gp91phox (general review in [79]). The

third NOX enzyme, NOX3 (NoxC), has been detected only

in some fungi [80]. NOR1 (NoxR) is a regulatory subunit

homologous to the mammalian p67phox. Another component

of the NOX complex is a homologue of the small guanosine

triphosphatase (GTPase) Rac1, which is required for patho-

genicity and conidiogenesis in the rice fungal pathogen

Magnaporthe grisea [81]. The tetraspanin PLS1 and a protein

termed NoxD from Botrytis cinerea seem to be functionally

and structurally related to the mammalian p22phox [82], and

Bem1 might represent a p40phox analogue [83].

4.2. Fungi require NOXs to grow and infect
‘It thus appears that though turgor pressure is probably the

driving force for hyphal extension, there is also an interplay

between turgor pressure and wall biogenesis’ [84, p. 400].

The fungal mycelium consists of individual hyphae that radi-

ate outwards from the colony centre. Each hypha grows

solely by tip extension and generates new hyphae via the

formation of lateral branches.

To achieve this characteristic pattern of mycelial organiz-

ation, individual hyphae must exhibit apical dominance at

the expense of other lateral branches [83]. The spitzenkörper

is an intracellular organelle associated with tip growth. It is

composed of an aggregation of membrane-bound vesicles con-

taining cell wall components. The spitzenkörper is part of the

endomembrane system of fungi, holding and releasing vesicles

it receives from the Golgi apparatus. These vesicles travel to the

cell membrane via the cytoskeleton and release their contents

outside the cell by the process of exocytosis, where it can

then be transported to where it is needed. Vesicle membranes

contribute to growth of the cell membrane while their contents

form new cell wall. The spitzenkörper moves along the apex of

the hyphal strand and generates apical growth and branching;

the apical growth rate of the hyphal strand parallels and is

regulated by the movement of the spitzenkörper [85].

NOXs at the tip of the hyphae are required for apical

dominance which several factors cooperate to achieve.

There is a tip-high calcium gradient [86], which would acti-

vate NOXs through their EF hands [87] and NoxR, Rac1,

Bem1 and Cdc42 are also important in this process [83,88].

For example, NOX1 homologues are required for fruiting

body development [89], and NOX2 plays a key role in ascospore

germination [90]. Ascomycetous fungi produce prodigious

amounts of spores through both asexual and sexual reproduc-

tion. Their sexual spores (ascospores) develop within tubular

sacs called asci that act as small water cannons, and expel the

spores into the air, propelled by the osmotic pressure generated

through the accumulation of KCl in the asci [91].

NOXs at the tips of growing hyphae are ideally located for

the development of appressoria. An appressorium is a flat-

tened and thickened tip of a hyphal branch, formed by some

parasitic fungi, that facilitates penetration of the host plant

[92] or insect [93] cuticle. The germ tube is eventually shut

off from the appressorium leaving the latter as a separate, inde-

pendent unit that develops a spherical shape and becomes

strongly attached to the plant cell by an adhesive ring of extra-

cellular matrix. Anchored in this way a penetration peg

is driven into the plant cell by osmotic pressure [94,95]. Exper-

iments have been performed in which penetration pegs have
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been driven into inert synthetic non-biodegradable sheets,

which suggested that pressures as high as 80 atmospheres

(8 MPa) can be achieved [96]. To achieve these very high

internal pressures, appressoria develop a lining of melanin

that is permeable to water but impermeable to ions, thereby

allowing the development of pressure through the internal

accumulation of osmotically active molecules. NOXB produces

hydrogen peroxide in a ring in the attachment zone between

the appressorium and the leaf, which might be used to poly-

merize the ring of adhesive material [97] which has a very

similar distribution and ring-like structure to that of H2O2 gen-

eration. The extracellular matrix that develops into the material

that bonds the appressorium to the surface to which it attaches

accumulates and fails to solidify when the appressorium is

grown on a dialysis membrane [98], under which conditions

the H2O2 would diffuse away. In the absence of NOXB [97]

and/or NOXA [99], black spot disease and rice blast disease

appressoria lose their infectivity and their penetration pegs,

which would be in keeping with the loss of intracellular osmo-

tic pressure owing to failure of the electrochemical power

required to generate it (figure 4).

If the NOXs are responsible for generating the osmotic

pressure within the appressorium from where would they

obtain the osmotically active ions required to compensate the

charge, given that the melanin lining makes the appressorium

impermeable to ions? The answer could be that they are

obtained from the invaded plant cell and that at least part of

the purpose of the virulence factors secreted before peg devel-

opment of the appressorium [95,100] is to permeabilize the

plant cells to make these ions accessible. This does not fit

with the fact that penetration pegs can be produced on poly-

ester Mylar sheets [96]. The initial charge compensating ions

could be contained within vesicles discharged into the space

between the penetration peg and the target surface to initiate

peg growth, which would then depend upon the uptake of

ions from the penetrated tissue for further extension. In

addition to the failure of robust bonding to the surface when

the appressoria are grown on dialysis membranes as described

above, these membranes prevent the production of penetra-

tion pegs, consistent with the requirement for extracellular

diffusible factors for their development [98].
5. Plants
5.1. Pollen tubes
Sexual reproduction in flowering plants requires the male

gamete, in the form of pollen, to reach the egg in the ovary.

After landing on the stigma the pollen grain hydrates and

germinates, during which a region of the pollen plasma mem-

brane, the tip growth domain, is established and pollen tube

elongation commences. This elongation in maize can occur at

the prodigious rate of up to about 1 cm per hour and 1 ft in

24 h [101].

Growth is restricted to the tube tip where the cell wall

must be deformable and requires the highly dynamic inte-

gration of new cell wall and membrane material, whereas

the distal shank is more static and is required to resist

turgor pressure. The tip membrane is replenished by vesicles

that are transported by cytoskeletal elements and require the

participation of GTPases and signalling molecules (reviewed

in [101,102]). Extension also requires the active participation

of two NOXs, RbohH and RbohJ [103], expressed at the

growing tip, which are activated by high, micromolar,

concentrations of Ca2þ.

There are two main proposals for the mechanisms by which

the pollen tube extension occurs [104]. The first is the cell wall

model, in which it is proposed that the principal phenomenon

responsible for the tube expansion is the exocytosis of vesicles

containing pectins and other cell wall components such as

cellulose, xyloglucans and callose that are either deposited by

exocytosis or directly synthesized at the plasma membrane

[105,106]. The alternative proposal is that the main driving

force for growth is hydrodynamic pressure, which would

also require the incorporation of newly synthesized plant

wall material into the growing tip [104,107–109].

Pollen tubes demonstrate fluxes of several ions in associ-

ation with growth, which oscillates under artificial in vitro
conditions [109]. To summarize the findings [110] (figure 5),

it has been described that there is a zone of high Ca2þ just

under the growing tip from which there is an efflux of chloride

[111], a finding that has been disputed [112]. There is then an

influx of chloride in the clear zone behind the tip where protons
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move out, leading to alkalinization, and Kþ passes in. The pH

just under the tip is acidic which has been attributed to an

influx of protons. So how can the mechanisms underlying

these findings be explained? NOXs are required for pollen

tube growth and they are located precisely at the growing

tip, and are activated by the influx of Ca2þ. They expel electrons

that form O�2 . Chloride was measured with a vibrating-tip elec-

trode, the specificity of which is dependent upon the selectivity

of the chloride ionophore employed [111]. This does not appear

have been tested against O�2 , the measurement of which could

have been misinterpreted as that of chloride in this region of the

pollen tube. Rather than the description of an influx of protons

to the region under the tip, an active oxidase would generate an

acidic zone by virtue of the charge separation it produces, in

which the reaction catalysed by NOX dictates the local release

of protons from the oxidation of NADPH, as shown in figure 3.

The other ion fluxes recorded could occur as a natural conse-

quence of NOX activity. The chloride influx through SLAH3

[112] could compensate the charge induced by the expulsion

of electrons. Cytosolic protons could contribute to the influx

of extracellular Kþ, because low cytosolic pH regulates the

gating of Kþ channels; the low internal pH accelerated the acti-

vation kinetics of the K-uptake channel KAT1 expressed in

Xenopus oocytes with a pKa of 6 [113]. Hþ extrusion through

the plasma membrane ATPase [114] is also activated by low

cytosolic pH and provides the electrogenic driving force for

Kþ uptake. The influx of osmotically active Kþ and Cl2 into

the cytoplasm would increase turgor to drive the tip forward.

5.2. Root hairs
Root hairs are tip-growing projections arising from single

specialized root epidermal cells that markedly increase the

surface area of the root. In Arabidopsis, a small bulge develops

at the apical end of hair cells and this then elongates by
polarized tip growth. The growth of root hairs has a lot in

common with that of pollen tubes.

Root hairs are formed through tip growth [115,116], a pro-

cess requiring synthesis of new cell wall material [117] and

the precise targeting and integration of these components to

a selected apical plasma membrane domain in the growing

tips of these cells. The membranous material is transported

in vesicles [118] by the actin cytoskeleton [119] under the

regulation of small GTPases of the Rab, Arf and Rho/Rac

families, along with their regulatory proteins, that are essen-

tial for spatio-temporal regulation of vesicular trafficking,

cytoskeleton organization and signalling [117].

The Arabidopsis thaliana mutant root hair defective 2 (rhd2)

was shown to have a mutation in RbohC [120] and the maize

roothairless5 (rth5) in a monocot-specific NADPH oxidase

rbohA [121]. One of the accessory proteins required for the

function of the neutrophil NOX2 is Rac, a Rho GTPase that is

complexed in the cytosol with a RhoGTPase GDP dissociation

inhibitor [10]. Plants have homologues of RhoGTPases called

ROPs. ROP2 [122] and a plant RhoGDI [123] are also required

for O�2 generation at the root hair tip, and for normal growth of

root hairs. These results clearly demonstrate the requirement of

plant NOX systems for normal root hair development.

RbohC accumulates just under the growing tip of root hair

cells, in the same region that O�2 is generated, where it is then

activated by the synergistic interaction of phosphorylation

and an influx of Ca2þ that binds to its EF hands [124,125].

High, micromolar, concentrations of Ca2þ develop just under

the extreme tip of the root hair [126,127], and there are indi-

cations that this Ca2þ influx is accomplished through Ca2þ

channels that are opened by OH2 radicals. Ca2þ entering in

this way would require it to move against the electrochemical

gradient produced by electron efflux through RbohC and the

resulting membrane depolarization. The oxidase produces an

acidic region in the cytosol at the tip and one possibility that
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should be examined is that the electroneutral exchange of Ca2þ

for protons might occur [128,129].

Measurements of pH at the surface of the growing root hair

tip, and in the underlying cytosol, demonstrated reciprocal

changes with the oxidase inducing an overlying alkalinization

corresponding to cytosolic acidification [130]. Elevations in the

surface pH and growth oscillated with the same periodicity

but were out of phase. The application of ROS to rhd2 roots

did not result in root hair growth [131], indicating that

some other process associated with electron transport is

likely to be responsible. The oxidase could drive tip extension

by increasing turgor by moving osmotically active ions into

the cytoplasm. Anions such as Cl2, PO�4 and NO�3 [132]

would move down the electrochemical gradient generated

across the plasma membrane by the passage of electrons.

Cations could be exchanged for cytosolic protons through,

for example, cation/Hþ (CHX) exchangers [133] or pass in

through Kþ channels [134].

If the tip of the root hair is to advance through turgor

pressure, then the shaft requires support to prevent expan-

sion and rupture. This inelasticity is provided by the cell

wall composed of cellulose, xyloglycan and pectin; shaft

strength is compromised by defects in genes coding for the

synthetic machinery [135,136], or for class III peroxidases

[137] which are likely to cross-link the cell wall constituents.

The H2O2 substrate for these peroxidases could come from

dismutation of the O�2 generated at the tip.

5.3. Guard cells
Stomatal opening is the most obvious process in plants in

which changes in turgor play an essential role and in which

NOXs, in this case AtrbohF and /or AtrbohD, are required,

not to increase turgor but to decrease it. Stomata are micro-

scopic pores in the epidermis of aerial plant parts that

through which oxygen and water vapour are lost and CO2

enters for photosynthesis. Stomatal opening and closing is regu-

lated by the reversible swelling and shrinking of a pair of guard

cells that surround the aperture. Opening occurs when the

turgor pressure is increased by the uptake and intracellular gen-

eration of solutes, and the osmotic pressure that they generate,

which causes an outward swelling of the guard cells that separ-

ate, thereby increasing the aperture. During stomatal closure,
there is a reversal of the process with the loss of solutes and

water from the guard cells, with a consequent deflation and

aperture narrowing. Guard cell volumes can vary by as much

as 40% during this cycle [138].

All solute uptake and efflux must occur through ion chan-

nels (down an energetic gradient) or transporters (requiring

energy, generally in the form of ATP) in the plasma membrane.

Rates of fluxes through ion channels are orders of magnitude

greater than those through transporters.

A large number of such channels and transporters are

involved in the regulation of the stomatal aperture (reviewed

in [139]). I am presenting here a highly simplified scheme that

takes account of molecules that have been shown to alter

stomatal opening and closing when their genes are targeted.

Guard cells contain a large vacuole that accounts for a sig-

nificant proportion of the cell volume and parallel changes in

its volume are integral to the swelling and shrinking cycle.

The membrane that bounds this vacuole is called the tonoplast.

A simplified scheme of the mechanisms regulating the

changes in guard cell volume is shown in figure 6. It largely

centres around a cycle of fluxes of Hþ in exchange for Kþ and

H2O. Hþ accumulates in the vacuole as shrinkage occurs and

is then expelled, first from the vacuole and then from the cell

in exchange for Kþ and H2O, which causes the cell to swell

[142].

As might be expected, the influx of CO2 for photosynthesis

is activated by stomatal opening when exposed to light.

This induces a hyperpolarization of the plasma membrane by

activating Hþ extrusion through a plasma membrane ATPase

[143,144]. Kþ enters down the electrochemical gradient

through a variety of inward rectifying channels [145] taking

water with it. Kþ then enters and induces swelling in the

vacuole in exchange for Hþ through Naþ, Kþ/Hþ (NHX)

antiporters in the tonoplast [140].

Stomatal closure as a consequence of guard cell shrinkage

is a reversal of these ion fluxes. The initial event is depolariz-

ation of the plasma membrane that follows Ca2þ oscillations

[146] which inactivate the inwardly rectifying Kþ channels.

The depolarization is thought to occur through the loss of

anions such as Cl2, malate22 and NO�3 through R- and

S-type anion channels [147], but these channels are opened

by membrane depolarization [148], so what is the driving

force for this to occur? Guard cells are enriched in the
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NOXs AtrbohD and AtrbohF, and stomatal closure is com-

promised in the absence of these molecules [149], which

can perform the essential functions required for loss of

guard cell turgor. Plasma membrane NOXs are ideally

suited to generate the driving force for outwardly rectifying

voltage-gated Kþ channels [150] through electron-transport-

mediated membrane depolarization. They will be activated

by increased cytosolic Ca2þ, the transfer of electrons to the

exterior will depolarize the membrane, which will drive

charge compensating Kþ to the exterior through voltage-

gated Kþ channels, together with the release of anions

through depolarization-responsive R- and S-type channels.

H2O2 generation at the plasma membrane activates Ca2þ

influx [151] which could amplify O�2 generation. In addition,

the vacuole must re-establish its pool of Hþ ions to be in a

position to exchange these for Kþ when next required to

swell, and the Hþ originally expelled through the plasma

membrane ATPase must be regenerated. The H2O2-induced

Ca2þ influx could also activate Kþ/Hþ exchange through

NHX exchangers [152]. The regeneration of cytoplasmic Hþ

from NADPH when this is converted to NADPþ will accom-

plish this end. The fact that the cytoplasmic pH rises as guard

cells shrink is not incompatible with the generation of Hþ in

the cytosol by the Atrbohs, because the pH is a reflection of

the relative rates of uptake of Hþ into the vacuole as com-

pared with generation in the cytosol, and will be alkaline if

vacuolar uptake predominates.
6. Blood vessel endothelial cells
‘The vascular endothelium represents a population of

squamous epithelial cells characterized by a particular histo-

logical localization (intima of blood vessels) and by several

physiological functions such as the transport of substances

between blood and tissues, the modulation of the vascular

tone, the control of blood coagulation and that of the leucocyte

extravasation. In spite of all these elements in common and of

an identical embryonic origin, endothelial cells show definite

morphological and physiological variations that divide them

into types and subtypes, each specifically associated with var-

ious categories of organs. Even within the vasculature of the

same organ, there are clear segmental (arterial/capillary/

venous) differentiations of the endothelial cells. While the mor-

phological and physiological differences between endothelial

cells are well documented, there are very few data on the bio-

chemistry underlying this heterogeneity. The luminal aspect

of the endothelial plasmalemma is a compartment of crucial

importance in the biology and pathology of the cardiovascular

system’ [153 p. 381, 154].

Given the clear description of the ion fluxes and pH

changes induced by NOX2 in neutrophils, and on the balance

of probability the changes in turgor produced in fungi and

plant cells by NOX-induced ion fluxes, it is interesting to specu-

late on the role of NOXs in the vasculature, about which much

less is known. NOX-stimulated fluctuations in the passage of

ions and accompanying H2O between endothelial cells and

blood plasma could have important influences on blood

pressure and tissue perfusion because of the major influence

that even minor changes in the radius of the vessel lumen

have on flow. According to Poiseuille’s law, in the case of

smooth flow (laminar flow), the volume flowrate is given by

the pressure difference divided by the viscous resistance, and
whereas there is a linear relationship between resistance, vis-

cosity and length, resistance is related to the fourth power of

the radius.

Although the role of the microvasculature is not clear [155],

the regulation of blood pressure has largely been attributed

to smooth muscle tone in the precapillary arterioles [156].

Vasoactive signals originating in capillaries can govern capil-

lary blood flow, and the endothelium functions as a highly

effective pathway for the conduction of electrical signals in

the microcirculation [157]. Because they are not surrounded

by smooth muscle cells, the role of capillaries in regulating

their own perfusion has largely been ignored, and it is assumed

that they signal to the arterioles from which they originate. It is,

however, possible that capillaries can also control their own

perfusion by regulating the volume of their endothelial cells,

and through that their radius.

There is an extensive literature on NOXs in endothelial cells

(reviewed in [158–160]), which express four NOXs: NOX1,

NOX2, NOX4 and NOX5. The architecture of the vascular

tree is complex, and very different depending upon whether

it is in the arterial, venous or lymphatic system, and upon the

size of the vessels, and it is intimately connected to other

organs such as the nervous system. NOXs might play a similar

role in lymphatic capillary endothelial cells [161], but there is

no literature on this subject.

6.1. Subcellular distribution
The subcellular distribution of the NOXs within the endo-

thelial cells is absolutely critical to their function. Given

that all other NOXs appear to be located in plasma mem-

branes, and confluent cultures of primary bovine [162,163]

and human [164] endothelial cells secrete O�2 from their lumi-

nal surfaces into the extracellular medium, as evidenced by

the reduction of cytochrome c, which does not penetrate

cells, reports of intracellular [165–167] locations of NOXs in

endothelial cells merit examination.

The most comprehensive of these [165,167] reported that

the subcellular location of the endothelial gp91-phox and

p22-phox subunits was significantly different from that reported

for the neutrophil oxidase, in that they were predominantly

intracellular and colocated in the vicinity of the endoplasmic

reticulum. These data must be interpreted in the light of the

experimental techniques employed. The localization by immu-

nohistochemistry was performed on bovine and porcine

endothelial cells with antibodies made against human pro-

teins. The subcellular fractionation was by differential rather

than isopyknic centrifugation, which is suboptimal. The cells

were frozen and thawed and extensively sonicated before

use, which can solubilize organelles, and the marker enzymes

used to determine the distribution of the organelles were

expressed as specific (as a function of the protein concentration)

rather than as total activities, which can be misleading.

Another publication [166] reported that NOX2, p22phox and

p47phox are targeted to the nuclear pore complex. They used

H9c2 cells, a rat cardiomyoblast cell line, and once again, the

antibodies used in the immunohistochemistry appear to have

been raised against the human proteins. Finally, studies were

conducted on EaHy926 cells [168], described as an endothelial

cell line. In fact, these cells are a somatic cell hybrid in which

human umbilical vascular endothelial cells were fused with a

human lung carcinoma cell line [169]. The results shown for

these cells just as well reflect the properties of the carcinoma
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cells as the endothelial cells. Commercial antibodies were used,

which will have been subject to all the vagaries of these pro-

ducts. Considering the large body of evidence from plants

and animals that the NOX system is found in the plasma mem-

brane, the contradictory findings provided for alternative

locations in endothelial cells do not appear to be of sufficient

weight to overturn the general paradigm of a plasma

membrane location for these electron transport chains.
6.2. NOXs and the regulation of blood pressure
It is generally accepted in the literature that O�2 produced by

endothelial cell NOXs regulates the vasodilatory action of NO

by combining with it to produce peroxynitrite. It was initially

shown, in an organ bath system in which the effluent from

endothelial cells cultured on beads was perfused over aortic

smooth muscle strips, that endothelium-derived relaxation

factor (EDRF) was prevented from breakdown by superoxide

dismutase, suggesting that O�2 normally degrades EDRF, sub-

sequently identified as NO [170]. Cu2þ had a more prolonged

effect than superoxide dismutase although no dismutase

activity of the Cu2þ was demonstrated [171].

It was demonstrated in vitro that NO reacted rapidly with

O�2 [172,173] to generate peroxynitrite [172], from which it

was surmised that these reactions take place in vivo. There

is now a very large literature on peroxynitrite and its possible

roles in the cardiovascular system (reviewed in [174]) with

very little direct evidence to this effect.

It is essential to know the topographical distribution and

function of the NOXs and NO synthases. The initial descrip-

tion of the degradation of NO by O�2 used an organ bath in

which the natural segregation of O�2 and NO generation

were artificially disrupted. The primary effect of NO on the

vascular smooth muscle cells must indicate release of NO

from the basal side of the endothelium, whereas the measure-

ment of O�2 release from the luminal surface, as measured by

reduction on the non-penetrating cytochrome c, suggests that

O�2 and NO are released in opposite directions and that they
are unlikely to interact in a major, controlled way (figure 7).

In addition, little is known of the relative stoichiometry of

the generation of these compounds.
6.3. Animal models
NOXs 1, 2 and 4 and their associated molecules have been

knocked-out or over-expressed in mice, and the outcomes of

their effects on blood pressure and vascularization assessed

after a variety of stimuli and insults [158]. Most of the studies

on knock-out mice were performed on heterozygote animals

and clear trends were not forthcoming.

Unfortunately, the distribution of the different NOXs in the

different blood vessels and organ beds has not been determined,

which makes the assessment of the effects of knocking-out or

over-expressing any one of the three NOXs very much a hit

or miss affair.

Basal blood pressure is abnormally low in NOX12/y

[175], and NOX22/y [176,177] mice, and NOX42/2 Dahl

salt-sensitive rats demonstrate a reduction in salt-induced

hypertension [178]. Renal blood flow is higher and renal

vascular resistance lower in NOX22/y mice. In p472/2

mice, there was marked blunting of the hypertensive effect

of the infusion of angiotensin II [179].

If NOXs do prove to be important in the regulation of

blood pressure, then the production of selective modulators

could be very effective in its regulation [180].
6.4. NOX2 deficient humans with chronic
granulomatous disease

There does appear to be an abnormality of the vasculature in

patients with a defective NOX2 system resulting in CGD. In a

study involving 17 patients with X-linked (NOX22/y) or

autosomal (p47phox2/2) CGD, although not compared stat-

istically, the overall diameter of the brachial arteries in the

patients was less than that of controls [181]. In another
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investigation, the internal carotid artery wall volume was

found to be significantly (22%) lower in the 41 CGD patients

than in the 25 controls [182]. Whether this is a direct effect on

the large vessels, or an adaptation to alterations in peripheral

resistance, or perfusion, as a result of changes to the capillary

bed remains to be established.
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7. Conclusion
The optimal design of the NOX electron transport chain has

resulted in its remaining largely unchanged during evolution

from red algae, fungi and plants to man. It provides the sim-

plest means by which electrons can be efficiently passed

across membranes, using an abundant and metabolically effi-

cient substrate, a ubiquitous redox cofactor, two haems, one

on either side of the membrane, and the commonest electron

acceptor, oxygen. The potential energy produced by the separ-

ation of charge across the membrane is then used in various

applications, depending upon the nature and characteristics
of the voltage-gated ion channels and exchangers that are pre-

sent and activated in the different organisms and tissues.

The commonest use of this electrochemical energy in nature

appears to be in the development of osmotic turgor required

for the growth of tubular structures in fungi and plants, or

the cyclical opening and closing of stomata in the latter. In

addition to pumping ions, in neutrophils, NOX2 functions to

alter pH in the phagocytic vacuole and NOX3 might have a

similar function in the inner ear [183]. The role of the NOXs

in endothelial cells of blood vessels and their regulatory mech-

anisms remain to be discovered, but they could be important in

the control of blood pressure and tissue perfusion.
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145. Véry A-A, Sentenac H. 2003 Molecular mechanisms
and regulation of Kþ transport in higher plants.
Annu. Rev. Plant Biol. 54, 575 – 603. (doi:10.1146/
annurev.arplant.54.031902.134831)

146. Allen GJ et al. 2000 Alteration of stimulus-specific
guard cell calcium oscillations and stomatal closing
in Arabidopsis det3 mutant. Science 289, 2338 –
2342. (doi:10.1126/science.289.5488.2338)

147. Roelfsema MRG, Levchenko V, Hedrich R. 2004 ABA
depolarizes guard cells in intact plants, through a
transient activation of R- and S-type anion
channels. Plant J. 37, 578 – 588. (doi:10.1111/j.
1365-313X.2003.01985.x)

148. Roelfsema MRG, Hedrich R, Geiger D. 2012 Anion
channels: master switches of stress responses.
Trends Plant Sci. 17, 221 – 229. (doi:10.1016/j.
tplants.2012.01.009)

149. Mersmann S, Bourdais G, Rietz S, Robatzek S. 2010
Ethylene signaling regulates accumulation of the
FLS2 receptor and is required for the oxidative burst
contributing to plant immunity. Plant Physiol. 154,
391 – 400. (doi:10.1104/pp.110.154567)

150. Hosy E et al. 2003 The Arabidopsis outward Kþ

channel GORK is involved in regulation of stomatal
movements and plant transpiration. Proc. Natl Acad.
Sci. USA 100, 5549 – 5554. (doi:10.1073/pnas.
0733970100)

151. Pei ZM, Murata Y, Benning G, Thomine S, Klüsener
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