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Mycobacterium tuberculosis has an unusual natural history in that the vast

majority of its human hosts enter a latent state that is both non-infectious and

devoid of any symptoms of disease. From the pathogen perspective, it seems

counterproductive to relinquish reproductive opportunities to achieve a détente

with the host immune response. However, a small fraction of latent infections

reactivate to the disease state. Thus, latency has been argued to provide a safe

harbour for future infections which optimizes the persistence of M. tuberculosis
in human populations. Yet, if a pathogen begins interactions with humans as an

active disease without latency, how could it begin to evolve latency properties

without incurring an immediate reproductive disadvantage? We address this

question with a mathematical model. Results suggest that the emergence of

tuberculosis latency may have been enabled by a mechanism akin to cryptic gen-

etic variation in that detrimental latency properties were hidden from natural

selection until their expression became evolutionarily favoured.
1. Introduction
Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), has been

infecting human hosts for thousands of years [1]. Evidence suggests that M.
tuberculosis originated in Africa—when small human population sizes, charac-

teristic of the hunter–gatherer stage of human evolution, was a bottleneck for

highly active and virulent human pathogens [2]—before accompanying the

Out-of-Africa migrations of modern humans over 50 000 years ago [3]. While

the more ‘ancient’ lineages of M. tuberculosis seem to be restricted to West

Africa, evolutionarily ‘modern’ lineages are spread throughout the world and

most likely expanded during periods of strong population growth over the

last few centuries [3,4].

Given their long association, it is believed that M. tuberculosis and humans

coevolved strategies to overcome the negative effects of their antagonistic inter-

actions [2,5]. Long-term latency is proposed to be one such strategy that favours

the persistence of M. tuberculosis in humans [2,5,6]. This hypothesis is sup-

ported by the observation that latent TB is by far the most common form of

M. tuberculosis infection with a staggering one-third of the world’s population

estimated to be latently infected [7].

From the pathogen perspective, it is not obvious why latency should be

favoured, since it apparently forgoes reproductive opportunities to achieve a

détente with the host immune response. Recent theoretical work has shed some

light onto why latency might be an optimal persistence strategy for modern-day

M. tuberculosis. Zheng et al. [6] asked what rate of disease reactivation maximized

the epidemiological persistence of TB and found that intermediate rates—and

therefore prolonged latency—are optimal for the persistence of M. tuberculosis.

Similarly, Blaser & Kirschner [5] modelled multiple scales of nested inter-

actions between hosts and pathogens and concluded that latency is an optimal

evolutionary strategy for pathogens.
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Figure 1. Flow diagram of the M. tuberculosis evolution model. Mycobacterium tuberculosis infections are either latent (with density L) or active (with density A)
and are further characterized by the potential latency of the infecting strain x, and the probability y that the infecting strain enters a latent state upon infection.
Infection strains undergo stochastic incremental changes in phenotype at rate m. Active infections regress to latency at rate v, while latent infections reactivate at a
rate a. Infections are lost if the host dies or recovers from the infection. Current infections can cause new infections that inherit the latency traits (x, y) of the
infecting strain and undergo fast progression to the active state with probability 12y. Otherwise, new infections will be initially latent (slow progression). Here, the
grey colouring indicates a mutant strain with latency trait values (x*, y*).
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An important advantage of latency is that if active TB

cases disappear in a local population, they can reappear

later through reactivation from the reservoir of latent infec-

tions [6]. Latent TB also appears to balance the selective

pressures experienced by the bacteria within the host (i.e. the

immune response) with those experienced between hosts (i.e.

transmission) [2,5,6]. This arrangement is enabled by a com-

plex set of host–pathogen interactions. For example, in the

latent state, M. tuberculosis bacteria persist inside the lungs

within granulomas, which are immunopathologies composed

of immune cells surrounded by peripheral fibrosis [8]. Granu-

lomas act to control infection and are thus beneficial for the

host. However, they also provide a niche for the M. tuberculosis
bacteria to survive, and facilitate transmission upon reactiva-

tion to the disease state. These sources of both positive and

negative feedback may set conditions for latency to become

an evolutionary stable strategy [5].

Yet, if early forms of M. tuberculosis caused only primary

progressive disease rather than latent infection [9], it is still

unclear how a new strain that is able to enter latency could out-

compete active bacteria that immediately cause disease and

thereby enhance their own transmission. That is, while the

modern form of latency may be evolutionarily optimal [5,6],

prototypic bacteria that lack latency properties face a reproduc-

tive disadvantage by starting to evolve latency. There is a need

to explain how they can access optimal latency.

We address this problem by introducing a model of

M. tuberculosis infection that captures epidemiological charac-

teristics of TB and allows these characteristics to evolve over

time. We use the model to show how the relationships among

pathogen characteristics—transmissibility, virulence, recov-

ery and latency—determine the shape of the reproductive

fitness landscape of the pathogen which in turn influences

the evolutionary trajectory towards latency. We thus
illuminate the conditions under which latency can emerge

as an evolutionary stable strategy for M. tuberculosis. Under-

standing these evolutionary trajectories then allows us to

propose a scenario for the history of interaction between

M. tuberculosis and human hosts.
2. Material and methods
The mathematical model, shown schematically in figure 1, allows

us to track the evolution of host–pathogen interactions [6,10–12].

Two classes of M. tuberculosis infections are considered: active

and latent. A variable spectrum of latent infection likely exists

[8]. Infections are thus further described by two characters:

— The degree of latency x of the infecting strain in cases where it

enters a latent state (i.e. its ‘potential degree of latency’). This

variable ranges from zero latency at x ¼ 0 up to complete

latency at x ¼ 1.

— The probability y that the infecting strain enters a latent state

upon infection, which ranges from y ¼ 0, whereby all new

infections progress immediately to disease, up to latency for

all new infections without fail at y ¼ 1.

Thus, at the start of a new infection a strain with a potential degree

of latency x will realize this potential with probability y, but it

will otherwise cause active infection (i.e. primary progressive dis-

ease, which gives the same behaviour as x ¼ 0) with probability

12y. The dynamics of the latent and active infection popula-

tions are described by the density functions L(x, y, t) � 0 and

A(x, y, t) � 0, where t is time and
Ð 1

0

Ð 1
0 Lðx, y, tÞ dx dy andÐ 1

0

Ð 1
0 Aðx, y, tÞ dx dy are the respective numbers of latent

and active infections at time t.
We assume that new infections inherit the latency traits (x, y) of

the infecting M. tuberculosis strain regardless of whether latency

actually occurs. Moreover, bacteria may undergo mutation (or

stable epigenetic change) in these characters which results in
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incremental changes to a strain’s trait of a size D at a rate m. We also

assume that active infections regress into the latent state at a rate v,

while latent infections reactivate to the disease state at a rate a.

Within-host competition is not modelled explicitly since our

understanding of the relationship between latency potential

or the speed of onset of disease and within-host competition is

limited for M. tuberculosis. For instance, while mixed-strain

M. tuberculosis infections have been reported [13], there is limited

understanding of how strains interact within infected hosts and

of their interactions with the host immune system [13,14]. Instead,

we assume that mutants always outcompete resident bacteria and

that hosts cannot be infected with multiple strains.

The mixed effectiveness of the BCG vaccine against TB [15,16]

and studies reporting relapse and reinfection rates in cured patients

[17,18] suggest that immune memory is not completely effective for

M. tuberculosis infection [19,20], although the interpretation of this

evidence in terms of host susceptibility remains unresolved. There-

fore, we make the simplifying assumption that infection does not

offer any immunity or cross-immunity and do not include an

immune class of hosts in our model formulation. Instead, recovered

hosts return to the susceptible subpopulation and their infection

history does not impact their susceptibility.

We denote the actual phenotype of a given infection (i.e. the ‘rea-

lized infection phenotype’) xr ¼ x for latent infections and xr ¼ 0 for

active infections. This variable influences the transmission rate b(xr),

the rate g(xr) at which hosts recover from an infection and the host

death rate u(xr) which includes virulence, defined here as the

additional death rate due to the disease. These pathogen character-

istics are therefore interrelated through a mutual dependence on the

realized infection phenotype xr of a strain.

For most of the analysis, we do not commit to any particular

form of host–pathogen interaction and our analytical results,

summarized below, apply to host–pathogen systems where the

relationship between the transmission rate, virulence and recov-

ery rate can be defined. However, the simulations we present are

specific to M. tuberculosis and for these we specified the trans-

mission rate, virulence and recovery rate functions for two

different periods in the history of TB in human populations:
(i) when M. tuberculosis was an emerging infectious disease

with a short history of association with human hosts and

(ii) when M. tuberculosis became a specialized human pathogen

with a long history of association with human hosts. For both

simulation scenarios, we chose a decreasing b(.) and decreasing

u(.) since we expect that more latent infections will always be

less transmissible and less virulent for M. tuberculosis. This set-

up conforms to the virulence–transmission trade-off hypothesis

[21,22], whereby a positive correlation exists between virulence

and transmission rate [b0(.) � 0, u0(.) � 0]. Our choice of g(.), on

the other hand, varied between the two cases. The M. tuberculosis
precursor that first encountered humans likely resembled oppor-

tunistic environmental mycobacteria [23] which tend to mostly

infect immunocompromised patients [24]. Therefore, for emerging

M. tuberculosis we assume that clearance of the infection was poss-

ible and that latent infections were cleared more easily than active

infections. Hence, for these simulations we chose an increasing and

non-zero host-recovery rate function [g 0(.) � 0, g(.) . 0] and in this

case, xr can be related to the strength of within-host pathogen

growth, with maximal growth occurring when xr ¼ 0. Alterna-

tively, for simulations of M. tuberculosis as a specialized human

pathogen, we specified a decreasing host-recovery rate function

[g0(.) � 0] with very low values of g(xr) for high xr, since we

expect that latent infections will be more protected from the

host’s immune defences, through, for instance, the protective

effects of granuloma formation. In this case, xr measures the

extent of pathogen manipulation of the host immune response,

with maximal manipulation occurring when xr ¼ 1.

We studied the model numerically with two approaches. First,

we used an agent-based model where individual agents in a simu-

lation represent a human host infected by a particular strain of

M. tuberculosis. This type of implementation is able to capture

emergent evolutionary phenomena as well as stochastic effects

such as extinction, and unusual evolutionary trajectories and

events. Second, the model was formulated mathematically as a

system of integrodifferential equations that describe the average

dynamics of the density of hosts in the active and latent classes

of infection, A(x, y, t) and L(x, y, t), with phenotype (x, y) at time t:
@A
@t
¼ Að ð1� yÞbð0ÞSðtÞ

N|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
transmission from

active infection

� gð0Þ|ffl{zffl}
recovery

� uð0Þ|{z}
host

death

� v|{z}
regressionÞ þ Lð ð1� yÞbðxÞSðtÞ

N|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
transmission from

latent infection

þ a|{z}
reactivationÞ þ Dr2A,|fflfflfflffl{zfflfflfflffl}

phenotype
variation

@L
@t
¼ Lð ybðxÞSðtÞ

N|fflfflfflfflfflffl{zfflfflfflfflfflffl}
transmission from

latent infection

� gðxÞ|ffl{zffl}
recovery

� uðxÞ|{z}
host

death

� a|{z}
reactivationÞ þ Að ybð0ÞSðtÞ

N|fflfflfflfflfflffl{zfflfflfflfflfflffl}
transmission from

active infection

þ v|{z}
regressionÞ þ Dr2L:|fflfflffl{zfflfflffl}

phenotype
variation

9>>>>>>>>>>=
>>>>>>>>>>;

ð2:1Þ

2
Here, D ¼ limD!0 D m=4, r2 is the Laplacian operator with respect

to the phenotypic variables (x, y), and SðtÞ=N ¼
ðN �

Ð 1
0

Ð 1
0 (Aðx, y, tÞ þ Lðx, y, tÞ) dx dyÞ=N is the susceptible

fraction of the population at time t. This type of mathematical forma-

lization has been used in the past to study adaptive and evolutionary

processes in population dynamics [25,26], and it has the advantages

of being computationally less expensive than an agent-based model

and providing population-level descriptions of the expected behav-

iour of large populations. The electronic supplementary material

provides details of the agent-based computational algorithm and

shows its relationship to the integrodifferential equation model

(2.1) through an analysis of its continuum limit (electronic sup-

plementary material, appendices A, B and figure S1).
3. Results
To explain how M. tuberculosis might have evolved from its

original state in ancient human populations to its present-
day form as a well-adapted species engaged in complex inter-

actions with its human host, we use the model to predict

which traits are evolutionarily favoured and the conditions

under which such traits are accessible.
(a) Fitness landscape as a heuristic for predicting
pathogen evolution

The evolution of pathogen traits can be viewed as an adaptive

walk on a phenotype fitness landscape which maps the pheno-

type of an organism to its reproductive fitness [27,28]. A

pathogen strain can survive at a point on the landscape if its

absolute fitness is larger than unity and if it avoids stochastic

loss. Pathogens can evolve towards a local maximum on the

landscape (an evolutionary stable state) if the local peak is

accessible through viable states. If the global maximum is

viable and accessible it will act as an attractor for evolutionary



1
1

1 0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1
1

1

1
1

1

0.5

1.0

1.5

2.0

1

1
1

0.2

0.4

0.6

0.8

1.0

1.2

s

s
s

ss

s

0

0.05

0.10

0.15

0.20

0.25

0

0.05

0.10

0.15

0.20

0.25

s

s

s

s

s

s
s

s

s

s

s

s

s

s

s

s

s

0.1

0

0.2

0.3

0.4

0.5

0.6

0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

active x latent

0.2 0.4 0.6 0.8 1.0

active x latent

0.2 0.4 0.6 0.8 1.0

active x latent

active x latent active x latent active x latent

fa
st

 p
ro

gr
es

si
on

sl
ow

 p
ro

gr
es

si
on

y

0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

fa
st

 p
ro

gr
es

si
on

sl
ow

 p
ro

gr
es

si
on

y

0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

fa
st

 p
ro

gr
es

si
on

sl
ow

 p
ro

gr
es

si
on

y

R0(x, y) R0(x, y) R0(x, y)

b(x)
q (x)
g (x)

b(x)
q (x)
g (x)

b(x)
q (x)
g (x)

g−(x)

(e)

( f )(b)

(a) (c)

(d )

Figure 2. The basic reproductive number R0 of a pathogen acts as a heuristic for predicting evolutionary trajectories. R0(x, y) varies according to a strain’s potential
latency x (horizontal axis) and probability y that an infecting strain enters a latent state upon infection (vertical axis). Under our model, either active disease is
favoured and the speed of progression is not under selection (a); an intermediate level of latency is favoured with slow progression (c); or latency is favoured with
slow progression (e). (b,d,f ) Display the functional forms of the transmission rate b(x) (dotted line), mortality rate u(x) (dashed line) and recovery rate g(x) (solid
line) which lead to the respective fitness landscapes shown in (a,c,e). (b) The recovery rate g(x) (grey dashed-dotted line) which, in combination with the b(x) and
u(x) displayed here, leads to the fitness landscapes shown in figure 3a,b. Evolutionary trajectories (the population mean trait values tracked through time) computed
from separate simulations of evolving pathogen populations are shown as coloured lines superimposed over the associated density plot of R0, with the initial
population mean trait values indicated by their respective coloured ‘s’. The black lines indicate the contour R0 ¼ 1. The forms of parameters as functions of potential
latency x and other parameter values are given in the electronic supplementary material, appendix G. (Online version in colour.)
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trajectories (the mean phenotype of a pathogen population

tracked through time).

The fitness of a pathogen can be quantified by its basic

reproductive number R0 which is the expected number

of secondary infections produced by a typical infection
in a completely susceptible population. We used the next gen-

eration method [29] to derive the following expression for R0

when the phenotype-space length scale of the discrete

stochastic model approaches zero, i.e. D! 0þ (details are pro-

vided in the electronic supplementary material, appendix C):
R0ðx, yÞ ¼
ð1� yÞ|fflfflffl{zfflfflffl}

probability a
new infection

is active

bð0Þ

gð0Þ þ uð0Þ þ v
gðxÞ þ uðxÞ

gðxÞ þ uðxÞ þ a

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

expected number of secondary
cases due to an active infection

þ v

gð0Þ þ uð0Þ þ v

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

probability of
regression

� bðxÞ

gðxÞ þ uðxÞ þ a
gð0Þ þ uð0Þ

gð0Þ þ uð0Þ þ v

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

expected number of secondary
cases due to a latent infection

8>>>><
>>>>:

9>>>>=
>>>>;

,

þ
y|{z}

probability a
new infection

is latent

bðxÞ

gðxÞ þ uðxÞ þ a
gð0Þ þ uð0Þ

gð0Þ þ uð0Þ þ v

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

expected number of secondary
cases due to a latent infection

þ a
gðxÞ þ uðxÞ þ a

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

probability of
reactivation

� bð0Þ

gð0Þ þ uð0Þ þ v
gðxÞ þ uðxÞ

gðxÞ þ uðxÞ þ a

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

expected number of secondary
cases due to an active infection

8>>>><
>>>>:

9>>>>=
>>>>;
:

ð3:1Þ
Contributions to R0 can be separated into new active infec-

tions (top line of equation (3.1)) and new latent infections

(bottom line of equation (3.1)).

Figure 2a,c,e illustrates evolutionary trajectories from the

agent-based model on the fitness landscape given by R0

(equation (3.1)), while the corresponding expected evolutionary

trajectories computed from the integrodifferential equation

model are provided in the electronic supplementary material,

figure S2, alongside the expected equilibrium phenotype distri-

butions. The evolutionary trajectories of surviving strains are

clearly attracted to the maximum points of R0. Furthermore,
an invasion analysis (electronic supplementary material,

appendix D) reveals that R0 is an important threshold par-

ameter in our model. These results confirm the use of R0 to

predict pathogen evolution for our model.

(b) Evolutionarily stable strategies for pathogen
persistence

Only three types of global optima of R0 are possible in our

model: either R0 is maximized at x ¼ 0 or (x, y) ¼ (x*, 1)

where 0 , x* , 1 or (x, y) ¼ (1, 1). For this result and other
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results presented in this section, we assume that the rates of

transmission, host mortality, recovery, reactivation and

regression are all positive/non-negative, i.e. b(.) � 0, u(.) � 0,

g(.) . 0, a . 0, v . 0 (see the electronic supplementary

material, appendix E, for details of this and other results in

this section). In other words, the three types of evolutionary

optimum are (i) active disease with no selection on the prob-

ability of new infections entering latency, (ii) an intermediate

degree of latency with all new infections entering latency, and

(iii) full latency with all new infections entering latency.

Figure 2 displays an example of each of the three types of fitness

landscapes possible alongside the transmission, virulence and

recovery rate functions that result in the pictured landscapes.

Rugged fitness surfaces with multiple global maxima

are also possible if the transmission, virulence and recovery

functions are non-monotonic, or if active disease is favoured

(x ¼ 0) and other rather stringent criteria on the transmission,

virulence and recovery functions are met. Given that these

conditions are unlikely to occur, especially simultaneously,

we only consider cases that produce a fitness surface with a

single global maximum.

A necessary (but not sufficient) condition for latency to

emerge as the optimal persistence strategy is

bð1Þ
gð1Þ þ uð1Þ .

bð0Þ
gð0Þ þ uð0Þ : ð3:2Þ

The conditions that support a favoured intermediate latency

of degree x ¼ x* with new infections mostly entering latency

include constraints on the concavity and rate of change of the

transmission and infection loss functions at x ¼ x* which

requires these functions to be twice differentiable at this

point. A necessary (but not sufficient) condition for this to

occur is that

bðx�Þ
gðx�Þ þ uðx�Þ .

bð0Þ
gð0Þ þ uð0Þ : ð3:3Þ

If the transmission rate is a decreasing function of latency,

i.e. b0(.) , 0, then the above-listed necessary condition for

latency, condition (3.2), can only be satisfied when

gð1Þ þ uð1Þ , gð0Þ þ uð0Þ, ð3:4Þ

while the necessary condition for partial latency of degree

x¼x*, condition (3.3), requires

gðx�Þ þ uðx�Þ , gð0Þ þ uð0Þ and u0ðx�Þ , �g0ðx�Þ: ð3:5Þ

Therefore, latency or partial latency can only emerge as the

optimal persistence strategy in our model if latency offers a

survival advantage over activity.

Inequalities (3.4) and (3.5) are always satisfied when both

the recovery rate and virulence decrease with increasing

latency which holds for modern-day M. tuberculosis. The

assumption that host recovery rate decreases as a pathogen

adopts more latent properties is less reasonable for a very

early form of M. tuberculosis before it established a history

of interaction with humans.

Finally, persistence (or sustained transmission) of the evo-

lutionarily favoured strain is only possible if its R0 is greater

than unity. This requires b(1) . g(1) þ u(1) if latency is

favoured, b(x*) . g(x*) þ u(x*) if partial latency of degree

x ¼ x* is favoured, while persistent activity requires b(0) .

g(0) þ u(0). Thus, persistent latency in our model requires

that the loss of transmission potential due to latency be
outweighed by the gain in infection lifetime from reducing

the recovery and host death rates.

(c) Evolutionary accessibility of the latent phenotype
The accessibility of latent regions of the fitness landscape is

found by exploring the behaviour of the landscape’s gradient

vector rR0 ¼ ð@xR0, @yR0Þ. It is straightforward to show that

the gradient of R0 in the x-direction @xR0 is always steepest

when y ¼ 1 since

@xR0ðx, yÞ ¼ @xR0ðx, 1Þ vþ y½gð0Þ þ uð0Þ�
vþ gð0Þ þ uð0Þ

� �
: ð3:6Þ

In other words, the fitness loss or gain from adopting latent

properties is always greatest for pathogen strains that enter

a latent state upon infection (y ¼ 1). In an evolutionary

sense, this result means that strains that are heavily invested

in latency have the most to gain and lose from changes to the

fitness value of latency traits. Thus, active strains (x ¼ 0)

initially faced with incurring a fitness cost for acquiring a

more latent phenotype pay the minimal cost if they always

enter an active state upon infection (y ¼ 0). This cost is

further curtailed for those strains with a small probability

of regression (v) compared with host death or recovery

[u(0) þ g(0)], which are the least invested in latency.

These results are illustrated in figure 3 and in the elec-

tronic supplementary material, movie S1, where we

simulate the evolution of a population of active infections

previously adapted to the fitness landscape shown in

figure 2a following changes to host–pathogen interactions

(more details of landscape choice are provided in the elec-

tronic supplementary material, appendix F and figure S3).

Two sets of changes to host–pathogen interactions are con-

sidered; in both cases, strains with an intermediate degree

of latency that mostly enter a latent state upon infection are

newly favoured and the population of active strains has to

pay a fitness cost to access the newly optimal trait values.

Our simulations demonstrate that active strains of infection

are able to overcome the fitness cost of adopting latency prop-

erties and achieve the optimal persistence strategy when the

probability of regression as opposed to host death or recovery

is sufficiently small (compare the trajectories, starting at ‘s’, in

figure 3a,b which show the evolutionary trajectories of the

population mean trait values). When this occurs, the evolution-

ary trajectory of the population follows a neutral corridor

(a flat region) along the fitness landscape where the probability

y of causing latent infections remains low and where strains

are effectively hidden from the negative selective effects that

adopting latent properties carries. Once the population tra-

verses far enough along the neutral corridor, investment in

latency (y! 1) begins to be rewarded, and the final (equili-

brium) realized infection phenotype distribution (figure 3c;

see the electronic supplementary material, movie S1) reveals

the emergence of latency.

(d) Dynamic fitness landscape
So far we have set the functional relationships among the infec-

tion parameters. However, if these relationships themselves

evolve due to niche construction effects [30], whereby a patho-

gen alters its environment and therefore the selective pressures

it experiences within the host, then the landscape can evolve

along with the pathogen. Depending on the relative time-

scale of these niche construction effects compared with the
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Figure 3. Active pathogens can cryptically accumulate costly latency properties. (a) A deep fitness valley separates active strains from the latent region of the fitness
landscape when the regression rate v ¼ 0.3. (b) The fitness valley is less deep when the regression rate is reduced to v ¼ 0.05, particularly for those strains
where all cases progress quickly to disease ( y ¼ 0). This allows active strains to traverse the fitness landscape. (a,b) The population mean phenotype of the
respective infection populations are shown here as the trajectories starting at ‘s’, and the contours indicate R0 ¼ 1. The transmission rate b(x), virulence u(x)
and recovery rate g(x) which lead to the fitness landscapes shown in (a,b) are displayed as the dotted, dashed and dashed-dotted lines in figure 2b. (c) A density
plot of the equilibrium realized infection phenotype distribution for the case when v ¼ 0.05 and latency evolves (i.e. L(x, y)þ 1x¼0

P
x A(x, y) at t ¼ 5000).

The forms of parameters as functions of potential latency x and other parameter values are given in the electronic supplementary material, appendix G and table S1.
(Online version in colour.)
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timescale of phenotypic change for the pathogen (m), it may be

possible for organisms to avoid fitness valleys altogether by

accompanying fitness peaks as they move around the land-

scape. We provide an example of a dynamic fitness

landscape model in the electronic supplementary material,

appendix F and figure S3. In this case, small alterations in the

host recovery rate function g(.) progressively change the fitness

landscape until a single peak at active infection transforms into

two peaks: one at latency and the other at active infection with

a fitness valley in between.
4. Discussion
(a) The evolutionary emergence of latency
Our analysis shows how latency can appear as a peak on the

fitness landscape of pathogen evolution. Latency is an optimal

evolutionary strategy for pathogens when the gain from redu-

cing the recovery rate outweighs the disadvantage of losing

transmission opportunities. If latency does not reduce recovery

sufficiently, then an alternative fitness peak occurs at pheno-

types conferring active infections. A long association between

pathogens and their hosts would promote conditions for

latency leading to persistence (low recovery rates) within

hosts, thereby allowing a fitness peak at high degrees of

latency. These findings agree with previous analyses of TB

latency [5,6]. It also accords with the notion that latency is a

bet-hedging strategy that enables a latent pool of infections to

act as a safe harbour for future active infections [31].

The topography of the fitness landscape raises the problem

of how an early form of a pathogen that causes active disease

can begin to evolve latency properties that are initially disad-

vantageous. In other words, how can active pathogens cross

a fitness valley to reach a higher peak at latency? In our

model a shallow passage appears in the fitness valley under

some conditions. Namely, if the probability of a new infection

entering latency is low and if the rate of regression to latency is

relatively low, then most infections enter and stay in the active

form. Under these conditions, latency properties are occasion-

ally expressed but not enough to heavily disadvantage the

pathogen. This creates a neutral corridor along which patho-

gens can randomly drift in their latency properties until
latency is refined enough to become advantageous. Selection

can then drive the probability of entering latency to high levels.

Because latency properties are hidden from selection

while pathogens drift along the neutral corridor, these

dynamics are similar to the evolution of cryptic genetic vari-

ation [32] under which genetic variation accumulates in a

population by being selectively neutral. If conditions

change, for example, through a change in the environment

or additional mutations, this variation is ‘revealed’ and

becomes a significant substrate on which natural selection

can act [32,33]. Stochasticity is an important feature of these

dynamics, because it allows the hidden latency property to

sometimes wander across the landscape to a region where

it can be selected.

(b) A scenario for the early evolution of Mycobacterium
tuberculosis

Mycobacterium tuberculosis is proposed to have evolved from an

ancestral mycobacterial population similar to the smooth tuber-

cle bacilli M. canettii [34] by gaining persistence and virulence

mechanisms [9,35]. Presumably then, prototypic M. tuberculosis
was similar to present-day opportunistic mycobacteria, which

have poor human-to-human transmission and invade immuno-

compromised individuals but are otherwise controlled by host

immunity [24,36]. Accordingly, we propose the following

scenario for the early evolution of M. tuberculosis.
The prototypic forms of M. tuberculosis first encountered

by humans did not possess the ability to manipulate its

host’s immune response, and likewise host immune respon-

ses were unlikely to have been appropriately regulated to

limit inflammation, particularly at the level that is obser-

ved in modern-day TB infections. However, as prototypic

M. tuberculosis established itself in the human population it

acquired the ability to transmit between hosts and replicate

within hosts sufficiently well to continue chains of trans-

mission. With these characteristics, our model predicts a

fitness landscape for prototypic M. tuberculosis similar to that

shown in figure 2a. In this setting, host–pathogen interactions

favour pathogen strains with low levels of latency, and there is

little selective pressure on whether new transmissions are

active or latent since the latency trait of an adapted pathogen
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would be very close to its active state. In addition, early forms

of TB may have evolved as low a level of virulence as is compa-

tible with the interdependence of parameters [35], as well as the

small average susceptible host population size typical of early

hunter–gatherer populations [2,5].

As the association between host and pathogen continued,

M. tuberculosis increased its ability to avoid the immune

response (perhaps due to niche construction effects) and

natural selection enriched for host populations that down-

regulate inflammation [37]. It is therefore conceivable that

one of the first significant shifts in the fitness landscape

was due to recovery slowing down in latently infected

hosts. Such a change in the relationship between latency

and recovery (while keeping the same relationships among

latency, transmission and mortality) would have altered the

fitness landscape to one similar to that shown in figure 3b.

Under these new conditions, latency is the new optimal strat-

egy for M. tuberculosis. Yet, as outlined above, latency might

also have been initially disadvantageous. In this case, the

valley in the fitness landscape might have been crossed

through the cryptic accumulation of latency properties such

as the interference with phagosome–lysosome fusion in M.
tuberculosis-infected macrophages [38], the inhibition of pha-

gosomal maturation and acidification [39], and/or the

suppression of macrophage apoptosis [40].

(c) Limitations and future work
Our modelling framework focuses on the evolution of a patho-

gen with constant host immune response and thus constant

fitness landscapes. While this is generally reasonable for
modelling the evolution of pathogens with much shorter gen-

eration times than their hosts, M. tuberculosis and humans have

had a long history of association and coevolution is likely to

have occurred [2,3]. We have considered alternative possible

landscapes for different periods in the history of human TB

but a more general approach would be to explicitly model fit-

ness as a dynamic landscape. Specifically, we have not

considered any structure in the host population. If an extended

model were to include variation in host susceptibility for

instance, the latency properties could be a function of not just

the pathogen but also the host. In such a model, it would be

possible to study more explicitly the role of bet-hedging in

latency evolution, because the environment would be less pre-

dictable from the point of view of the pathogen [31].

Finally, our model considers the evolution of a pathogen

where only single-strain infections are possible. Of interest is

to consider whether the evolutionary trajectories predicted

under our model change significantly when hosts are allowed

to be reinfected and/or sustain multiple infections at once.
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