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Abstract

Aphids induce many transcriptional perturbations in their host plants, but the signalling cascades responsible and 
the effects on plant resistance are largely unknown. Through a genome-wide association (GWA) mapping study in 
Arabidopsis thaliana, we identified WRKY22 as a candidate gene associated with feeding behaviour of the green peach 
aphid, Myzus persicae. The transcription factor WRKY22 is known to be involved in pathogen-triggered immunity, and 
WRKY22 gene expression has been shown to be induced by aphids. Assessment of aphid population development 
and feeding behaviour on knockout mutants and overexpression lines showed that WRKY22 increases susceptibility 
to M. persicae via a mesophyll-located mechanism. mRNA sequencing analysis of aphid-infested wrky22 knockout 
plants revealed the up-regulation of genes involved in salicylic acid (SA) signalling and down-regulation of genes 
involved in plant growth and cell-wall loosening. In addition, mechanostimulation of knockout plants by clip cages 
up-regulated jasmonic acid (JA)-responsive genes, resulting in substantial negative JA–SA crosstalk. Based on this 
and previous studies, WRKY22 is considered to modulate the interplay between the SA and JA pathways in response 
to a wide range of biotic and abiotic stimuli. Its induction by aphids and its role in suppressing SA and JA signalling 
make WRKY22 a potential target for aphids to manipulate host plant defences.

Keywords:   Arabidopsis thaliana, mechanostimulation, Myzus persicae, plant–insect interaction, plant resistance to aphids, 
touch, transcription factors.

Introduction

As plants are sessile organisms in often dynamically chang-
ing environments, plasticity is fundamental to survival. 
Transcriptional regulation plays an important role in how 

plants cope with environmental stimuli. In Arabidopsis 
approximately 50 transcription factor families have been iden-
tified, accounting for approximately 2000 genes (Guo et al., 

© The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which permits 
unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

mailto:klothkj@gmail.com?subject=


3384  |  Kloth et al.

2005; Mitsuda and Ohme-Takagi, 2009). Together with signal 
perception and transduction elements, these transcription fac-
tors participate in complex and dynamic networks that regu-
late developmental processes and responses to (a)biotic stress. 
Insect infestations are typical situations that require quick 
transcriptional reprogramming in order to mount an effec-
tive defence response. Aphids are phloem-feeding insects that 
manoeuvre their piercing–sucking mouthparts between cells 
and reach the vascular bundle without inflicting major physi-
cal damage (Minks and Harrewijn, 1989). They are vectors of 
many plant viruses and deprive the plant of photoassimilates. 
Aphids cause strong transcriptional perturbations in plants, 
inducing or repressing up to several thousand genes, whereas 
other insects such as caterpillars and cell-content feeders alter 
the expression of only up to several hundred genes (De Vos 
et al., 2005; Kusnierczyk et al., 2007; Barah et al., 2013; Dubey 
et  al., 2013; Kerchev et  al., 2013; Appel et  al., 2014; Foyer 
et al., 2015). An open question is, however, whether these tran-
scriptional changes lead to enhanced resistance to aphids or 
whether they are unsuccessful or even counter-effective modu-
lations. Aphids are known to secrete effectors via their saliva 
into the apoplast and the vascular bundle (Rodriguez and Bos, 
2012), and might be able to manipulate the host plant physiol-
ogy for their own benefit. In this study, genome-wide associa-
tion (GWA) mapping revealed WRKY22 (At4g01250) as one 
of the candidate genes for affecting feeding behaviour of the 
generalist aphid Myzus persicae (Sulzer) on Arabidopsis thali-
ana. WRKY22 is a member of the WRKY transcription factor 
family, which was discovered in the 1990s and named after its 
binding affinity to the W-box promoter motif (Eulgem et al., 
2000). WRKY22 and its homologue WRKY29 are part of 
group IIe WRKYs and are both established markers of patho-
gen-triggered immunity (PTI). Pathogen-associated molecular 
patterns (PAMPs) such as flagellin, chitin and cellulysin are 
recognized elicitors of the mitogen-activated protein kinase 
(MAPK) cascade that induce WRKY22 and WRKY29 within 
30 min post-inoculation (Asai et al., 2002; Dong et al., 2003; 
Navarro et al., 2004; Mészáros et al., 2006; Thilmony et al., 
2006; Schikora et  al., 2011; González-Lamothe et  al., 2012; 
Shi et al., 2015). In general, PTI results in the accumulation 
of reactive oxygen species and callose deposition and involves 
salicylic acid (SA), jasmonic acid (JA) and ethylene (ET) sig-
nalling (Yi et al., 2014). Although the exact role of WRKY22 
and WRKY29 in PTI is unknown, WRKY22 has been shown 
to be required for resistance to the hemibiotrophic pathogen 
Pseudomonas syringae (Hsu et al., 2013) and WRKY29 has 
been described as conferring resistance to P. syringae as well 
as to the necrotrophic pathogen Botrytis cinerea (Asai et al., 
2002). In this study, we assessed the involvement of WRKY22 
in plant resistance to M. persicae aphids and its downstream 
transcriptional effects.

Materials and methods

Plants and insects
A collection of 344 natural accessions of A.  thaliana was obtained 
from the ABRC Stock Center (Baxter et  al., 2010). This set was 
selected in a previous study to represent most intraspecific genetic 

variation and minimal redundancy (Platt et  al., 2010), and was 
genotyped for 214 000 single nucleotide polymorphism (SNPs) 
with AtSNPtile1 arrays (Atwell et al., 2010; Li et al., 2010; Horton 
et al., 2012). Transfer (T)-DNA lines SALK_094892 (wrky22-3) and 
SALK_098205 (wrky22-4), and TRANSPLANTA-inducible overex-
pression lines TPT_4.01250.1C and TPT_4.01250.1E were obtained 
from NASC (Coego et al., 2014). Seeds were cold stratified for 72 h at 
4 °C before they were sown in pots (5 cm diameter) with pasteurized 
(4 h at 80 °C) Arabidopsis potting soil (Lentse Potgrond, Lent, The 
Netherlands) in a climate room at 24 ± 1 °C, 50–70% relative humid-
ity, 8 h–16 h light–dark photoperiod, and a light intensity of 200 μmol 
m−2 s−1. Homozygous T-DNA plants were selected based on PCR and 
harvested for seeds for subsequent experiments. The location of the 
T-DNA insertion was confirmed via sequencing, and abolition of 
WRKY22 expression was tested with RT-qPCR (Supplementary Table 
S1 at JXB online). Expression of WRKY22 in the TRANSPLANTA-
inducible overexpression lines (Coego et al., 2014) was measured with 
RT-qPCR 24 h after application of 10 μM oestradiol in water to the 
plant trays (Supplementary Table S1). Green peach aphids, M. persi-
cae, were reared on radish, Raphanus sativus (L.), at 19 °C, 50–70% 
relative humidity and a 16 h–8 h light–dark photoperiod.

Automated video tracking
Aphid behaviour was tracked on 344 natural accessions of 
Arabidopsis (n=5–6 per accession) according to the methodology of 
Kloth et al. (2015). One adult, wingless aphid was introduced into 
a well of a 96-well plate containing a leaf disc of 6 mm diameter, 
abaxial side up, on 1% agar substrate. Wells were covered with cling 
film to avoid aphid escape, and 20 aphids were recorded on 20 dif-
ferent accessions simultaneously with a camera mounted above the 
plate, at 22 ± 1 °C. EthoVision® XT 8.5 video tracking and analy-
sis software (Noldus Information Technology bv, Wageningen, The 
Netherlands) was used for automated acquisition of aphid position 
and velocity. The number and duration of probes were subsequently 
calculated with the statistical computing program R (R Core Team, 
2013). Leaf discs were made of intermediately aged leaves of 4- to 
5-week-old Arabidopsis plants, one disc per plant. Aphid behaviour 
was recorded for 85 min, starting at 4.5 h after inoculation of the 
aphids. The video-tracking assay was performed in an incomplete 
block design with each complete replicate consisting of 18 blocks 
of 20 accessions. Sixty plants were screened each day across three 
blocks, and one replicate of the complete Hapmap collection was 
acquired in 6  days. An alpha design was generated with Gendex 
(http://designcomputing.net/gendex/) to assign accessions to each 
block. Five to six replicates were acquired per accession.

GWA mapping and haplotype analysis
GWA mapping was performed on the proportion of aphids making 
long probes (> 25 min) with scan_GLS (Kruijer et al., 2015), using 
a kinship matrix based on all SNPs to account for population struc-
ture. SNPs with a minor allele frequency <0.05 were excluded from 
analysis. Block and replicate were included in the model as covari-
ates. SNPs with −log10(P) value larger than 4 were taken as candidate 
loci. Generalized heritability was estimated as in Oakey et al. (2006). 
For haplotype analysis, SNPs with a minor allele frequency above 
5% were retrieved from the Arabidopsis 1001 genomes browser for 
173 accessions (Cao et al., 2011). For each domain, haplotypes were 
defined as unique SNP combinations with a frequency above 5%. 
For exons, only non-synonymous SNPs were included. A promoter 
region of 1000 kb was used and gene domains were obtained from 
Interpro (Mitchell et al., 2015). Promoter motifs were retrieved from 
Athamap (Hehl and Bülow, 2014).

RT-qPCR
For each sample, two intermediately aged leaves per 4- to 5-week-
old Arabidopsis plant were harvested between 12.00 and 15.00 h. 
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Samples were immediately frozen in liquid nitrogen, and stored 
at −80 °C until processing. RNA was isolated from homogenized 
leaf  material with an InviTrap® Spin Plant RNA kit, and treated 
with Ambion® TURBO DNA-freeTM according to the manu-
facturer’s instructions. RNA was quantified with a NanoDrop® 
ND-1 000 spectrophotometer, and integrity was assessed with 
gel electrophoresis. DNA-free RNA was converted into cDNA 
using the Bio-Rad iScriptTM cDNA synthesis kit. Quantitative 
reverse transcription PCR was carried out on a Bio-Rad IQTM5 
system using SYBR Green. For each primer combination 
(Supplementary Table S1), RT-qPCR products were sequenced 
to validate the region of  amplification. To test aphid induction 
of  WRKY22, PR1, VSP2, and PDF1.2, plants were treated with 
and without aphids (n=4). For infested samples, a Petri dish with 
indentation for the petiole was used to contain 15 adult M. per-
sicae aphids on the leaf, to inflict as little mechanostimulation as 
possible. Four biological replicates were collected for three treat-
ments: (1) an empty Petri dish for 48 h, (2) a Petri dish for 48 h 
with addition of  aphids in the last 6 h, and (3) a Petri dish with 
aphids for 48 h.

Electrical penetration graph recording
Feeding behaviour of M.  persicae aphids was investigated with 
electrical penetration graph (EPG) recording on 4- to 5-week-old 
Arabidopsis plants, using direct current (DC) according to the 
methodology of ten Broeke et al. (2013). To adjust the radish-reared 
aphids to Arabidopsis, aphids were transferred to Col-0 Arabidopsis 
plants 24 h before the experiments. EPG recording was performed at 
22 ± 2 °C and light intensity of 120 μmol m−2 s−1, using clean plants 
and one aphid per plant. An electrode was inserted in the potting 
soil and a thin gold wire of 1.5 cm was gently attached to the dorsum 
of an adult, wingless aphid with silver glue. The electrical circuit 
was completed when the aphid’s piercing–sucking stylet mouthparts 
penetrated the plant cuticle. Electrical signals associated with stylet 
activities were recorded and annotated with EPG Stylet+ software 
(http://www.epgsystems.eu) and further processed in R (R Core 
Team, 2013; Tjallingii, 1988). Between 20 and 24 biological repli-
cates were measured on T-DNA lines (Col-0: n=24; wrky22-3: n=22; 
wrky22-4: n=20) and between 15 and 19 on overexpression lines 
(Col-0: n=15; OE.c: n=19; OE.e: n=19). WRKY22 overexpression 
was induced by supplying 10 μM oestradiol solution to the plants 
24 h before the experiment. To correct for potential side-effects of 
oestradiol, the wild-type plants received the same oestradiol treat-
ment as the overexpression lines.

Aphid population development
To assess aphid developmental rate and population size, 2.5-week-
old Arabidopsis plants were infested with one M. persicae neonate of 
age 0–24 h and placed in a climate room at 24 ± 1 °C, 50–70% relative 
humidity, 8 h–16 h light–dark photoperiod, 200 μmol m−2 s−1 light 
intensity. A soap-diluted water barrier prevented aphids from mov-
ing between plants. None of the aphids developed wings. From day 
7 onwards, occurrence of the first offspring was checked twice per 
day using 5× magnification glasses (Col-0: n=18; wrky22-3: n=19; 
wrky22-4: n=22). The number of aphids per plant was counted at 
14 days after infestation. Plants without an adult aphid 8 days after 
introduction and plants without any adults or neonates 14 days after 
introduction were excluded from the analysis.

Statistics
Data were tested for a normal distribution and homogeneity of vari-
ances using Shapiro’s test and Levene’s test. Non-parametric data 
sets were assessed with the Mann–Whitney U-test (two groups) or 
Kruskall–Wallis test (more than two groups). Data sets with a nor-
mal distribution were tested with Student’s t-test (two groups) or a 
one-way ANOVA (more than two groups).

RNA-seq analysis
RNA-seq analysis was conducted on leaves of  Col-0 and wrky22-3 
with three biological replicates per treatment. Five leaves of  five 
different 4- to 5-week-old plants were pooled per sample. Plants 
had been exposed to one of  three treatments: (1) an empty clip cage 
for 48 h, (2) a clip cage for 48 h with addition of  15 aphids in the 
last 6 h, and (3) a clip cage with 15 aphids for 48 h. Only fourth-
instar nymphs and adult M. persicae aphids were used. Experiments 
were conducted simultaneously in a climate chamber (24 ± 1  °C, 
50–70% relative humidity, 8 h–16 h light–dark photoperiod, and 
a light intensity of  120 μmol m−2 s−1), but in separate cages with 
an air circulation system that prevented contamination of  plant 
volatiles between treatments (Menzel et  al., 2014). Samples were 
harvested in two batches between 13.00 and 16.00 h, immediately 
frozen in liquid nitrogen, and stored at −80  °C until processing. 
RNA was isolated and checked according to the description above 
(260/280 OD range: 2.0–2.2, 260/230 OD range: 1.9–2.3). Library 
preparation was performed with a TruSeq™ RNA Sample Prep Kit 
(Illumina®) and between 11 million and 24 million single-end 50-bp 
reads were sequenced per sample with Illumina® HiSeqTM 2000 
in three lanes, multiplexed with 12 samples per lane. Reads were 
cleaned from adaptors and trimmed to 51 bp using the program 
Trimmomatic version 0.32 (Bolger et al., 2014). Quality control was 
performed with FastQC (http://www.bioinformatics.bbsrc.ac.uk/
projects/fastqc). Reads were mapped to the TAIR10 Arabidopsis 
reference genome (https://www.arabidopsis.org/) with Tophat ver-
sion 2.0.13, intron length 20–2000 (Trapnell et al., 2012; Trapnell 
et al., 2013). An index file was built with Bowtie 2 (Langmead et al., 
2009). Transcript assembly, quantification, normalization and dif-
ferential expression analysis were performed with Cufflinks, using 
the bias detection and correction algorithm, multi-read correction 
for reads mapping to multiple locations, and a minimum alignment 
count of  10. Treatments were compared both between plant lines 
(Col-0 versus mutant) and within plant line (empty clip cage ver-
sus 6 h post-inoculation (hpi), empty clip cage versus 48 hpi, and 
6 hpi versus 48 hpi). Only differentially expressed genes (false dis-
covery rate Q-value<0.05) with an absolute fold change ≥2 (log2≥1) 
were taken into account. Differentially expressed genes were tested 
for overrepresentation of  biological processes against a reference 
set including all transcripts in the complete data set with at least 
1 count, using the application BiNGO in Cytoscape (Maere et al., 
2005; Cline et al., 2007). Genes associated with cell-wall processes 
were selected and classified based upon their TAIR description, and 
the heatmap was constructed with the R package ‘gplots’ (Warnes 
et al., 2009).

Results

GWA mapping

To identify genes involved in resistance to the green peach 
aphid, M. persicae, GWA mapping was performed on 344 
natural accessions of  Arabidopsis, using a selection of 
approximately 214 000 SNPs (Atwell et al., 2010; Li et al., 
2010; Horton et  al., 2012). The behaviour of  aphids was 
screened on these accessions with an automated video-
tracking platform (Kloth et  al., 2015). The number and 
duration of  plant penetrations was estimated by analysing 
the location and movement of  aphids on single leaf  discs. 
It is known that aphids need on average 25 min to penetrate 
the epidermis and mesophyll before they reach the vascular 
bundle (van Helden and Tjallingii, 1993; Tjallingii, 1994; 
Prado and Tjallingii, 2007). Therefore, we used the propor-
tion of  aphids making long probes (>25 min) as a proxy for 
the success rate of  phloem ingestion. The majority of  the 

http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erw159/-/DC1
http://www.epgsystems.eu
http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc
http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc
https://www.arabidopsis.org/


3386  |  Kloth et al.

Arabidopsis accessions did not show indications of  resist-
ance to aphids, but on 10% of  the accessions at least half  of 
the aphids were unsuccessful in feeding after 4.5 h of  infes-
tation (Fig. 1A and Supplementary Table S2). GWA map-
ping of  aphid feeding behaviour revealed seven genomic 
regions with a −log10(P) value above 4 and a heritability 
of  10% (Fig. 1B and Table 1). WRKY22 (At4g01250) was 
identified as a candidate gene in a 40 kb region around a 
polymorphism with a −log10(P) value of  4.7 (chromosome 
4 position 543516). Other candidates in the region included 
a gene with unknown function (At4g01290), a methyltrans-
ferase and a gene (At4g01240) with an MYB-like domain 
(At4g01280). Resequenced data of  173 accessions (Cao 
et al., 2011) showed that WRKY22 contained one non-syn-
onymous SNP in its coding region, and that most of  the pol-
ymorphisms were confined to the introns and the promoter 
region (Fig.  1C). A  silent SNP in the last exon and two 
SNPs in the promoter were correlated with aphid feeding 
behaviour (Fig. 1D). Both polymorphisms in the promoter 
coincided with an AT-hook DNA-binding motif  of  AHL20, 
a transcription factor involved in plant defence to bacteria 
(Lu et al., 2010). Because WRKY22 is involved in PAMP-
triggered immune responses (Asai et  al., 2002; Navarro 
et  al., 2004) and its expression is induced by M.  persicae 
and Brevicoryne brassicae aphids (De Vos et al., 2005; Barah 

et  al., 2013), we conducted further experiments to assess 
whether WRKY22 is involved in resistance to aphids.

Mesophyll-located susceptibility to aphids

To validate the previously reported induction of  WRKY22 
by aphid infestation (De Vos et al., 2005; Barah et al., 2013), 
RT-qPCR was performed on wild-type plants with aphids 
and without aphids. WRKY22 expression was unaffected 
at 6 h post-infestation (hpi), and showed a non-significant 
increase at 48 hpi (Fig. 2A). Two wrky22 transfer (T)-DNA 
insertion lines and two WRKY22-inducible overexpression 
lines (Coego et  al., 2014) were selected for further experi-
ments. RT-qPCR confirmed that both T-DNA lines were 
true knockouts, and that the overexpression lines showed a 
3- to 5-fold up-regulation of  WRKY22 at 24 h after induc-
tion with oestradiol (Fig.  2B). For a detailed insight into 
aphid feeding behaviour on knockout and overexpression 
lines, we used electrical penetration graph (EPG) record-
ings (McLean and Kinsey, 1964; Tjallingii, 1988). Aphid 
feeding behaviour was affected on both wrky22 knockout 
lines; on wrky22-3 aphids spent almost 20% more time on 
penetrating the epidermis and mesophyll, and on wrky22-
4 aphids showed an hour’s delay in reaching the vascular 
bundle compared with the wild-type (Col-0) (Fig. 3A–C and 

Fig. 1.  Genome-wide association mapping of aphid feeding behaviour. (A) Phenotypic distribution of the proportion of M. persicae aphids making 
long probes (>25 min) during a 1.5 h recording on plants from 344 natural Arabidopsis accessions 4.5 h post-inoculation. For accessions for which the 
percentage of long probes was below the dotted line, at least half of the aphids were unsuccessful in feeding. (B) Genome-wide associations with 214 
000 SNPs. SNPs in red are positioned in a 40 kb region around WRKY22 (highest −log10(P)=4.7). (C) All SNPs in WRKY22 and its 1000 kb promoter 
region according to 173 resequenced Arabidopsis accessions (green: silent; red: non-synonymous). Predicted gene domains are shown in grey, unknown 
domains in black. Triangles represent T-DNA insertions. (D) One synonymous SNP in the last exon and two SNPs in the promoter had an effect on aphid 
feeding behaviour (*P<0.05, **P<0.01, Student’s t-test, chromosome 4, positions 523037, 524726 and 525079).
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Supplementary Table S3). One of  the WRKY22-inducible 
overexpression lines showed the opposite trend, with aphids 
arriving almost an hour earlier at the vascular bundle com-
pared with the wild-type (Fig.  3D–F and Supplementary 
Table S4). The other WRKY22 overexpression line did not 
show any differences compared with the wild-type. The total 
time of  phloem ingestion was not affected in any of  the 
(mutant) lines, suggesting that in the first 8 h of  infestation, 
the overall effects are small and confined to activities in the 
epidermis and/or mesophyll. An aphid population develop-
ment assay on wrky22-3 and wrky22-4 showed that after 2 
weeks of  infestation, aphid populations were approximately 
20% smaller on the knockouts compared with the wild-type 
(Fig.  4). Both behavioural experiments and population 
assays indicate that WRKY22 increases susceptibility to 
M. persicae aphids.

Transcriptomic signature of wrky22-3

To study the role of WRKY22 in resistance to aphids, 
mRNA sequencing (RNA-seq) analysis was performed on 
wrky22-3 and wild-type plants that had received one of three 

treatments: (1) an empty clip cage for 48 h, (2) a clip cage for 
48 h with addition of aphids in the last 6 h, and (3) a clip cage 
with aphids for 48 h. For each treatment three biological rep-
licates were sampled, each consisting of a pool of five leaves 
from different plants. Samples were sequenced for single end 
50-bp reads, and for each sample at least 9.5 million reads 
mapped to unique loci on the Arabidopsis reference genome 
(Supplementary data file S1). The total number of differen-
tially expressed (DE) genes increased with the duration of 
infestation, from approximately 700 at 6 hpi to 1000 at 48 
hpi in the wild-type. In both treatments, wrky22-3 contained 
twice as many up- and down-regulated genes as the wild-
type (Fig.  5A). Principal component analysis showed that 
the duration of infestation was the major factor explaining 
differential expression (Fig.  5B–D). Highly abundant tran-
scripts that were up-regulated in wrky22-3 compared with the 
wild-type included the JA reporter VSP1 (6 hpi) and patho-
genesis-related genes such as PR2 and PR5 (48 hpi) (Fig. 6). 
Photosynthesis- and water-transport-related genes were 
down-regulated in wrky22-3 at 48 hpi (Fig. 6). Gene ontol-
ogy (GO) enrichment analysis of the total set of DE genes 
revealed an overrepresentation of up-regulated JA-, SA- and 

Table 1.  SNPs and corresponding genes associated with the proportion of aphids making long probes (>25 min, −log10(P) value>4) 

Only the highest scoring SNP is shown per gene. Genes were grouped in one linkage disequilibrium (LD) region, if they were located within 20 kb 
from each other. Chr.: chromosome.

LD region Chr. Position −log10(P) AGI code Description

1 1 28995670 6.6 At1g77160 Protein of unknown function (DUF506)
2 2 10866313 4.3 At2g25530 AFG1-like ATPase family protein
3 3 20709836 4.2 At3g55800 Chloroplast enzyme sedoheptulose-1,7-bisphosphatase (SBPase)
4 4 519513 4.1 At4g01240 S-Adenosyl-l-methionine-dependent methyltransferase superfamily protein
4 4 536493 4.1 At4g01280 Homeodomain-like superfamily protein, SANT DNA-binding MYB-like domain
4 4 543516 4.7 At4g01290 Unknown protein
5 4 6641192 4.5 At4g10790 UBX domain-containing protein
5 4 6644022 4.9 At4g10800 BTB/POZ domain-containing protein
6 5 15927540 4.9 At5g39770 Pseudogene homologous to AtMSU81, restriction Endonuclease
7 5 19854700 4.1 At5g48965 Mutator-like transposase family
7 5 19858466 4.1 At5g48970 Mitochondrial substrate carrier family protein

Fig. 2.  WRKY22 expression. (A) WRKY22 expression in the wild-type without M. persicae aphids (control) and after 6 and 48 h of aphid infestation. (B) 
Expression in the wild-type (Col-0), wrky22-3 and wrky22-4 knockout lines, and WRKY22-inducible overexpression lines OE.c and OE.e. Overexpression 
lines were induced with oestradiol 24 h before sampling (one-way ANOVA and Student’s t-test; different letters refer to significant differences).
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abscisic acid (ABA)-responsive genes in wrky22-3 at both 6 
and 48 hpi (Fig. 7A). The JA pathway was mainly character-
ized by up-regulation of genes of the ethylene response factor 
(ERF) branch (Vos et al., 2015), e.g. the AP2/ERF transcrip-
tion factor RAP2.6, and PDF1.2 (Table 2). The majority of 
the DE genes associated with JA and ABA showed a peak 
at 6 hpi in wrky22-3, whereas most SA-responsive genes 
reached their highest level at 48 hpi (Fig. 7B). The induction 

of SA-responsive genes in the T-DNA line at 48 hpi coin-
cided with a suppression of genes associated with auxin 
(AUX) responsiveness, plant growth and cell wall loosening 
(Fig. 7A, B).

Enhanced negative JA–SA crosstalk in wrky22-3

Upon aphid infestation, the wrky22-3 transcriptome showed 
evidence of initial suppression, but eventual up-regulation of 
SA signalling. The expression of PR1, a robust SA-reporter 
gene (Pieterse et  al., 2012), was 2-fold down-regulated at 6 
hpi, but 3.5-fold up-regulated at 48 hpi in wrky22-3 com-
pared with the wild-type. Transcript levels of JA-reporter 
genes PDF1.2 and VSP1 were consistently more abundant in 
wrky22-3 (Table 3), suggesting a possible role of negative JA–
SA crosstalk (Spoel and Dong, 2008; Pieterse et  al., 2012). 
A  potential antagonizing candidate is NIMIN-2, encoding 
an SA-suppressing protein (Weigel et  al., 2005), which was 
up-regulated in wrky22-3 6 hpi (Table  3). Apart from SA 
antagonism, there were also signs of JA antagonism. Several 
up-regulated genes in wrky22-3, i.e. GRX480, WRKY51, 
and WRKY62 (Table  3), have previously been implicated 
as potential suppressors of JA signalling (Mao et al., 2007; 
Ndamukong et al., 2007; Gao et al., 2011).

JA induction by mechanostimulation in wrky22-3

Remarkably, the treatment with empty clip cages changed the 
expression of almost 150 genes in the knockout relative to 

Fig. 4.  Aphid population size on wild-type and knockout plants. The 
total number of M. persicae aphids per plant was counted 2 weeks after 
infestation with one neonate aphid. Mutant lines were compared with the 
wild-type with Student’s t-test (*P<0.05; **P<0.01).

Fig. 3.  Aphid behaviour on wrky22 knockout lines (upper panels) and WRKY22 overexpression lines (lower panels). (A, D) The total time M. persicae 
aphids were penetrating the epidermis and mesophyll during 8-h recordings on knockout lines wrky22-3 and wrky22-4 (A), and overexpression lines OE.c 
and OE.e (D). (B, E) Time between the start of the recording and the first contact with either a phloem or xylem bundle measured on knockout (B), and 
overexpression lines (E). (C, F) The total time aphids were ingesting phloem on knockout (C), and overexpression lines (F); knockout and overexpression 
lines were compared with the wild-type with Mann–Whitney U-test (*P<0.05; **P<0.01). To test the effect of overexpression, all plants were induced with 
oestradiol 24 h before the assay.
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the wild-type. Most of them were up-regulated in wrky22-3 
and showed a significant overrepresentation of JA-responsive 
genes, including VSP2 of the touch- and wound-responsive 
MYC-branch of the JA signalling pathway (Lange and Lange, 

2015) (Fig. 7 and Table 2). In order to see if  mechanostimula-
tion by clip cages had affected the plant’s response to aphids, 
RT-qPCR was conducted on aphid-infested leaves without 
clip cages (see Materials and methods). We found that in clean 
wrky22-3 plants, PDF1.2 expression was lower compared with 
wild-type plants (Fig. 8). After 6 h of aphid infestation, PR1 
was up-regulated in wrky22-3 while PDF1.2 only showed a 
non-significant increase (Fig. 8). These results suggest that, in 
the RNA-seq analysis, the over-represented JA response may 
have been clip cage-induced and was likely involved in the sup-
pression of the SA response to aphids at 6 hpi.

Known resistance genes

Several genes described in earlier studies as being involved 
in enhancing resistance to M. persicae were up-regulated in 
wrky22-3. Expression of the MYB-domain-containing pro-
tein MYBR1, found to affect M. persicae reproduction under 
the influence of harpin proteins (Liu et al., 2010), was more 
than 2-fold induced at 48 hpi (Supplementary data file S1). 
Also several other genes with affiliation to known resistance 
factors for M. persicae were up-regulated, such as the phloem 
protein PP2-A12 at 48 hpi, the myrosinase-binding protein 
MBP1 at 48 hpi, and several xyloglucan endotransglucosy-
lases/hydrolases (XTHs) at 6 and 48 hpi (Mewis et al., 2005; 
Divol et al., 2007; Zhang et al., 2011; Louis and Shah, 2013).

Differential expression of cell wall-related genes

After 48 h of aphid infestation, the wrky22-3 transcriptome was 
characterized by down-regulation of genes associated with cell 

Fig. 5.  Differentially expressed (DE) genes between treatments with and without aphids in the wild-type and wrky22-3. (A) The number of DE genes 
between control and infestation treatments (green bars: up-regulated, red bars: down-regulated). (B) Biplot of the two first principal components of 
differentially expressed genes between control and infestation treatments (DE genes ≥2-fold). (C) Overlap in up-regulated genes, and (D) down-regulated 
genes.

Fig. 6.  Gene transcripts of aphid-infested wild-type and wrky22-3 plants. 
Differentially expressed genes between wild-type and knockout plants (≥2-
fold change) are shown in red. Axes depict the square-root transformation 
of the normalized number of transcripts (the number of fragments per 
kilobase of transcript per million reads mapped (FPKM)); genes ≤2500 
FPKM are shown (including all DE genes in the dataset). Annotations 
include gene name and biological process; wounding: wound responsive; 
pathogens: pathogen responsive; cadmium: responsive to cadmium; 
abiotic: responsive to several abiotic stresses.

http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erw159/-/DC1
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wall loosening (Fig. 7 and Table 2). To assess all cell wall-related 
processes, DE genes with cell wall annotation were selected 
and grouped into categories based on their name and function 
(Fig. 9). We did not observe an up-regulation of touch-respon-
sive xyloglucan endotransglucosylases/hydrolases (XTHs) by the 
empty clip cage. The empty clip cage did, however, cause a 3- to 
5-fold up-regulation of the cellulose synthase-like genes CSLA1, 
CSLA10, and CSLA15, involved in hemicellulose biosynthesis 
(Liepman et al., 2005). Aphids up-regulated XTHs and down-
regulated, for example, expansins, involved in cell-wall loosening, 
and pectin lyases, involved in pectin breakdown. While cell-wall 
loosening is a prerequisite for cell elongation, a process mainly 
regulated by CK and AUX (Taiz, 1984; Yadav et  al., 2009; 
Albersheim et al., 2011), the transcriptomic patterns indicate an 
aphid-induced arrest of symplastic cell growth in wrky22-3.

Discussion

The effect of WRKY22 on M. persicae aphids

Plant responses to aphids are known to involve many tran-
scriptional perturbations including multiple phytohormonal 

pathways (De Vos et  al., 2005; De Vos et  al., 2007; Smith 
and Boyko, 2007; Foyer et al., 2015). It is, therefore, a chal-
lenge to unravel the genetic basis of  effective defence mech-
anisms against aphids. In this study, we explored natural 
variation in Arabidopsis to find genes related to impaired 
feeding behaviour of  M. persicae. Natural variation in the 
occurrence of  long probes, a proxy for the success rate 
of  phloem ingestion, was associated to several genomic 
regions, including the WRKY22 locus. Polymorphisms in 
the WRKY22 promoter and in the last exon most strongly 
correlated with variation in aphid feeding behaviour. Even 
though the associations had low statistical power and her-
itability, knockout lines confirmed an effect of  WRKY22 
on aphid performance. Without a functional WRKY22 
protein, it was more difficult for aphids to penetrate the 
epidermis and mesophyll and they arrived later at the vas-
cular bundle. One WRKY22 overexpression line showed the 
opposite trend, although the impact was smaller than in the 
wrky22 knockouts, most likely due to the moderate extent 
and short time frame of  the overexpression (3- to 5-fold 
change, induced 24 h before the experiments). The effects 
of  WRKY22 on aphid performance were marginal in the 

Fig. 7.  Enriched biological processes in wrky22-3. (A) Over-representation of biological processes in the knockout relative to the wild-type. Balloons refer 
to a process, or to the biosynthesis of, or responsiveness to the respective compound (SA: salicylic acid; JA: jasmonic acid; ABA: abscisic acid; AUX: 
auxin; ET: ethylene; CK: cytokinin; clock: circadian clock). Balloon colour indicates enrichment in the knockout (green: up-regulated; red: down-regulated; 
green/red: both up- and down-regulated; the total number of DE genes is depicted below the charts). (B) Relative expression patterns between 
treatments within each plant line. Only the dominant pattern (≥50% of the genes) of significant perturbations (≥2-fold, q-value <0.05) between treatments 
with and without aphids is shown. (Wall: cell wall loosening; n: number of genes associated with the biological process; e: empty clip cage; 6: 6 hpi.)
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Table 2.  Differentially expressed genes (≥2-fold) of over-represented biological processes in wrky22-3 relative to the wild type

GO enrichment and gene classification are according to the BiNGO Cytoscape app (SA: salicylic acid; JA: jasmonic acid; ABA: abscisic acid; 
AUX: auxin; ET: ethylene; CK: cytokinin) (Cline et al., 2007; Maere et al., 2005).

Process Treatment Direction Name AGI code Description

ABA Empty cage, 6 hpi Up ANNAT4 At2g38750 Annexin, Golgi-mediated secretion
6 hpi Up HAI1 At5g59220 HIGHLY ABA-INDUCED PP2C gene 1

6 hpi Up HD-Zip-I At3g61890 Homeodomain leucine zipper class I
48 hpi Up ACR8 At1g12420 ACT DOMAIN REPEAT 8

48 hpi Up AMY1 At4g25 000 ALPHA-AMYLASE-LIKE 1, starch mobilization
48 hpi Up Dehydrins At3g50970, At1g20440 Membrane located, freeze tolerance
48 hpi Up ERF48 At2g40340 ABA responsive AP2/ERF transcription factor
48 hpi Up LTI78 At5g52310 LOW-TEMPERATURE-INDUCED 78

48 hpi Up WRKY63 At1g66600 ABA responsive WRKY transcription factor
AUX 6, 48 hpi Down CCA1 At2g46830 Negative regulator of circadian rhythm

48 hpi Down AXR3 At1g04250 AUXIN RESISTANT 3

48 hpi Down GH3s At2g47750, At5g13360 GH3 auxin responsive gene family
48 hpi Down SAURs At1g20470, At1g29500, At1g29510, 

At3g03820, At4g22620, At4g38840, 

At4g38850, At4g38860, At5g18020, 

At5g18030, At5g18050

SAUR(-like) auxin-responsive proteins

CK 48 hpi Down ARRs At1g19050, At1g74890, At3g57040, 

At5g62920

Arabidopsis response regulator (ARR) family

JA Empty cage, 6, 48 hpi Up JAZs At2g34600, At5g13220, At1g17380, 

At1g19180

JAZ7, JAZ10, JAZ5, JAZ1, Jasmonate-Zim- 
domain proteins

Empty cage, 6, 48 hpi Up MDHAR4 At3g09940 Monodehydroascorbate reductase
Empty cage, 6, 48 hpi Up MYB47 At1g18710 JA-responsive MYB transcription factor
Empty cage, 6, 48 hpi Up TAT3 At2g24850 Tyrosine aminotransferase, JA responsive
Empty cage Up VSP2 At5g24770 VEGETATIVE STORAGE PROTEIN 2

Empty cage, 6, 48 hpi Up VSP1 At5g24780 VEGETATIVE STORAGE PROTEIN 1

Empty cage, 6 hpi Up AOCs At3g25760, At3g25780 Allene Oxide Cyclase family, JA biosynthesis
Empty cage, 6 hpi Up OPR3 At2g06050 OXOPHYTODIENOATE-REDUCTASE 3, JA 

biosynthesis
Empty cage Up EXT4 At1g76930 Extensin
Empty cage Up JR1 At3g16470 JASMONAtE RESPONSIVE 1

6, 48 hpi Up PDF1.2 At5g44420 PLANT DEFENSIN 1.2

6 hpi Up DAD1 At2g44810 DEFECTIVE ANTHER DEHISCENCE 1, JA 
biosynthesis

6 hpi Up JAR1 At2g46370 Jasmonate-amido synthetase
6 hpi Up LOX3 At1g17420 LIPOXYGENASE 3

6 hpi Up RAP2.6 At1g43160 AP2/ERF transcription factor
SA 6, 48 hpi Up GRX480 At1g28480 Glutaredoxin family, suppresses PDF1.2

6, 48 hpi Up LURP1 At2g14560 Resistance to Hyaloperonospora parasitica

6, 48 hpi Up WRKY18 At4g31800 WRKY18

48 hpi Up WRKYs  At5g01900, At5g22570 WRKY38, WRKY62

48 hpi Up MYB77 At3g50060 MYB77

48 hpi Up WAK1 At1g21250 CELL WALL-ASSOCIAtED KINASE 1

JA, SA, 
ABA

6 hpi Up CIR1 At5g37260 MYB transcription factor
48 hpi Up MYBs At1g06180, At1g57560, At5g67300, 

At2g16720

MYB13, MYB50, MYB44, MYB7

48 hpi Up MPK11 At1g01560 MAP KINASE 11

48 hpi Up PDR12 At1g15520 ABC transporter family, MAPK cascade
Camalexin Empty cage, 48 hpi Up PAD3 At3g26830 PHYTOALEXIN DEFICIENT 3, camalexin 

biosynthesis
48 hpi Up P450 At4g39950 Cytochrome P450, indo-3-acetaldoxime (IAOx) 

biosynthesis
Terpenoids Empty cage, 6, 48 hpi Up TSP4 At1g61120 TERPENE SYNTHASE 4

Empty cage Up TPS10 At2g24210 TERPENE SYNTHASE 10

Cell wall 48 hpi Down Expansins At1g20190, At1g26770, At1g69530, 

At2g20750, At2g40610

Expansin family, cell wall loosening and 
multidimensional cell growth
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first 8 h, but more substantial after an infestation period of 
2 weeks as reflected by aphid population size. Overall, these 
assays indicate that WRKY22 promotes susceptibility to 
M. persicae aphids. Our RNA-seq and RT-qPCR analyses 
indicate that WRKY22-mediated susceptibility is associated 
with the suppression of  SA signalling. Aphid infestation of 
wrky22-3 plants resulted in faster and potentially stronger 
up-regulation of  the SA pathway than in wild-type plants. 
Even though it has been described that JA-induced defences 
are most effective against aphids (De Vos et  al., 2007; 
Walling, 2008), SA-induced mechanisms have been shown 
to have a detrimental impact on aphids as well (Li et  al., 
2006; Moloi and Westhuizen, 2006). The down-regulation 
of  pectin lyases and expansins (Fig. 9) suggests that there is 
less degradation of  pectin and less loosening of  the cell wall 
matrix in the wrky22 mutant. Fortification of  the primary 
cell wall may have hampered the penetration of  the meso-
phyll apoplast by aphids. This would explain why aphids 
required more time in probing the epidermis and mesophyll 

and were delayed in reaching the vascular bundle on the 
wrky22 mutants (Fig. 3 and Supplementary Table S3). We 
can, however, not exclude the involvement of  other resist-
ance factors in the mesophyll, such as the accumulation of 
reactive oxygen species or secondary metabolites.

Involvement of WRKY22 in biotic and abiotic stress 
responses

Apart from WRKY22’s responsiveness to aphids, we observed 
a strong activation of the JA pathway in wrky22-3 as a result 
of the use of clip cages. JA accumulation is known to be 
induced by mechanical stimuli (Ichimura et al., 2000; Chehab 
et  al., 2012), wounding, and damage-associated molecular 
patterns (DAMPs) (Doares et al., 1995; Denoux et al., 2008; 
Vidhyasekaran, 2014). Since there were no obvious signs of 
plant damage, the up-regulation of the JA pathway was most 
likely triggered by touch-induced surface stimulation of our 
samples. WRKY22 has been shown to be induced in response 

Fig. 8.  The effect of aphid infestation without clip cage on the expression of JA and SA reporter genes. RT-qPCR measurements of expression of the JA 
reporters VSP2 (A) and PDF1.2 (B), and the SA reporter PR1 (C) in wild-type and wrky22-3 plants (Student’s t-test and the Mann–Whitney U-test; different 
letters denote significant differences). Aphids were contained on the leaves without inflicting major mechanical stimulation (see Materials and methods).

Table 3.  JA- and SA-signalling-related gene expression in wrky22-3 plants compared with wild-type plants with and without aphids

Differentially expressed genes with at least 2-fold absolute change are shown (ns: not significant; emp: empty clip cage; SA/JA sig: SA/JA 
signalling; SA/JA suppr: suppression of SA/JA signalling).

Fold change

Gene Name Role Emp 6 hpi 48 hpi Reference

VSP1 VEGETATIVE STORAGE PROTEIN 1 JA sig 13.0 2.5 2.8 (Anderson et al., 2004; Lorenzo et al., 2004)
VSP2 VEGETATIVE STORAGE PROTEIN 2 JA sig 7.5 ns ns (Anderson et al., 2004; Lorenzo et al., 2004)
PDF1.2, 1.2C PLANT DEFENSIN 1.2A, 1.2C JA sig ns 2.3 3.5 (Lorenzo et al., 2003; Penninckx et al., 1998)
PR1 PATHOGENESIS-RELATED GENE 1 SA sig ns 0.4 3.5 (van Loon et al., 2006)
NIMIN-1 NIM1-INTERACTING 1 SA suppr ns ns 2.5 (Weigel et al., 2001; Weigel et al., 2005)
NIMIN-2 NIM1-INTERACTING 2 SA suppr ns 2.0 2.5 (Weigel et al., 2001; Weigel et al., 2005)
GRX480 Glutaredoxin JA suppr ns 2.8 2.8 (Ndamukong et al., 2007)
WRKY51 WRKY DNA-BINDING PROTEIN 51 JA suppr ns ns 4.3 (Gao et al., 2011)
WRKY62 WRKY DNA-BINDING PROTEIN 62 JA suppr ns ns 2.8 (Mao et al., 2007)

http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erw159/-/DC1
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to touch and wounding (Lee et al., 2004; Kilian et al., 2007). 
Our data suggest that WRKY22 acts as a suppressor of JA 
signalling in response to these stimuli. Many other abiotic 
stimuli have been described to induce WRKY22 as well, such 

as prolonged darkness, submergence, cold acclimation, light 
perception, salinity, potassium starvation, and exposure to 
ozone (Folta et al., 2003; Hampton et al., 2004; Monte et al., 
2004; Lee et al., 2005; Tosti et al., 2006; Chawade et al., 2007; 

Fig. 9.  Expression of cell-wall related genes in wrky22-3 and the effect of mechanostimulation by empty clip cages and aphid infestation. Genes and 
treatments are clustered according to the number of differentially expressed genes (≥2-fold change), using Ward’s minimum variance method (red: down-
regulated; green: up-regulated in wrky22-3 compared with the wild-type).

Fig. 10.  Hypothetical model of WRKY22’s role in plant response to abiotic (left) and biotic (right) stresses. Changes in, for example, light, temperature and 
touch are perceived via sensors and ion channels; plant invasion by organisms such as bacteria and aphids is mainly perceived via pattern-recognition (PR) 
receptors. These stimuli induce WRKY22 directly via MAPK cascades (Ichimura et al., 2000; Asai et al., 2002), or indirectly via SA accumulation (Miao et al., 
2004; Miao and Zentgraf, 2007). Alternatively, aphid effectors secreted via the saliva may induce WRKY22 via PR-receptor-independent routes. WRKY22 
subsequently integrates signalling of the JA and SA pathway, by inhibiting or activating specific transcription factors (TFs) and other regulatory genes.
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Kilian et al., 2007; Zhou et al., 2011; Göhre et al., 2012; Hsu 
et  al., 2013; Kim et  al., 2013; Sugimoto et  al., 2014). Hsu 
et al. (2013) identified several potential downstream targets 
of WRKY22, including genes involved in drought resistance 
and phosphate starvation. The accumulating evidence for its 
involvement in abiotic stress responses warrants a change of 
view, i.e. that WRKY22 is not solely involved in PTI. A par-
allel can be drawn with WRKY40, previously known as a 
repressor of PTI but recently also recognized as a central 
player in ABA inhibition during abiotic stress (Chen et al., 
2010; Friedel et al., 2012). Although abiotic and biotic stim-
uli are most likely perceived via stress-specific mechanisms 
and require differential plant responses, signal-transduc-
tion pathways might converge via common regulators, such 
as WRKY22, in order to fine-tune the interplay between 
phytohormones.

SA–JA signal integration

One of the major questions is whether WRKY22 is an activa-
tor or repressor of SA and JA signalling. Our transcriptome 
analysis of wrky22-3 revealed up-regulation of JA signalling 
upon mechanostimulation and up-regulation of SA signalling 
upon aphid infestation. This would suggest that in wild-type 
plants, WRKY22 is a suppressor of JA and SA signalling. 
From previous studies we know, however, that WRKY22 and 
WRKY29 confer resistance to (hemi)biotrophic and necro-
trophic pathogens (Asai et al., 2002; Hsu et al., 2013), and that 
they are induced by PAMP-triggered MAPK cascades which 
result in the activation of SA, JA and ET signalling (Zipfel 
et al., 2004). There is no direct evidence that WRKY22 and 
its homologue WRKY29 induce SA, JA and ET signalling, 
and the possibility exists that they are involved in MAPK-
triggered processes independent of SA and JA signalling. 
Nevertheless, their requirement for PTI makes them unlikely 
candidates for consistent suppression of plant defence hor-
mones. Rather, WRKY22 could be an integrator of SA and 
JA signals, inhibiting or enforcing both pathways, depend-
ing on their interaction with other transcription factors and 
signalling pathways (Fig. 10). Similarly, WRKY70 has been 
proposed to be capable of inducing and inhibiting both SA 
and JA signalling, depending on the strength of the induc-
tion (Li et al., 2004; Ülker et al., 2007). Although many ques-
tions remain with regard to the underlying mechanism, our 
study shows that WRKY22 plays a role in both SA and JA 
signalling and is involved in transcriptional reprogramming 
in response to mechanostimulation and aphid infestation. To 
understand the function of WRKY22, its transcriptional net-
work needs to be further unravelled under multiple biotic and 
abiotic stress conditions. With respect to aphids, WRKY22 
increases susceptibility. Its responsiveness to aphid infestation 
and its potential to suppress JA and SA signalling would make 
WRKY22 an excellent target for aphids to manipulate JA- 
and SA-dependent host plant defences for their own benefit.

Supplementary data

Supplementary data are available at JXB online.

Data file S1. Differentially expressed genes between 
wrky22-3 and wild-type rosette leaves with and without aphid 
infestation.

Table S1. Primers used for PCR and RT-qPCR.
Table S2. Percentage of aphids making long probes 

(>25 min) 4.5 hour after inoculation on 344 natural 
Arabidopsis accessions.

Table S3. Aphid feeding behaviour, measured by 8-hour 
EPG recordings on wild-type (Col-0) and wrky22 T-DNA 
lines (wrky22-3 and wrky22-4).

Table S4. Aphid feeding behaviour, measured by 8-hour 
EPG recordings on wild-type (Col-0) and wrky22-inducible 
overexpression lines (OE.c and OE.e). 
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