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Abstract
Image labeling is essential for analyzing morphometric features in medical imaging data.

Labels can be obtained by either human interaction or automated segmentation algorithms,

both of which suffer from errors. The Simultaneous Truth and Performance Level Estimation

(STAPLE) algorithm for both discrete-valued and continuous-valued labels has been pro-

posed to find the consensus fusion while simultaneously estimating rater performance. In

this paper, we first show that the previously reported continuous STAPLE in which bias and

variance are used to represent rater performance yields a maximum likelihood solution in

which bias is indeterminate. We then analyze the major cause of the deficiency and evalu-

ate two classes of auxiliary bias estimation processes, one that estimates the bias as part of

the algorithm initialization and the other that uses a maximum a posteriori criterion with a pri-
ori probabilities on the rater bias. We compare the efficacy of six methods, three variants

from each class, in simulations and through empirical human rater experiments. We com-

ment on their properties, identify deficient methods, and propose effective methods as

solution.

Introduction
Characterization of the morphometric features of human organs—e.g., their size and shape—
requires their delineation and labeling within medical images. This can be accomplished either
by automated segmentation algorithms, manual delineation, or a combination of both efforts.
For example, cardiac imaging studies commonly use either human raters or algorithms to 1)
delineate the epicardium (the outer contour of the left ventricle), 2) delineate the endocardium
(the inner contour of the left ventricle), and 3) identify the two RV insertion points where the
right and left ventricles connect [1]. These features are typically identified on short axis images
showing the cross section of the heart that is perpendicular to long axis connecting the heart's
apex and base (Fig 1(A)). In this process, the raters will introduce errors, generate ambiguous
interpretation of structures, and occasionally make careless mistakes. Hence, it is adequate to
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employ more than one rater to label each image and enhance accuracy using statistical label fusion
methods [2]. Since our interest in this paper is not on the source of the labels, but on their fusion to
create a single labeled image, for simplicity we will refer to both human and algorithms as raters.

The Simultaneous Truth and Performance Level Estimation (STAPLE) algorithm is a popu-
lar method for fusing labeled datasets [3]. STAPLE iteratively constructs estimates of both the
true labels as well as the performance parameters of the raters using the E-step and M-step,
respectively, of the expectation maximization (EM) algorithm [4, 5]. In the discrete case in
which there are a finite number of labels to assign, rater performance is characterized by the
sensitivity and specificity values for binary labels or the confusion matrix for multi-labels, both
of which characterize the likelihood that raters assign the correct labels to the corresponding
voxels. In the continuous case, raters select labels that are characterized by continuous values
that lie in an uncountably infinite set. For example, the spatial locations for the RV insertion
points cannot be characterized by discrete labels because their positions are defined by continu-
ous-valued vectors in a two-dimensional (2D) space indicating (potentially sub-voxel) loca-
tions. Another example of continuous labels is the levelset method for representing shapes [6],
which is distinguished from voxel labeling of shapes because it has the capability to represent
shapes with sub-voxel resolution. Fig 1 shows the labeling of a typical cardiac MR image slice.
Shapes such as endocardium contour can be labeled either by discrete volumetric labels (Fig 1
(B)) or by its continuous signed distance function (Fig 1(D)), while the two RV insertion points
must be labeled by continuous 2D vectors (Fig 1(C)). When multiple raters are used in the sce-
narios depicted in Fig 1(C) and 1(D), continuous fusion must be used; this is the general frame-
work and problem considered in this paper.

In the continuous version of STAPLE (CSTAPLE), a Gaussian mixture model is used where
rater performance can be represented by the bias and variance of the rater's ability to locate the
true value [7, 8]. CSTAPLE uses an analogous approach to the discrete STAPLE in that the truth,

Fig 1. Cardiac MR Image Labeling for Endocardium and RV Insertion Points. (a) Short-axis MR image of
the heart. (b) Pixel labeling of the left ventricle chamber. (c) Labeling of right ventricle insertion points. (d)
Level set representation of the left ventricle chamber contour (endocardium).

doi:10.1371/journal.pone.0155862.g001
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bias, and variance parameters are estimated simultaneously using maximum likelihood. How-
ever, we prove below that CSTAPLE yields an equal likelihood for any bias parameter, which
implies that bias is indeterminate and this approach cannot fully evaluate rater performance.

This manuscript is an extension of previous work [9]. Recent developments have continued
to improve statistical fusion, including robustness enhancement [10], introducing spatially-
varying statistical models [11], and applying continuous label fusion to correct the bias in the
application of brain imaging [12]. An evaluation on the performance of all STAPLE-related
works and their variants has been proposed in [13]. On the other hand, new ways of modeling
the fusion problem has been explored, such as regression-based models [14], and a generative
model for segmentation based on label fusion [15]. Other methods such as shape-based averag-
ing [16] have also tried to tackle the label fusion problem from a non-STAPLE point of view.
Moreover, the problem of automated cardiac ventricular segmentation has been studied from a
collective point of view using collaborative resources to build consensus [17]. Although these
works have been moving forward in new applications with novel approaches, CSTAPLE is still
a common reference of study and its bias problem has not been adequately analyzed and
solved. Clearly, a deeper look at the cause of bias indeterminacy is necessary. We will show that
bias estimate in CSTAPLE is completely determined by its initialization, and this value—how-
ever it may have been specified—can strongly influence the continuous label estimate. One
could ignore this problem by tweaking the initialization. However, the major contribution of
this work is to point out that adequate bias estimation is needed because the core algorithm
does not estimate bias, which is a fundamental flaw of the theory.

Next, we present two classes of additional bias estimation processes for auxiliary estimation,
one that estimates the bias as part of the initialization and the other that uses a maximum a
posteriori criterion with a priori probabilities on the rater bias. While re-deriving the mathe-
matics of EM iteration to appreciate these new approaches, we also describe the difference
between using prior bias knowledge that aids the algorithm and using random bias initializa-
tion that may cause failure of the algorithm.

This paper is organized as follows. In 2.1, we re-derive the basic theory of the CSTAPLE algo-
rithm to establish the mathematics necessary to illustrate the bias indeterminacy problem. In 2.2,
we reveal the constant bias problem and provide a rigorous proof. Sections 2.3 and 2.4 present
two classes of methods for bias estimation. Experimental results on six methods, three variants
from each class of solutions, are presented in 3.1, 3.2, and 3.3. We then discuss the results and
implications of the work for practical continuous labeling applications and conclude the paper.

Methods

EM Algorithm for Continuous Label Fusion
In K-dimensions, the goal is to identify N continuous vectors ti, the collection of which can be
represented by the truth matrix
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tT1
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..

.
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77777777775
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; tik 2 ℝ: ð1Þ

Consider R raters specifying all N vectors, each exactly once. Then the collection of all
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observations can be represented by the observation matrices

Dj ¼

dT
j1
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; djik 2 ℝ; j ¼ 1; . . . ;R: ð2Þ

As in Refs. 7 and 8, we assume that each rater j has the same performance parameters, a K × 1
bias vector μj and a K × K covariance matrix Sj, which characterize the rater's ability to specify
any vector, and these parameters are deterministic and unknown. In multiple practices of spec-
ifying a truth point, the bias parameter describes the rater’s average deviation from the truth
and covariance matrix describes the rater’s variance. Under a Gaussian model, the probability
density of rater j’s decision for vector i is

f ðdjijt i;μj;ΣjÞ ¼
1

ð2pÞK=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðΣjÞ

q e�
1
2ðdji�ðtiþμjÞÞTΣj�1ðdji�ðtiþμjÞÞ: ð3Þ

Our goal is to estimate θ = {θ1,. . .,θj,. . .,θR} where θj = {μj, Sj} using maximum likelihood.
By viewing T as hidden data, the EM algorithm can be used to simultaneously estimate both θ
and T. As presented in the classic STAPLE3, the expectation of the log likelihood function, i.e.,

E½ln f ðD;TjθÞjD; θðnÞ� ¼
Z
ℝN�K

ln f ðD;TjθÞ f ðTjD; θðnÞÞdT ð4Þ

is to be maximized by an appropriate θ ¼ θ̂ . It is assumed in the STAPLE method that the dis-
tribution of truth is independent of performance, i.e., f(T|θ) = f(T). Thus the rules of condi-
tional probability yield ln f(D, T|θ) = ln(f(D|T,θ)f(T|θ)) = ln(f(D|T,θ)f(T)) = ln f(D|T,θ) + ln f
(T). We see that the second term is not related to θ. As a result, maximizing Eq 4 can be rewrit-
ten as

argmaxθ E ½ln f ðD;TjθÞjD; θðnÞ� ¼ argmax
θ

Z
ℝN�K

ln f ðDjT; θÞf ðTjD; θðnÞÞdT: ð5Þ

The logarithm term in the integrand of Eq 5 is the logarithm of the Gaussian density in Eq 3,
but the following term is the total weight term that needs to be derived. Assuming indepen-
dence among different raters and among different vector points and assuming a constant f(T),
the total weight term by Bayes' theorem is

f ðTjD; θðnÞÞ ¼ f ðDjT; θðnÞÞf ðTÞR
ℝN�K f ðDjT 0; θðnÞÞf ðT 0ÞdT 0 ¼

Y
i

Q
jf ðdjijt i; θðnÞ

j ÞR
ℝK

Q
jf ðdjijt 0i; θðnÞ

j Þdt 0i
: ð6Þ

Since the total weight has been separated into the product of smaller weight terms associated
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with each vector point i, using the density of Eq 3, we define the weight of each point as

WðnÞ
i ðt iÞ ¼
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To simplify the equation, we now define two symbols A(n) = (∑j Sj
−1(n))−1 and

bðnÞi ¼ P
jΣj

�1ðnÞðdji � μðnÞ
j Þ. Note that the summation over j can be rewritten asX
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And since A(n) is K-dimensional, we use the integration of Gaussian densities to find the
denominator of Eq 7.1. Finally, Eq 7.1 is reduced to this form:

WðnÞ
i ðt iÞ ¼

Q
jf ðdjijt i; θðnÞ

j ÞR
ℝK

Q
jf ðdjijt 0i; θðnÞ

j Þdt 0i
¼ 1
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detAðnÞp e�

1
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After a sufficient number of iterations, tðnÞi :¼ AðnÞbðnÞi ! Að1Þbð1Þ
i ¼: tð1Þ

i , which is the esti-
mated true position of vector point i. This is the update equation of the truth.

Eqs 7.1 to 7.3 completes the derivation of the E-step. For the M-step, we need to update the

performance parameters μðnÞ
j and Sj

(n) in each iteration. For each rater, from Eq 5 we have

fμðnþ1Þ
j ;Σj

ðnþ1Þg ¼ argmax
X

i

Z
ℝK

ln f ðdjijt i; θjÞWðnÞ
i ðt iÞdt i ¼: argmax FðnÞ

j : ð8Þ

To find the maximum point of FðnÞ
j , we take its partial derivatives and set them to zero, i.e.
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@FðnÞ
j =@μj ¼ 0; @FðnÞ

j =@Σj ¼ 0, which yields
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8>>><
>>>:

Eq 9 completes the derivation of the M-step. These updated parameters are used in the E-step
of the next iteration to compute a new estimate of the truth, which is then used to calculate
newly updated parameters, and so on. Convergence is guaranteed by the nature of EM algo-
rithm [18]. For more details in derivation, we refer the readers to [7].

Bias Invariance Problem
From Eq 3, the density of rater decision can be regarded equivalently as a function of ti or as a
function of μj; thus the overall estimation of ti is closely related to the estimation of μj. Eq 9 can
be algebraically manipulated to reveal the fact that the bias does not change after the first calcu-
lation from initialization. First, we note that

μðnþ1Þ
j ¼ 1

N

X
i

�
dji � AðnÞbðnÞi

�
¼ 1

N

X
i

�
dji � tðnÞi

�
: ð10Þ

Moving the summation of tðnÞi to the left hand side and μðnþ1Þ
j to the right yields

1

N

X
i

tðnÞi ¼ 1

N

X
i

ðdji � μðnþ1Þ
j Þ: ð11Þ

While the right-hand side appears to be related to j, the left-hand side is independent of j,
which means that regardless of different raters, this quantity stays the same as iteration goes
on. We should also note that A(n) does not depend on i. As a result, by substituting both Eq 11

and the definitions of A(n) and bðnÞ
i into Eq 10 we can make the following manipulations
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j : ð12Þ

The computed rater bias at any iteration is equal to the initial bias. Fundamentally, although

the value of tðnÞi changes at each iteration, their summation over all points i stays the same,
which causes the bias invariance problem. Although the EM algorithm is guaranteed to
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converge to a local optimum [19], the local optimum is independent of the bias in this case,
which indicates an irrelevant relationship between the bias parameter and the likelihood func-
tion. This result has two key implications. First, the CSTAPLE algorithm does not actually esti-
mate rater bias, which is one of the rater performance measures. Instead the bias is
indeterminate from the maximum likelihood estimation framework. Second, if the initial bias
is specified to be far from the true bias, the estimate of the true label could also be negatively
affected. Therefore, rather than the expected situation in which the EM algorithm uses the
observed data to optimally estimate both rater performances and the true continuous label, we
find ourselves facing a situation in which initialization is crucial—in fact, it is "the whole
game".

Fig 2 illustrates the consequences of poor bias initialization. In the identification of RV
insertion points, the decisions of six raters are denoted by dots in Fig 2(A). They are then fused
by CSTAPLE with the truth estimate initialized at the image origin (top left pixel), which
results in the first calculation of rater bias to be very large and the final estimated truth denoted
by “+” in Fig 2(A) to be far away from the correct position. In the distance transform approach
to calculate fusion of the endocardium, the true distance function estimate can be initialized
with zeros on the entire image plane. The fusion of six raters’ distance functions (whose zero
level sets are shown as colored contours in Figs 2(B) and 3(C)) is calculated and its zero posi-
tion is extracted as the estimated endocardium contour (shown in Fig 2(D)). Because of this
initialization the fusion result is clearly wrong, yet it is nevertheless optimal from a maximum
likelihood perspective. This demonstrates that naive initialization may lead to inaccurate inter-
pretation of the bias, thereby degrading the final truth estimate.

Fig 2. Poor Bias Initialization in Continuous Label Fusion. (a) Six raters identify RV insertion points (dots)
and their fusions (crosses) are poor because CSTAPLE is initialized in upper left corner. Six raters identify
endocardium contours (three shown in (b) and three more shown in (c)). The fusion of six endocardium
contours shown in (d) is poor because CSTAPLE was initialized with zeros on the entire image plane.

doi:10.1371/journal.pone.0155862.g002
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Initialization Strategies
Since use of incorrect rater biases yields poor fusion results and since any bias is optimal given
a maximum likelihood criterion, it is necessary to consider alternate ways to handle rater bias.
Since CSTAPLE does not change bias, one approach is to estimate rater bias in advance and
use that estimate to initialize CSTAPLE. Here we state and comment on three possible
strategies.

1. Zero initialization: The EM iterations in discrete STAPLE are often started using a confu-
sion matrix with diagonal values close to one (commonly observed performance parameters).
Similarly, in the continuous case all rater biases can be started from zero. However, this strategy
is unreliable because it can fail in many cases. For example, if one class of raters (i.e., novices)
made systematic mistakes with large biases relative to a set of other (i.e., experienced) raters,
then the larger bias of the first class relative to the second would never be estimated and used
in fusion. Although this initialization would seem to be "fair" in that it makes no particular
prior assumption about the rater bias, the fact that it never adapts to the fusion result that
emerges is counter to the well-founded and elegant principles of the STAPLE approach.

2. Average initialization: In this approach, we first calculate the mean tð0Þi of all rater deci-

sions, which also serves as an initial estimate of the truth. Each rater's bias μð1Þ
j is then calculated

as the average deviation from this initial estimate of the truth. In equation form

tð0Þi ¼ 1

R

X
j

dji; i ¼ 1; . . . ;N ð13Þ

μð1Þ
j ¼ 1

N

X
i

ðdji � tð0Þi Þ; j ¼ 1; . . . ;R: ð14Þ

Without prior information of the acquired data, the mean location is already an appropriate
fusion (unbiased estimator), although not necessarily optimal under the STAPLE framework.
Using it to achieve an ML solution can be viewed as a coarse-to-fine strategy. Furthermore,

Fig 3. CSTAPLE Simulation of 2-D Point Identification. In (a) (d) circles are generated truth and dots are
rater decisions. In (b) (e) “x” are the fusion of zero initialization, crosses are average initialization, and dots are
informed initialization. In (c) (f) “x” are fusion of weak prior, crosses are data-adaptive prior, and dots are
informed prior.

doi:10.1371/journal.pone.0155862.g003
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various averaging strategies can be considered to adapt different cases, e.g., if majority’s deci-
sions are more trusted, a robust weighted mean can be calculated to reduce impacts of outlier,

where the weight can be the inverse square distance of dji from tð0Þi .
3. Informed initialization: If prior knowledge of rater bias is available from previous experi-

ence or from a training dataset, it can be used in an informed initialization strategy. One could
subtract off the prior bias μμj

from corresponding rater’s decisions and then use average initiali-

zation, i.e., for every j, prune all rater decisions by

dji;new ¼ dji � μμj
; 8i; j ð15Þ

and then update Eqs 13 and 14 with dji,new. When the prior knowledge is reliable, this strategy
sidesteps the problem of bias estimation and proves to be the most accurate one and effective
in distinguishing bad raters even if they are the majority. To be effective, the bias prior μμj

must

be correctly learned, and this in itself may not be an easy task.
In general, although these initialization strategies are either based on the current data or

obtained from previous experience, they are mathematically equivalent in that they do not
affect the numerical value of the maximum likelihood optimum. A common concern for all
these methods is that the bias is estimated separately from the truth estimation process.

MAP Estimation for Continuous Label Fusion
As an alternative to the pre-estimation of bias, we may apply soft constraints on the bias parame-
ter in the form of a maximum a priori (MAP) optimization, so that bias can be estimated simulta-
neously with the truth levels. We refer to this approach as MAP-CSTAPLE. In line with previous
work on Gaussian mixture models [20–22], we use the following prior on bias

f ðθjÞ ¼ f ðμjÞ ¼
1

ð2pÞK=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðΣμj

Þ
q e�

1
2ðμj�μμj Þ

TΣμj
�1ðμj�μμj Þ; ð16Þ

where μμj
and Σμj

are the mean and covariance of rater j’s bias μj.

Comparing to Eq 4, now we seek to maximize the logarithm of the a posteriori distribution

E½ðln f ðD;TjθÞ þ ln f ðθÞÞjD; θðnÞ� ¼ E½ln f ðD;TjθÞjD; θðnÞ� þ ln f ðθÞ: ð17Þ

Consequently, in Eq 8 function FðnÞ
j now becomes

FðnÞ
j ¼

X
i

Z
ℝK

ln f ðdjijt i; θjÞWðnÞ
i ðt iÞdt i þ ln f ðθjÞ: ð18Þ

The E-step is the same as before by Eqs 7.1 to 7.3 but the M-step becomes

μðnþ1Þ
j ¼ ðI þ 1

N
Σðnþ1Þ
j Σμj

�1Þ�1ð1
N

X
i
ðdji � AðnÞbðnÞ

i Þ þ 1

N
Σðnþ1Þ
j Σμj

�1μμj
Þ

Σðnþ1Þ
j ¼ 1

N

X
i

½AðnÞ þ
�
dji � μðnþ1Þ

j � AðnÞbðnÞi

��
dji � μðnþ1Þ

j � AðnÞbðnÞi

�T

�:
ð19Þ

8>><
>>:

With these modifications, the bias is updated in the EM steps and convergence is achieved.
To implement this algorithm, μμj

and Σμj
must be determined or specified in advance. Simi-

lar to three initialization strategies, we present three possible ways to determine these
quantities.
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1.Weak prior: If the raters are not known to have bias, one can let μμj
be zero and Σμj

be

large (e.g., ~10 voxels for RV identification). Because of the existence of Σμj
, the estimation pro-

cess is able to compensate for the assumed zero prior bias and therefore achieve more stable
results than zero initialization. Although we emphasize that starting from zero remains an
uninformed random strategy that can cause failure if the truth is far away.

2. Data adaptive prior: Here, we apply the average initialization strategy and then take μð1Þ
j

in Eq 14 as the bias prior μμj
, and Σμj

will be the covariance of dji for all i. This strategy uses the

current data to estimate a more restrictive bias prior than the weak prior strategy.
3. Informed prior: If prior knowledge (mean and covariance) of the rater bias is available, we

can use it directly by setting it as μμj
and Σμj

. It is similar to informed initialization except that

estimated bias is allowed to vary around the prior mean according to the deviation specified by
the prior variance.

If CSTAPLE is used with a correct bias initialization, then it is optimal. MAP-CSTAPLE
provides a degree of "protection" against improper bias initialization, which may be useful in
counteracting harmful random initialization (such as zero). We now present experiments that
demonstrate both the utility and pitfalls of the two classes of methods.

Results
We performed a series of label fusion experiments with all six described methods (CSTAPLE
with the three initialization strategies and MAP-CSTAPLE with the three bias priors) for fusion
scenarios with simulated points, points chosen by human raters, and contours identified by
human raters.

2-D Point Identification Simulations
Six raters were simulated with manually assigned biases and variances in a 2-D point identifica-
tion problem. Each rater evaluated 10 randomly generated points in a 100×100 region of inter-
est (ROI) according to the two models, instances of which are shown in Fig 3(A) and 3(D). We
evaluated all six methods.

In the first model, we assigned each rater to have a bias that is uniformly sampled from
interval (0, 5] (Unit: pixel) with random direction. Rater covariance matrices were set to ran-
dom positive definite matrices whose diagonal values are around 9 pixel2. An instance of this is
shown in Fig 3(A). Assuming no prior information of the bias was known, CSTAPLE with zero
initialization and average initialization and MAP-CSTAPLE with weak and data-adaptive prior
were evaluated. Then assuming prior information of the bias was available (using generated
bias and variance), CSTAPLE with informed initialization and MAP-CSTAPLE with informed
prior were evaluated. For each of the six fusion techniques, the entire experiment was repeated
in 500 Monte Carlo trials. A typical model instance is shown in Fig 3(A) and its estimates are
shown in Fig 3(B) and 3(C).

Table 1. RMSE (in pixels) of Estimated Truth fromGenerated Truth with Six Fusion Techniques in 500 Monte Carlos of 2-D Simulation.

CSTAPLE Initializations MAP-CSTAPLE Priors

Zero Average Informed Weak Data-adaptive Informed

Model 1 3.31±1.15 1.99±0.71 0.92±0.28 3.35±1.29 1.99±0.71 1.00±0.28

Model 2 3.36±1.50 5.88±1.83 0.83±0.29 3.56±2.59 5.88±1.83 1.03±0.43

doi:10.1371/journal.pone.0155862.t001
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In the second model, we changed the generation of rater bias to let 3 out of 6 raters make
similar mistakes, deviating 10±2 pixels in length toward the upper right direction. An instance
of this model is shown in Fig 3(D) and the estimation results are shown in Fig 3(E) and 3(F).
As before, we repeated the experiment in 500 Monte Carlo trials. Table 1 compares the root
mean squared error (RMSE) in units of pixels of the estimated truth from the generated truth
for all six approaches. It is observed that the informed versions of both initialized CSTAPLE
and MAP-CSTAPLE perform best. The average initialization and data-adaptive MAP-CSTA-
PLE are excellent when the raters are uniformly biased (Model 1) but these approaches are
quite bad when a fraction of the raters are biased (Model 2). The zero initialization in CSTA-
PLE and the weak prior in MAP-STAPLE have intermediate and approximately equal perfor-
mance for both rater models; thus, they represent "safe" choices when there is no available rater
information (and the possibility of large rater bias exists).

It is also worth to mention that the estimation of covariance matrices Sj is regarded accurate

with an average absolute error of
1:07 0:81

0:81 0:46

" #
(pixel2), regardless of its initialization. In our

experiments, the variance estimation does not tend to cause any major problem to the algorithm.

Empirical Fusion: RV Insertion Points Identification in Cardiac Images
A high-resolution CINE magnetic resonance (MR) short axis image set of the heart of a pig
was obtained in a steady-state free suppression acquisition with breath holds on a commercial
Philips 3T-Achieva whole body system. The scan acquisition parameters are FOV:
280×72×280 mm3, Size: 176×215, Scan Duration: 124 s and Repetition Time: 3.333 ms. Six
human raters with no previous experience on labeling cardiac data were given a 15-minute
training session and were asked to identify 82 RV insertion points in 41 designated image
slices. An expert on cardiac anatomy labeled the same data using the same in-house software.

Rater performance and true RV locations were estimated with the six fusion techniques
using the point-wise data from the six inexperienced raters. The fused RV locations were com-
pared with the location specified by the expert rater as “truth”. To implement the informed
CSTAPLE methods we used half of the dataset (20 images) as training data and compared the
rater decisions in the training data directly with the expert’s decision, obtaining the rater’s aver-
age deviation from the truth and its covariance as the prior mean and prior covariance. The
experiment was repeated in 100 Monte Carlo trials, each with 20 random selected training
images and 21 remaining test images. In each Monte Carlo, fusions of the test image RV points
with six methods and their RMSE from expert decision were computed. Finally, the average
and standard deviation of the RMSE through all Monte Carlos were evaluated (Table 2).

The results of all six methods on one slice are shown in Fig 4(A) and 4(B). To better visual-
ize the differences between MAP-CSTAPLE with the data-adaptive prior and MAP-CSTAPLE
with the informed prior we plotted their two distances from the truth as an ordered pair on the
x-y axis. Five hundred of these points, one from each Monte Carlo trial, are shown in Fig 4(C).
The fact that more points fall above the y = x line reveals that the informed prior is generally
better. This confirms the RMSE results shown in Table 2.

Table 2. RMSE (in pixels) of Estimated Truth from Expert Truth with Six Fusion Techniques in 100 Monte Carlos of Real RV Insertion Points Data.

CSTAPLE Initializations MAP-CSTAPLE Priors

Zero Average Informed Weak Data-adaptive Informed

5.49 ± 0.55 4.69 ± 0.38 4.15 ± 0.35 5.17 ± 0.57 4.69 ± 0.38 4.21 ± 0.39

doi:10.1371/journal.pone.0155862.t002
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Empirical Fusion: Contour Identification in Cardiac Images
The cardiac MRI dataset, as described in the previous section, was used for endocardium con-
tour identification. The same six inexperienced raters manually labeled the endocardium on all
slices after a 15-minute training session. The expert performed the same task. The labeling was
achieved by direct delineation (painting the endocardium area) using the same in-house soft-
ware as in the previous section. In order to compare the continuous contour fusion result with
discrete label fusion result, we performed classic STAPLE on rater decisions in discrete domain
by assigning Label 1 as endocardium and Label 0 as background.

We considered one image slice for detailed evaluation. The pixel size of the region of interest
was 80×80 so that the total pixel count was 6400. Before performing continuous fusion, we
computed the signed distance function from the contour of the manually delineated endocar-
dium, which resulted in six decision sets, each of 6400 1-D vectors (scalars). They were then
fused by the six continuous fusion techniques respectively. Finally the fusion’s zero level set
was regarded as the estimated contour. As in Section 3.2, to implement the informed CSTAPLE
methods we used part of the dataset (1000 pixels) as training data and compared the rater dis-
tance functions in the training data directly with the expert’s distance function, obtaining the

Fig 4. Identification of RV Insertion Points in Cardiac MRI. In (a) (b) red dots are rater decisions and green
circles are an expert’s decision as ground truth. Fusions are shown in yellow, where “X”, crosses and dots are
respectively zero, average, informed initialization in (a) and weak, data-adaptive, informed prior in (b). The
error distance of all fusion points from corresponding truth points shown in (c) which compares data-adaptive
prior and informed prior methods.

doi:10.1371/journal.pone.0155862.g004

Fig 5. Different FusionMethods for EndocardiumContour Identification. (a) Expert decision from
manual delineation regarded as truth. (b) CSTAPLE with zero initialization. (c) CSTAPLE with average
initialization. (d) CSTAPLE with informed initialization. (e) Classic STAPLE fusion of discrete labels. (f)
MAP-CSTAPLE with weak prior. (g) MAP-CSTAPLE with data-adaptive prior. (h) MAP-CSTAPLE with
informed prior.

doi:10.1371/journal.pone.0155862.g005
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rater’s average deviation from the truth and its covariance as the prior mean and prior covari-
ance. The experiment was repeated in 50 Monte Carlo trials, each with 1000 random selected
training pixels. An example of the expert decision and fusion results of all methods are shown
in Fig 5.

The Dice coefficients of the endocardium fusions in comparison to the expert decision were
computed, and the average and standard deviation of all Monte Carlo trials are shown in
Table 3. The Dice coefficients show that well initialized CSTAPLE (average, informed) and all
MAP-CSTAPLE methods perform better than classic STAPLE. Also, poorly initialized CSTA-
PLE (zero in this case) can lead to very poor results (which can also be seen in Fig 5(B)).

We then changed the number of training pixels to alter the prior mean and variance for
informed CSTAPLE methods. The results in Table 4 show that both informed methods are
quite stable with respect to numbers of training samples.

Discussion
We observed that zero initialization CSTAPLE and weak prior MAP-CSTAPLE led to medio-
cre performance in all experiments. Thus these approaches are not recommended to use. Aver-
age initialization CSTAPLE and data-adaptive MAP-CSTAPLE lead to superior fusion results
except in the pathological case of Model 2 in Table 1. The limitation of these two methods is
that they require most raters to perform well. This problem can be addressed by using either
the informed initialization CSTAPLE or informed prior MAP-CSTAPLE, but only when
appropriate information about the rater biases are known beforehand. In the human rater
experiments, the methods using training data to estimate an informed approach were the most
successful.

In the contour identification task, we saw that as long as the bias was handled appropriately
(i.e., did not use a zero initialization), the continuous fusion result was similar to that of dis-
crete STAPLE. Average initialization CSTAPLE and data-adaptive MAP-CSTAPLE provided
an excellent fusion result and, as in the RV insertion points example, informed CSTAPLE
methods did not show apparent advantages. Except for the zero initialization CSTAPLE case,
all other proposed methods are slightly better than discrete STAPLE, and they have the poten-
tial advantage of providing subvoxel delineations.

The comparison of different methods demonstrates that informed approaches are better on
both simulated and real data. Although incorporating prior knowledge of human raters’ per-
formance can be particularly challenging, recent developments have shown that learning the

Table 3. Dice Coefficients (in percentage) of Estimated Truth from Expert Truth with Six Fusion Techniques in 50 Monte Carlos and Discrete STA-
PLE for Endocardium Identification.

CSTAPLE Initializations MAP-CSTAPLE Priors STAPLE

Zero Average Informed Weak Data-adaptive Informed

81.9±3.0 93.3±0.0 92.6±0.1 93.2±0.0 93.3±0.0 93.3±0.0 92.3

doi:10.1371/journal.pone.0155862.t003

Table 4. Dice Coefficients (in percentage) of Estimated Truth from Expert Truth with Two Informed CSTAPLEMethods Subject to Training Dataset
Size Change.

Number of Training Pixels 10 50 100 500 1000 2000 3000 4000 5000 6000

Informed Initialization Dice 92.5 92.6 92.5 92.5 92.6 92.6 92.5 92.6 92.5 92.5

Informed Prior Dice 93.3 93.3 93.3 93.3 93.3 93.3 93.3 93.3 93.3 93.3

doi:10.1371/journal.pone.0155862.t004
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performance of automated methods is possible [23]. Otherwise, average initialization and data-
adaptive prior methods can be regarded as proper continuous fusion techniques in general
without the presence of prior information.

The major contribution of this work is to provide a theoretical correction to the CSTAPLE
algorithm. In practice, since various reasonable parameter-tweaking methods (e.g., tuning the
covariance matrix parameter) can lead to reasonable solutions, this work may be perceived as
subtle. However, severe pathological failures may arise if the user is not aware of the fundamen-
tal shortcomings. For example, in the cardiac RV insertion points picking task, one rater is
seen to consistently make the same mistake for every image slice by identifying the top right
RV insertion point to the right of its correct position (Fig 4(A) and 4(B)). Although this rater
has a small variance, the rater's bias to the right of the truth is not estimated by the algorithm,
and also cannot be compensated by the estimation of the variance. It can be argued that a more
straightforward solution is not to consider the misinformed rater’s decision. But in practice, it
is not always possible to manually examine each rater’s decision prior to fusing the data facing
a great number of dataset.

Finally, the focus of this discussion is on the general CSTAPLE algorithm, where the
assumptions are inherited from those of the discrete STAPLE. However, in certain special cases
where prior knowledge of the truth is known, assumptions can be changed to include a non-
uniform prior (f(T) in Eq 6), to introduce point-specific rater parameters by varying bias and
variance, or to use a non-Gaussian framework, which will result in a change of derivation of
equations and is likely to eliminate the bias invariance problem. Details of these methods are
not discussed in this paper.

Conclusion
In this paper, we first proved that rater bias as a performance parameter is not updated after
the first step in the CSTAPLE algorithm. We then presented two classes of bias estimation
strategies, each with three variations, to address this problem. Although informed methods—
known biases or their statistics—are best, the original CSTAPLE algorithm initialized with
biases computed from the group average or MAP-CSTAPLE using a data-adaptive prior pro-
vide essentially equivalent results in realistic scenarios. We note that in some cases the differ-
ences between these approaches could be considered clinically nominal (e.g., DSC differences
of 0.01%); the important contribution of this paper is that experimental results confirm that
poor bias initialization may lead to very poor results when using a naïve fusion approach.
Hence, it is important to evaluate these considerations in practice.
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