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Predicting the impact of
urban flooding using
open data
Nataliya Tkachenko1, Rob Procter1,2 and

Stephen Jarvis1,2

1Warwick Institute for the Science of Cities, and 2Department of Computer Science,
University of Warwick, Coventry CV4 7AL, UK

This paper aims to explore whether there is a relationship
between search patterns for flood risk information on the
Web and how badly localities have been affected by flood
events. We hypothesize that localities where people stay
more actively informed about potential flooding experience
less negative impact than localities where people make less
effort to be informed. Being informed, of course, does not
hold the waters back; however, it may stimulate (or serve
as an indicator of) such resilient behaviours as timely use
of sandbags, relocation of possessions from basements to
upper floors and/or temporary evacuation from flooded homes
to alternative accommodation. We make use of open data
to test this relationship empirically. Our results demonstrate
that although aggregated Web search reflects average rainfall
patterns, its eigenvectors predominantly consist of locations
with similar flood impacts during 2014–2015. These results are
also consistent with statistically significant correlations of Web
search eigenvectors with flood warning and incident reporting
datasets.

1. Introduction
The biggest issue for flood risk management in urban areas is the
prediction that under climate change there will be considerably
more flooding in these areas. Specifically, in the UK, flooding is
considered to be one of the biggest problems that the country is
facing today, with climate projections suggesting that the increase
in total rainfall will provoke major, more frequent and less
predictable flood events [1]. The impact of floods on housing is
also increasing due to the ongoing development of settlements in
flood-prone areas, together with the rising vulnerability of assets
to risk [2,3].

The phenomenon of flooding is extremely complex and
subject to change. Incidents are no longer restricted to obvious
areas where a river or stream exists; many urban floods are
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simply caused by huge amounts of rain falling very quickly (flash floods) in an area where the drainage
system is unable to cope or due to unexpected underground basin recharge and rise of the groundwater
levels [4]. As a consequence, there is an emerging motivation to understand how accurate our knowledge
can be about flood risk—its location, timing and duration—and how data collection and analysis can
assist us.

People usually make an effort to stay aware of what happens in their neighbourhoods, especially
if their health, wellbeing or prosperity is at stake. It has already been shown that public information
sufficiency, risk perception and self-efficacy can predict risk-information seeking behaviour [5–7].

As a particular type of information seeking, Web search has become a key reference source [8].
Although not always 100% accurate, it is fast and free of charge. Built-in traffic monitoring engines
within websites help to collect data about information-seeking behaviour and one such example is
Google Analytics, which is capable of tracking hourly information about unique page visits, number
and duration of individual sessions at the level of cities and towns and—in some cases—at the level
of postcodes. Google Analytics has found wide applications in business and website optimization [9–
11], and is increasingly becoming one of the main generators of ‘big data’ records, alongside other
systems that record, for example, our communications, travel and retail activities. A number of recent
studies have provided evidence [12–16] that ‘big data’ can reveal a great deal about people’s real-world,
collective decision-making and responses to events and can even help to predict such phenomena,
e.g. Hurricane Sandy [17].

To optimize the design of its Web-based services, the UK Environment Agency has also installed
Google Analytics on its live flood warning pages. Interest has therefore emerged in analysing records
of flood warning information seeking, which, coupled with geolocation records, could be potentially
useful not only for Web designers, but also for flood risk modellers. In this study, we analyse whether
Web-based information seeking about flood risk can help us understand how badly those locations have
been, or may be, affected.

2. Data
All datasets used in our analysis fall into the category of open data and are available free of charge. They
can be divided into three main groups: (i) datasets available for direct download online, (ii) datasets
available for public use, but where prior registration or permission of the data officer is required, and
(iii) datasets contained in commercial databases, but accessible via application program interfaces or by
crawling Internet resources. A complete list of the datasets used in this study is available in table 1.
Owing to the varying geographies of the original data sources, some data pre-processing was necessary
in order to standardize the analysis to city scales (figure 1).

2.1. Environment Agency data

2.1.1. Google Analytics records

In order to keep the public informed about risks, the Environment Agency maintains several interactive
Web-based services, which provide both regionally summarized (‘Flood Warning Summary’, http://
apps.environment-agency.gov.uk/flood/31618.aspx) and localized (‘Live Flood Warning Map’, https://
flood-warning-information.service.gov.uk/) information about current flood risks. We requested Google
Analytics metrics for views of these webpages for the period April 2014–March 2015. This period was
marked by the effects of two trans-Atlantic hurricanes (‘Bertha’, 1–14 August 2014; and ‘Gonzalo’,
12–20 October 2014), and increased precipitation levels across the whole of the UK in January 2015
(figure 4). The dataset comprised recorded activity in more than 500 UK cities and towns over
1 year.

2.1.2. Historic flood warning records

Summaries of historic flood warnings and alerts are available for free download from the Environment
Agency Geostore website at: http://www.geostore.com/environment-agency/. The dataset employed
in our analysis contained more than 2500 entries over the period from April 2014 to March 2015 across
England and Wales. Messages classified as ‘alerts’ and ‘warnings’ correspond to either ‘areas that are at
risk from low impact flooding’ or ‘discrete communities at risk of flooding’, respectively.

http://apps.environment-agency.gov.uk/flood/31618.aspx
http://apps.environment-agency.gov.uk/flood/31618.aspx
https://flood-warning-information.service.gov.uk/
https://flood-warning-information.service.gov.uk/
http://www.geostore.com/environment-agency/
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Figure 1. Examples of adjustments of the input datasets to city boundaries. (a) Floodline incident dataset is supplied for open use
at postcode district level. All four postcode districts intersecting Oxford city boundaries are considered as ‘Oxford’ in our analysis.
(b) Geographical extent of Historic Flood Warnings fragments close to the city boundaries. Oxford comprises four official flood-warning
areas; each has a unique attributed ID and dates of the previously issued communications. (c) The attribute format of the Historic Flood
Alerts dataset is very similar to the warnings, but has coarser spatial resolution: thus, Oxford city is covered by two such designations,
which extend far beyond its boundaries. In our analysis, all the alerts and warnings issued in any of these fragments, if intersecting any
part of the city, are considered attributable to that particular urban locality.

Table 1. List of datasets.

dataset source geography access

1. Google Analytics Environment Agency city/town upon request
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2. Historic Flood Warnings Environment Agency river/stream direct download
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3. Historic Flood Alerts Environment Agency river/stream direct download
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4. Incident Hotline Records Environment Agency postcode district upon request
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5. Rainfall Rank Ordered Statistics Met Office national/regional direct download
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6. UKCP09 Rainfall Grids Met Office 5× 5 km upon request
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7. Hazard Media Mentions collected city/town electronic supplementary material
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.1.3. Incidents hotline records

Incident hotline records are another Environment Agency dataset that is available upon request. The
hotline (0800-80-70-60) is a service that has been put in place to enable community reporting on various
environmental incidents of both anthropogenic and natural origins, including pollution to water or
land, illegal fishing, illegal dumping of hazardous waste, erosion of watercourse banks and cases
of surface water flooding to properties. Although by cases of surface water flooding, environmental



4

rsos.royalsocietypublishing.org
R.Soc.opensci.3:160013

................................................
institutions mean primarily flooding from nearby watercourses and pluvial ‘flash’ floods, it has been
widely acknowledged in research literature [18–20] that the general public rarely differentiate between
groundwater and surface water floods, so some degree of bias was expected in the dataset due to some
localized cases of post-rainfall rise of the groundwater table.

Both the Incidents Hotline Records and the Google Analytics Records were supplied for
research purposes. In accordance with the Data Protection Act 1998 and the Privacy and Electronic
Communications Regulations 2003, Google Analytics Records were supplied at the city level, whereas
the Incidents Hotline Records were supplied at the level of postcode districts (first four alphanumeric
characters, e.g. ‘WS13’).

2.2. Met Office data
We used UK climate summaries as background information for flood-related information-seeking
behaviour on the Web. (i) Rank ordered statistics for rainfall (mm) average across England and Wales,
which is available for download from http://www.metoffice.gov.uk/climate/uk/summaries/datasets.
These area data series date back to 1910, with allowances made to account for topographic, coastal and
urban effects, where relationships are found to exist. (ii) UKCP09 grid text files of monthly rainfall values,
which provide a matrix covering the whole of the UK. Each value represents an estimate for the centre
point of 5 × 5 km grid cells, which are identified using the Ordnance Survey National Grid, extended to
cover Northern Ireland. The format of the grid text files allowed their import and manipulation in open
source QGIS software. This dataset required both registration on the Met Office website and the specific
time span needed for analysis.

2.3. Media mentions data
The degree of flood impact against which search activity is benchmarked in our study is represented
by media coverage of flooding in cities, recorded by Google Analytics, during the time period April
2014–March 2015. Several authors previously highlighted that news media coverage tends to prioritize
locations where people have been affected [21–23]. We therefore collected reports in various online
news sources (see the electronic supplementary material) of each city PC1–4|α ≥ 0.5 (see ‘Material and
methods’). For the purpose of our analysis, locations that appeared in the media were coded as ‘1’ and
those that did not were coded as ‘0’ (see the electronic supplementary material).

3. Material and methods
We have developed a three-step analysis (figure 2) aimed at testing whether earlier or later engagement
with flood risk information on the Web is correlated with actual hazard outcomes in cities with similar
Web search behaviour patterns. Our analysis covers continuous datasets’ entries from April 2014 to
March 2015, and includes several major meteorological events, such as Hurricanes ‘Bertha’ (August 2014)
and ‘Gonzalo’ (October 2014). Figure 3 demonstrates that it is quite difficult to define discrete boundaries
within behavioural datasets owing to particular weather events.

First, we analysed spatio-temporal patterns in the annual Google Analytics dataset, in order to connect
information needs to the geography of human activity on the Web. Similar to studies performed by
Calabrese et al. [24], we adapted an eigendecomposition technique drawn from electronics and remote
sensing to extract the discriminant features from our time-series data. We represented Web search activity
in a particular city over time as a vector, and assembled the records from all (500+) cities and towns
into a single covariance matrix. The procedure of eigendecomposition, which is often referred to as
principal component analysis or nonlinear dimensionality reduction applied to time-series data, is a
well-recognized and understood pattern recognition technique [25]. Decomposed in this way, the data
allow us to subsequently determine the basic dimensions of the relationships between, for example,
information-seeking activity in a number of cities and other factors, such as rainfall patterns, official
flood warnings and rates of flood-related incidents in those locations.

We performed eigendecomposition, which yielded around 12 eigenvector and coefficient pairs
(table 2) and which have been ranked according to their values. In a similar manner to Calabrese et al.
[24], we applied the mean squared error (MSE) test, which demonstrated that only the first four pairs
were required to lower the error to below 0.1. Figure 4b illustrates four eigenvectors (PC1–4), which
capture the decomposed information-seeking activity on the Web as compared to the corresponding
average precipitation levels in the group of cities constituting each eigenvector; these we name eigencities,

http://www.metoffice.gov.uk/climate/uk/summaries/datasets
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Figure 2. Method workflow.

a similar term to eigenplaces, introduced by Calabrese et al. For the subsequent analysis, from each of the
first four eigenvectors, we select only locations with the highest coefficient values greater than or equal
to 0.5. The structure of the dataset is therefore: NPC1 = 96, NPC2 = 37, NPC3 = 41 and NPC4 = 30.

The number of eigenvectors needed to reconstruct the original dataset with an acceptable error
margin (MSE ± 0.1) usually depends on its complexity: the more chaotic the original dataset, the more
information is needed to reconstruct it. In order to revert to the original, we need to multiply each
component vector by its coefficient and sum the results

Scities = C1V1 + C2V2 + · · · + CnVn, (3.1)

where Scities is the information-seeking behavioural profile for all cities present in the Google Analytics
dataset, Cn is the coefficient and Vn is the eigenvector.
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Figure3. Temporal profiles of institutional and crowdactivity duringhurricanes ‘Bertha’ (1–14August 2014) and ‘Gonzalo’ (12–20October
2014). In total, a±5-day buffer has been added to both events. (a) Flood warnings and alerts, issued by the Environment Agency, (b)
Google Analytics of the traffic on the Environment Agency Live Flood Warning webpages, (c) floodline incidents reporting rates before,
during and after both events.

Table 2. Results of eigendecomposition.

eigenvalue variance cumulative variance, %

Dim.1 (PC1) 7.471419× 10 1.479489× 10 14.79489
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Dim.2 (PC2) 6.609348× 10 1.308782× 10 27.88271
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Dim.3 (PC3) 5.791740× 10 1.146879× 10 39.35150
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Dim.4 (PC4) 5.004381× 10 9.909666 49.26116
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Dim.5 (PC5) 4.932296× 10 9.766923 59.02809
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Dim.6 (PC6) 4.650346× 10 9.208606 68.23669
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Dim.7 (PC7) 3.910624× 10 7.743811 75.98050
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Dim.8 (PC8) 3.618921× 10 7.166180 83.14668
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Dim.9 (PC9) 3.141302× 10 6.220399 89.36708
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Dim.10 (PC10) 2.939832× 10 5.821450 95.18853
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Dim.11 (PC11) 2.429791× 10 4.811468 100.00000
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Dim.12 (PC12) 4.895469× 10−29 9.693999× 10−30 100.00000
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



7

rsos.royalsocietypublishing.org
R.Soc.opensci.3:160013

................................................
120 35 000

30 000

25 000

20 000

15 000

10 000

5000

0

35 000

30 000

25 000

20 000

15 000

10 000

5000

0

100

80

60

40

20

0
Apr 2014 May 2014 June 2014 July 2014 Aug 2014 Sep 2014 Oct 2014 Nov 2014 Dec 2014 Jan 2015 Feb 2015 Mar 2015

rainfall (mm, national averages) total N of visits

120

100

80

60

40

20

0
Apr 2014 May 2014 June 2014 July 2014 Aug 2014 Sep 2014 Oct 2014 Nov 2014 Dec 2014 Jan 2015 Feb 2015 Mar 2015

PC1 (mm) PC2 (mm) PC3 (mm) PC4 (mm)

PC1 (count) PC2 (count) PC3 (count) PC4 (count)

(b)

(a)

Figure4. Relationships betweenmonthly precipitation rates and information-seeking activity on theWeb: (a) across England andWales,
(b) betweenWeb activities in the locations, constituting PC1–4, and average rainfall amounts across those areas.

The decomposition of the information-seeking behaviour of 507 UK cities and towns into eigencities
was performed on a 507 × 365 correlation matrix, which was derived as follows:

Ccities =
365∑

day=1

Enormalized(λ, δ)ET
normalized(λ, δ), (3.1a)

where

Enormalized(λ, δ) = Eln(λ, δ)
mean
λ∈L507

[Eln(λ, δ)]
. (3.1b)

Next, we visualized relationships between official flood risk information issued to the public, reported
incidents due to surface water flooding to properties and flood-related information seeking on the Web.
This analysis sets up a framework, with which we can determine whether engagement with flood
risk information occurred at an earlier (higher correlation with flood warnings and alerts) or later
(correlation with incidents due to surface water flooding) stage of hazard development. For this purpose,
we constructed three data matrices and employed paired RV (matrix correlation) analysis, which is a
simple generalization of the squared Pearson correlation applied to multivariate data:

RV(X, Y) = COVV(X, Y)√
VAV(X)VAV(Y)

, (3.2)
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Table 3. Composite results.

N|α ≥ 0.5 warnings reporting W : R τ

PC1 96 0.372* 0.533** 0.211 n.s. 0.283***
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

PC2 37 0.187 n.s. 0.317* 0.401* 0.054 n.s.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

PC3 41 0.643** 0.796** 0.550** (−0.266)**
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

PC4 30 0.408* 0.191 n.s. 0.195 n.s. (−0.044) n.s.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

*p< 0.1, **p< 0.05, ***p< 0.001.

where COVV(X, Y) = Tr(ΣXYΣYX), ΣXY = E(XTY) and VAV(X) = Tr(Σ2
XX). Finally, we used Kendall’s

τ non-parametric measure of correlation between four pairs of two ranked variables: each of PC1–4
and corresponding binary values, which encode whether that locality had been recorded as affected or
severely affected by flooding during the study period April 2014–March 2015:

τ = C − D
C + D

= C − D
n(n − 1)/2

= C − D
(n/2)

= C − D
n!/2!(n − 2)!

, (3.3)

where C is concordant pairs and D is discordant pairs.

4. Results
Table 3 illustrates the combined presentation of the RV coefficients, depicting the similarity between
information seeking matrices, official flood risk warnings and reported incidents due to flooding, and
Kendall’s τ coefficients, demonstrating ranked correlation between eigencities and either the presence
(coded as ‘1’) or the absence (coded as ‘0’) of city/town coverage in the media due to flood events, over
the period April 2014–March 2015. The strength of the information-seeking behaviour across all four
components with either flood warnings or incident reporting indicates early or late public engagement,
respectively. Kendall’s coefficients demonstrate links between public engagement at either an early or
a late stage of the flood event and the actual occurrence of the hazard, which as an impact benchmark
dataset was preferable over probabilistic warning messages.

Results, extracted for the first four principal components, account for 50% of the total data variability,
demonstrating that the most statistically significant Kendall coefficients (τ = 0.283*** and (−0.266)**)
are for PC1 and PC3, respectively. Positive and negative values of those two components suggest that
eigendecomposition is capable of differentiating between affected and unaffected (or, rather, between
more affected and less affected) locations by analysing only Web search behaviour.

We extended the analysis of our initial findings to look at how they relate to the wider relationships
between decomposed flood-related information seeking (PC1–4) and the formal flood risk-management
infrastructure, i.e. warning and reporting in those locations. When we compared correlations of PC1
and PC3 with flood warnings and between warnings and reporting, respectively, we noticed the link
between more active engagement with flood risk information during both warning and reporting
stages of floods (RV(warnings)|PC3 = 0.643** and RV(reporting)|PC3 = 0.796**) and reduced hazard
outcome in those locations: PC3| τ = (−0.266)**. Similarly, stronger and more statistically significant
correlation of PC1 with incident reporting data (RV(reporting)|PC1 = 0.533**) when compared with the
warnings (RV(warnings)|PC1 = 0.372*) suggests later engagement with risk warning information and
worse hazard outcome in those locations: PC1|τ = 0.283***.

Although statistically insignificant, Kendall’s coefficients for PC2 and PC4 are also consistent with the
above-mentioned conclusions.

5. Discussion
In this study, we investigated whether there are links between flood risk-information seeking, which
can be seen as a proactive behaviour vis-à-vis developing natural hazards, and actual outcomes in
urban localities during the period from April 2014 to March 2015. We found that early engagement
with flood risk information correlates with less severe hazard outcomes in the set of locations with
similar search behaviour patterns, which are defined here as eigencities. Although total search volumes
globally correspond to national average rainfall patterns (figure 4), it can be argued that different
principal components are responses, not necessarily linear, to rainfall patterns at different spatial
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scales: from national to regional and to the most local. In such instances, principal components, or
eigencities, represent a surrogate measure of the relationship between actual natural phenomena (e.g.
precipitation levels) and local knowledge/habits/preferences of how to deal with the prospective or
ongoing flood event.

The significance of this study can be illustrated by its numerous implications for social and
environmental sciences, touching on both their theoretic and empirical aspects. First, the results align
with several previous studies [5,26], and especially with protection motivation theory (PMT) [27,28],
according to which threat and coping appraisals (or ‘information seeking’) correlate positively with
protective responses. Protective responses are defined here as ‘those that prevent monetary or physical
damage if an event actually occurs, and are taken if the threat appraisal and the coping appraisal are
high’, and are in contrast to non-protective responses, such as denial or unfounded optimism. According
to Grothmann & Reusswig [29], self-protective behaviour by residents of flood-prone urban areas can
reduce monetary flood damage by 80% and reduce the need for public risk management. However, the
literature in the field of psychology also indicates that if residents at risk rely on the efficacy of public or
administrative flood protection, they take less precautionary action themselves; there is therefore scope
for future studies to look into combined action of private damage prevention by households and levees
built by public agencies to prevent floodwaters reaching people’s doorsteps. In addition, despite the
general alignment of our results with PMT and similar studies, other literature [30,31] also points to a
close relationship between flood mitigation undertakings and flood risks, property values, government
payrolls and population densities. There is therefore a strong argument for further study that uses these
additional variables, in order to examine in more depth relationships between information seeking and
motivation to act in the face of a hazard.

Information seeking is also seen as a novel component in the next generation of environmental
models [32,33]. Increasingly, natural hazard risks and environmental amenities are becoming part of
empirical agent-based land market modelling [34], where particular attention is now being paid to
capturing the impact of changes in individual risk perceptions on land use choices. And while statistical
relationships are established between risk perception and information seeking [5], there is a growing
interest in understanding how quantifiable the links are between information-seeking activities and
personal uptake of flood resilient measures.

Another set of agent-based models look into dynamic logistical systems of human and technological
interaction during flood events [35,36]. They are largely built on topography, buildings and road
networks, but lack information on large-scale social behaviour data. These multi-agent simulations are
usually coupled with hydrodynamic models to estimate the vulnerability of individuals to flooding
under different storm conditions; however, they could greatly benefit from data where individuals are
treated as less passive agents [37,38].

Normative decision-making models are the most common tools for the estimation of economic
benefits of meteorological services [39]. Our study suggests ways forward for next-generation
normative valuation of meteorological services, where technology adopters and non-adopters can be
identified using digital behavioural datasets, and where realistic input is a strong requirement for the
prescriptive model.

As previously mentioned, eigendecomposition of information seeking on the Web could assist in the
evaluation of various environmental policy instruments, where proactive communities play a key role.
For example, implementation of flood resilient technologies (FReTs) at the individual property level
provides a previously untapped resource to reduce flood damage to buildings [3]. The assessment of
FReTs at the individual building level is gaining greater importance, in part because their targeted uptake
is often constrained by a lack of informed knowledge about their performance. While the benefits of
FReTs are defined as direct tangible damage avoidance to properties at risk, urban flood barrier systems,
which are installed some distance from groups of buildings, also protect specific locations up to a certain
threshold. Coupled with the results presented in this study, accessible information on flood barrier
location, type and age, can help design a probabilistic decision-support tool to target more balanced
FReTs across various urban scales.

Information seeking, sharing and implementation of resilience measures can be regarded as
a particular type of risk-management behaviour, but which is not captured by current flood
communication systems. Tracking the way people behave but also make changes to their properties
and surrounding environment can open new directions for behavioural research, specifically, for
environmental habit tracking and re-calculation of risks in prediction systems that are currently based
solely on demographic and economic variables [37,40–42]. While this study has limitations, one of
which is the use of a single information-seeking dataset (we do not employ Facebook groups and
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Twitter, for example), it does provide invaluable insights into complex relationships between flood risk
information seeking on the Web and real-world, public behaviour in conditions of varying and extreme
weather events.
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