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Abstract Mitochondrial Ca?* uptake, a process crucial for bioenergetics and Ca2* signaling, is
catalyzed by the mitochondrial calcium uniporter. The uniporter is a multi-subunit Ca?*-activated
Ca?* channel, with the Ca®* pore formed by the MCU protein and Ca®*-dependent activation
mediated by MICU subunits. Recently, a mitochondrial inner membrane protein EMRE was
identified as a uniporter subunit absolutely required for Ca?* permeation. However, the molecular
mechanism and regulatory purpose of EMRE remain largely unexplored. Here, we determine the
transmembrane orientation of EMRE, and show that its known MCU-activating function is mediated
by the interaction of transmembrane helices from both proteins. We also reveal a second function
of EMRE: to maintain tight MICU regulation of the MCU pore, a role that requires EMRE to bind
MICU1 using its conserved C-terminal polyaspartate tail. This dual functionality of EMRE ensures
that all transport-competent uniporters are tightly regulated, responding appropriately to a
dynamic intracellular Ca®* landscape.

DOI: 10.7554/eLife.15545.001

Introduction
Ca?* regulation of key mitochondrial processes such as ATP production and initiation of apoptosis is
controlled by precise balance of Ca?" influx and efflux across the mitochondrial inner membrane
(Gunter et al., 2000; Rizzuto et al., 2012). Studies in the 1960s and '70s established that mitochon-
dria from most eukaryotes, except for certain yeast species, can take up large quantities of Ca®*
from the cytosol into the matrix through a mechanism that is membrane potential dependent and
strongly inhibited by ruthenium compounds such as Ru360 (Carafoli and Lehninger, 1971,
Deluca and Engstrom, 1961; Ying et al., 1991). A few years ago, the field witnessed a ground-
breaking achievement — identification of the MCU gene (Baughman et al., 2011; De Stefani et al.,
2011). The 35-kDa MCU protein oliogomerizes with unknown stoichiometry to form a Ca®*-selective
pore (Baughman et al., 2011). MCU possesses two transmembrane helices (TMHs) connected by a
short loop that hosts a signature sequence (DIME) thought to contribute to a Ca®*-selective perme-
ation site. The N- and C-terminal regions of MCU are exposed to the mitochondrial matrix, each
with a coiled-coil sequence of unknown function.

It was subsequently found that MCU forms a complex with the mitochondrial Ca®* uptake protein
1 (MICU1), which has co-evolved with MCU since early eukaryotic evolution (Baughman et al., 2011;
Bick et al., 2012). In humans, MICU1 has two additional homologues, MICU2 and the neuron-spe-
cific MICU3 (Plovanich et al., 2013). The MICUs serve as the Ca2+-sensing gate that confers Ca?*-
dependence to opening of the Ca®*-selective pore (Csordas et al., 2013; Mallilankaraman et al.,
2012). In resting cellular conditions, where cytoplasmic Ca®* is low, MICUs shut the pore to prevent
excessive Ca?" influx into the matrix, a dangerous process that could diminish inner membrane
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elLife digest Like all power plants, mitochondria — the compartments inside our cells that supply
energy — must adjust their energy output to match fluctuations in demand. Inside cells, the levels of
calcium ions in the cytoplasm often signal such demands. Mitochondria therefore control their
calcium ion levels with tightly regulated, membrane-embedded proteins that move calcium ions into
and out of the mitochondria. One of these membrane machines, the mitochondrial calcium uniporter
(MCU) complex, is a "smart channel" that admits calcium ions into the mitochondria only when their
cytoplasmic levels exceed a threshold.

The MCU complex contains four essential proteins: MCU, which forms the pore through which
the calcium ions enter the mitochondrion; MICU1 and MICU2, which act as “gatekeepers”, opening
the pore only when the cell contains high levels of calcium ions; and EMRE, a small, mysterious
protein. Why is EMRE required for the channel’s operation, and how does it fit into the four-protein
complex?

By comparing EMRE proteins from different species, constructing mutant forms of EMRE, and
recording calcium ion transport in mitochondria from cultured human cells, Tsai, Phillips et al. show
that EMRE has two key roles. First, it snuggles up against the MCU protein and forms an essential
part of the calcium ion-selective pore. Second, it acts as molecular glue to fix the calcium ion-
sensing MICU gatekeepers to the pore. These two linked functions ensure that the MCU complex
switches on only when the cell contains high levels of calcium ions, preventing the cell becoming
catastrophically overloaded with calcium ions and cell death.

Challenges for the future are to purify the MCU complex and reconstitute its ability to transport
calcium ions from its component parts. This will help to determine the structure of the channel.

DOI: 10.7554/¢elife.15545.002

potential and trigger apoptotic cell death. Transient elevation of Ca?* to the low pM range,
detected by EF-hands in MICUs, releases this inhibition to open the channel (Csordas et al., 2013,
Kamer and Mootha, 2014). To avoid confusion on nomenclature, we henceforth refer to the Ru-360
sensitive mitochondrial Ca%* channel complex as the ‘uniporter complex,” a molecular assembly of
the pore-forming MCU protein along with associated regulatory subunits.

Recently, using quantitative mass spectroscopy, Mootha and colleagues discovered yet another
component of the uniporter complex: the essential MCU regulator (EMRE), a small (~10 kDa) inner
membrane protein found only in metazoa (Sancak et al., 2013). EMRE possesses a single TMH and
a highly conserved C-terminal polyaspartate tail, typically composed of one glutamate followed by
5-7 aspartates. In humans, MCU-EMRE interaction is absolutely required for Ca?* permeation via
MCU (Kovacs-Bogdan et al., 2014; Sancak et al., 2013). However, an MCU homologue in D. discoi-
deum, a species belonging to the EMRE-lacking Amoebazoa group in protists, is fully capable of
conducting Ca®* (Kovacs-Bogdan et al., 2014). The question naturally arises: what might be the
physiological importance for MCU to become strictly dependent on EMRE for function in humans?
What would be the consequence if human MCU could transport Ca®* without EMRE?

We address these questions by mounting an extensive investigation of EMRE. We first sought to
determine the protein’s transmembrane topology, a problem that cannot be definitively resolved by
standard protease digestion assays (Baughman et al., 2011; Vais et al., 2016) due to the small size
of the protein’s extra-membrane regions. Two alternative strategies — directed mass-tagging and
MCU-EMRE fusion construction - establish that EMRE exposes its N-terminal region to the matrix
and C-terminus to the intermembrane space (IMS). Mutagenesis screening and domain-interaction
analysis further demonstrate that EMRE supports Ca?* transport by using its TMH to bind to MCU
through its first TMH (TMH?1). Moreover, EMRE also interacts with MICU1 via its C-terminal polyas-
partate tail, a molecular contact that turns out to be crucial to retain MICUs in the uniporter complex
to gate the MCU pore. These results lead to a molecular model wherein the dual ‘"MCU-activating’
and 'MICU-retaining’ functionalities of EMRE together play a crucial role in orchestrating uniporter
responses to intracellular Ca®* signaling.
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Figure 1. Functional analysis of uniporter in various species. (A) A representative fluorescence-based Ca®* flux experiment. (B) Characterization of ME-
KO HEK 293 cells. Left: western analysis comparing EMRE, MCU, and actin expression in WT or ME-KO cells. Right: Loss of MCU-mediated Ca®* uptake
in ME-KO cells, and rescue by delivering both MCU and EMRE genes. (C) Activity of uniporters in species indicated. Ca?* flux experiments were
performed using ME-KO cells expressing MCU alone or MCU and EMRE from the same species.

DOI: 10.7554/eLife.15545.003

Results

Functional dependence of MCU on EMRE in various species

To study uniporter subunits without interference from native mitochondrial proteins, we employed
CRISPR/Cas? to produce MCU-knockout (KO), EMRE-KO, or MCU/EMRE double KO (ME-KO) HEK
293 cell lines. A standard Ca®* flux assay was used to evaluate uniporter activity. In a typical experi-
ment, HEK cells were permeabilized with digitonin in the presence of a Ca®*-sensing fluorophore
(CG-5N) and then treated with 10 uM extracellular Ca®* (Figure 1A). In WT cells, Ca’t is rapidly
sequestered by mitochondria, and Ru360, a potent MCU inhibitor, arrests the uptake immediately
(Figure 1A). (Henceforth for clearer data presentation, only the response of permeabilized cells to
Ca%* will be presented, as in the red box in Figure 1A, with arrowheads indicating Ru360 addition.)
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Figure 2. Transmembrane orientation of MCU and EMRE. (A) Western blot analysis of WT-MCU response to PEGM, in the absence or presence of

DDM detergent, with molecular wei

ght marker positions indicated on left. (B) PEGM treatment of WT, 149C, or 197C EMRE. EMRE's molecular weight is

~10 kDa. (C) Cartoon illustrating the proposed membrane orientation of MCU and EMRE. The N-terminus of EMRE is fused to the C-terminus of MCU
(dashed line). Blue circles: native cysteines. Green boxes: soluble region. (D) WT-MCU or MCU-EMRE fusion protein (Fus) probed with anti-MCU (left) or
anti-EMRE (right) antibodies. (E) MCU-EMRE fusion treated with PEGM. In the presence of DDM, PEGM treatment produces 4 bands, representing
fusion proteins with various numbers of cysteines modified. (F) Mitochondrial Ca?* uptake in ME-KO cells with (red) or without (black) expression of the
MCU-EMRE fusion protein. See also Figure 2—figure supplement 1.

DOI: 10.7554/eLife.15545.004

The following figure supplement is available for figure 2:

Figure supplement 1. Uniporter function supported by indicated EMRE mutants.

DOI: 10.7554/eLife.15545.005

Consistent with previous reports (Baughman et al., 2011, De Stefani et al., 2011; Sancak et al.,
2013), EMRE-, MCU-, or ME-KO mitochondria are completely devoid of uniporter activity, a defi-
ciency rescued by supplying the deleted genes (Figure 1B).

Genome sequences imply that MCU and MICU proteins are ancient in eukaryotic evolution, while
EMRE sequences appear only among metazoa. Indeed, MCU homologues from an amoeba, D. dis-
coideum, and a green plant, A. thaliana, both of which lack EMRE, can alone mediate rapid, Ru360-
sensitive mitochondrial Ca®* uptake in ME-KO cells (Figure 1C). In contrast, metazoan MCU homo-
logues from C. elegans and D. melanogaster require EMRE to transport Ca%* (Figure 1C), as in
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humans. This striking difference raises questions regarding the biological purpose of EMRE in ani-
mals and offers opportunities for attacking questions of molecular mechanism.

Transmembrane orientation of EMRE

To approach the physiological importance of EMRE's regulatory function, we first ask how it assem-
bles with other uniporter subunits into a channel complex. The orientation of EMRE in the inner
membrane was determined by a cysteine-modification, mass-tagging method. In a typical experi-
ment, mitoplasts (outside-out submitochondrial vesicles lacking the outer membrane) prepared from
HEK 293 cells are incubated with a 5-kDa, membrane impermeant thiol-reactive reagent, polyethyl-
ene glycol maleimide (PEGM). If the protein of interest has a cysteine exposed to the external solu-
tion, PEGM would react with this cysteine and thus increase the protein’s molecular weight.

We first validated the assay on the known orientation of MCU (Kamer and Mootha, 2015;
Murgia and Rizzuto, 2015). Human MCU possesses five cysteines, all in the N-terminal domain. If
this region faces outward towards the IMS, PEGM would increase MCU'’s mass by 5 kDa per residue
modified. Experiments (Figure 2A), however, show that MCU mobility on SDS-PAGE is not altered
by PEGM treatment unless the mitoplast membrane is first disrupted by the mild detergent dodecyl
maltoside (DDM). The results thus confirm MCU's N;,-C;, orientation, with both the N- and C-termini
residing in the matrix.

To determine EMRE topology, we constructed mutants with unique cysteines (149C or 197C) engi-
neered on either side of the TMH of the naturally cysteineless EMRE. Like WT, these mutants sup-
port MCU-dependent Ca®* flux in EMRE-KO cells (Figure 2—figure supplement 1). In intact
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Figure 3. MCU-interacting residues in EMRE. (A) EMRE constructs with indicated regions substituted by either the C8 epitope or the WALP helix. MTS:
mitochondrial targeting sequence. Green boxes: soluble regions. Pink ovals: polyaspartate tail. (B) The presence of these mutants in whole cell lysate
(W) or isolated mitochondria (M). AC-EMRE is not detectable by the EMRE antibody because the C-terminal truncation removes the epitope. (C)
Mitochondrial Ca?* uptake in EMRE-KO cells expressing WALP-, AN-, or AC-EMRE. (D) Diagram summarizing Trp scan of the EMRE TM helix. Red
shows positions where Trp substitution reduces the rate of Ca?* uptake by >50%. (E) Sequence alignment of EMRE TM helix. Yellow indicates residues
intolerant to Trp substitutions in human EMRE. (F) Co-IP experiments using 1D4-tagged MCU immobilized in 1D4 affinity columns to pull down
indicated EMRE mutants. IP: elution, analyzed using indicated antibody. CL: whole cell lysate input. Upper panel: proteins being expressed in ME-KO
cells. Leftmost lane: MCU-free control to rule out non-specific binding of EMRE in the 1D4 column. See also Figure 3—figure supplement 1.

DOI: 10.7554/elife.15545.006

The following figure supplement is available for figure 3:

Figure supplement 1. Functional impact of mutations in EMRE’s TM helix.

DOI: 10.7554/eLife.15545.007
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mitoplasts free of native EMRE protein, PEGM readily labels 197C-EMRE but fails to react with 149C
or the cysteineless WT protein, while after detergent pretreatment both mutants are labeled
(Figure 2B). EMRE thus adopts a N;,-C,,; orientation, with its C-terminal tail facing the IMS.

Figure 2C summarizes the inner-membrane topology of MCU and EMRE inferred here. This was
further verified by fusing EMRE onto the C-terminus of MCU, thus forcing the orientation of the two
proteins in tandem to conform to the above molecular picture (Figure 2C). The fusion construct was
tested in ME-KO cells, where it was expressed as a full-length protein detectable by both MCU and
EMRE antibodies (Figure 2D). As with WT MCU, PEGM fails to modify any of the five native cys-
teines in the N-terminus without detergent pretreatment (Figure 2E), thus implying that the fusion
protein is inserted homogeneously into the inner membrane in a proper N;,-C.,: orientation. More-
over, the MCU-EMRE fusion protein mediates robust, Ru360-sensitive mitochondrial Ca%* uptake
(Figure 2F), a powerful result corroborating the transmembrane orientation cartooned in Figure 2C.

Mapping the EMRE transmembrane helix

We next investigate how EMRE interacts with MCU to support Ca®* permeation. This issue is
addressed using three EMRE variants (Figure 3A), with N- or C-termini largely deleted by replacing
it with a foreign ‘C8' epitope (PRGPDRPEGIEE) (Abacioglu et al., 1994) into either region, or with
the TMH substituted by an artificial transmembrane 'WALP' helix (GWWLALALALALALALWWA)
(Killian et al., 1996). These mutants, named AN-, AC-, or WALP-EMRE, are all properly targeted to
EMRE-KO mitochondria (Figure 3B). Both AN- and AC-EMRE fully support uniporter function, but
cells expressing WALP-EMRE exhibit no uniporter activity (Figure 3C). The results are surprising, as
the strict conservation of EMRE’s C-terminal polyaspartate tail implies that it should carry out some
sort of crucial function.

To locate EMRE residues critical for MCU-mediated Ca®* transport, we performed tryptophan
scanning mutagenesis to cover the entire transmembrane region (S64 to A92). This classical strategy
posits that the large tryptophan side chain introduced at a protein interface is more likely to disrupt
helical packing and hence function than when projecting towards lipid (Hong and Miller, 2000;
Sharp et al., 1995). The results (Figure 3D, Figure 3—figure supplement 1) highlight a rather clean
segregation of Trp-sensitive vs insensitive positions on a helical-wheel diagram. In particular, Trp
substitution at G81 or $85 completely eliminates Ca* uptake via the uniporter complex. These two
residues belong to a conserved Gxxx[G/A/S] motif (Figure 3E), frequently found to mediate packing
of TMHs in membrane protein structures (Russ and Engelman, 2000).

Co-immunoprecipitation (co-IP) experiments further confirm the GxxxS sequence as crucial to
MCU-EMRE complex formation. EMRE variants were co-expressed with MCU carrying a C-terminal
"1D4' epitope (TETSQVAPA) (MacKenzie et al., 1984) in ME-KO cells, and the MCU-EMRE complex
was immobilized on a 1D4 affinity column for downstream analysis. WT EMRE is captured by MCU,
but disruption of the GxxxS region by the G81W or S85W mutation prevents this association, while
Trp substitution of residues elsewhere on the TMH does not (Figure 3F). These results taken
together show that EMRE binds to MCU using a Gxxx[G/A/S] motif in the C-terminal half of its TMH,
and that this binding is necessary to activate the Ca?*-conducting pore in the uniporter complex.

MCU recognition of EMRE

To examine the MCU side of the interaction with EMRE, we launched Trp-perturbation mutagenesis
of both TMHs (residues L234 — T254 in TMH1; Y268 — V283 in TMH2). All mutants were expressed to
near WT levels in MCU-KO cells (Figure 4—figure supplement 1), and were classified as either low-
or high-impact on Ca?" transport function (Figure 4A, Figure 4—figure supplement 1). Of the 16
Trp mutations in TMH2, only two (F269W, T271W, located near the N-terminal end of the helix)
induce severe functional defects, as if most TMH2 residues project either to the lipid bilayer or an
aqueous cavity. In contrast, the six Trp-sensitive positions in TMH1 tend toward one side of a helical
wheel diagram, suggesting that this high-impact face might pack against other TMHs in the MCU-
EMRE complex.

If a Trp mutation in MCU perturbs the function of human uniporter solely by interrupting EMRE
binding, it should cause negligible functional impact when introduced at corresponding positions in
D. discoideum MCU, because this homologue transports Ca®* without EMRE (Figure 1C). We there-
fore introduced each of the eight high-impact Trp substitutions (Figure 4A) into D. discoideum MCU
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Figure 4. Interactions between EMRE and MCU’s TMH1. (A) Helical projection diagram summarizing functional impact of Trp substitutions in TMHs of
MCU. Trp mutation that reduces Ca®" uptake by >70% is defined as high impact (red), and <30% as low impact (black). Red arc highlights proposed
helical surface sensitive to Trp substitutions. (B) Residue swap showing an impaired MCU mutant (A241F) forming a highly functional uniporter complex
with an EMRE mutant (F77A). Left: Ca®* uptake in ME-KO cells expressing indicated MCU and EMRE mutants. Right: Ca* uptake (upper) and
expression of key uniporter proteins (lower) in cells transfected with A241F-MCU and WT- or F77A-EMRE. (C) Co-IP experiments comparing complex
formation of A241F-MCU with WT- or F77A-EMRE. (D) Ca®* flux in a hMCU-ceMCU chimera (human portion: yellow, C. elegans portion: blue),
coexpressed with either hREMRE or ceEMRE in ME-KO cells. See also Figure 4—figure supplements 1-3.

DOI: 10.7554/eLife.15545.008

The following figure supplements are available for figure 4:

Figure supplement 1. Functional impact of mutations in MCU’s TM helices.

DOI: 10.7554/eLife.15545.009

Figure supplement 2. Trp mutations in D. discoideum MCU.

DOI: 10.7554/eLife.15545.010

Figure supplement 3. Uniporter formation by F77A EMRE and MCU mutants.

DOI: 10.7554/eLife.15545.011

to test the mutational effect in ME-KO cells. The results (Figure 4—figure supplement 2) show that
six of these mutations are functionally disruptive while two are fully active; these two active mutants
correspond to L240W and A241W in TMH1 of human MCU, suggesting that these residues in human
MCU contact EMRE.

A steric clash between a substituted Trp in MCU and a native residue in EMRE could in principle
be alleviated by reducing the side-chain volume of that particular EMRE residue. We chose F77 in
EMRE to test this idea, as it is on the same helical face as the GxxxS sequence identified above, and
since the large Phe residue enables substantial shortening of the side chain. Accordingly, F77A
EMRE was coexpressed with each of the 6 functionally defective MCU Trp mutants of TMH1. This
EMRE mutant, which forms a functional channel with WT MCU, rescues Ca®* transport with A241W
but not with any of the other mutants (Figure 4—figure supplement 3). Similarly, the impaired uni-
porter function induced by A241F in MCU is rescued by F77A in EMRE. Co-IP experiments further
show that A241F (or A241W) MCU pulls down F77A but not WT EMRE (Figure 4C, Figure 4—figure
supplement 3). These results demonstrate that the combination of a large and a small side chain (F

Tsai et al. eLife 2016;5:e15545. DOI: 10.7554/eLife.15545 7 of 17
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or W, A) on EMRE position 77 and MCU position 241 leads to proper transport function regardless
of which protein the residues occupy. This 'side chain swap’ experiment argues strongly that A241 in
MCU’s TMH1 is in close proximity to F77 in the TMH of EMRE in the uniporter complex.

While analyzing MCU/EMRE from various species (Figure 1C), we noticed that human MCU
(hMCU) forms functional Ca®" channels with human EMRE (hEMRE) or with C. elegans EMRE
(ceEMRE), but C. elegans MCU (ceMCU) supports mitochondrial Ca%* uptake only with ceEMRE
(Figure 4D). These results present an opportunity to test which of ceMCU’s two TMHs is responsible
for discriminating against hEMRE. Accordingly, we produced two MCU chimeras, with TMH1 or
TMH2 of ceMCU substituted by the corresponding region in hMCU. The chimera containing hMCU
TMH1, though well expressed, is transport-inactive in the presence of either hEMRE or ceEMRE. The
chimera containing hMCU TMH2, however, is activated by ceEMRE, while remaining unresponsive to
hEMRE (Figure 4D). This result independently supports the proposal that TMH1 of MCU contains
the interaction region for EMRE.

Localization and inner membrane association of MICUs
With the membrane disposition of the MCU-EMRE complex in hand, we now ask how EMRE inter-
acts with MICU proteins (Sancak et al., 2013), which contain no apparent transmembrane
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Figure 5. Localization of MICUs and interaction with the pore region. (A-B) Carbonate extraction (pH 10.5 or 11.5) of MICU1 at 4°C (A) or MICU2 at
room temperature (B) for 1 h, showing membrane pellet (M), proteins extracted into supernatant (S), and control (con) with mitoplasts treated at pH 7.0.
(C- D) PEGM modification of MICU1 or MICU2. Both MICUs are detected at monomer (~64 kDa) or dimer (~115 kDa) positions. (E) Co-IP experiments
using immobilized Flag-tagged MICU1 to pull down MCU or EMRE. For all experiments shown in this figure, MICU1 and MICU2 were Flag- and V5-
tagged, respectively, and were detected using corresponding Flag and V5 antibodies. See also Figure 5—figure supplement 1.

DOI: 10.7554/elife.15545.012

The following figure supplement is available for figure 5:

Figure supplement 1. MICU2 interaction with other subunits in the uniporter complex.
DOI: 10.7554/elLife.15545.013
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sequences. To tackle this problem, we began by testing whether MICUs bind to EMRE from the
matrix- or IMS-side of the inner membrane. Currently, the submitochondrial localization of MICU1 is
unsettled (Csordas et al., 2013; Foskett and Madesh, 2014; Hoffman et al., 2013; Hung et al.,
2014; Waldeck-Weiermair et al., 2015), and that of MICU2 has not been approached with rigorous
methods (Vais et al., 2016). Moreover, although MICU1 is known to be a peripheral membrane pro-
tein (Csordas et al., 2013), it remains unclear if MICU2 is similarly attached to the inner membrane.

Inner membrane association of MICUs was probed by stripping mitoplasts of peripheral mem-
brane proteins using alkaline Na,COj3 treatments. Figure 5A shows that MICU1 and cytochrome C
(Cyt-C), but not the integral membrane protein Letm1, are extracted into Na,COj solution, a result
consistent with a previous report (Csordas et al., 2013) that MICU1 is a peripheral membrane pro-
tein. Furthermore, nearly all MICU1 is membrane-bound, virtually none appearing in the IMS without
Na,CO3 treatment, in contrast to Cyt-C, which is found in both the IMS and the membrane
(Figure 5A). Similar experiments demonstrate that MICU2 remains membrane-associated even after
harsher Na,COj3 extraction conditions (Figure 5B). The results thus establish that MICU1 and MICU2
are both confined to the inner-membrane surface under physiological conditions.

To test if MICU1 is exposed to the mitochondrial matrix or the IMS, we incubated mitoplasts with
PEGM, relying on MICU1's native cysteines to report accessibility to the reagent from the mitoplast
exterior. PEGM readily reacts with MICU1 (Figure 5C), showing that this subunit resides on the
outer, IMS side of the inner membrane. Two issues regarding this experiment require comment.
First, the PEGM-treated sample appears as a smear instead of a defined band, consistent with het-
erogeneous modification of the protein’s 7 native cysteines. Second, a significant western-blot signal
is observed roughly corresponding to MICU1 dimers, stable in SDS-PAGE conditions, as reported
previously (Patron et al., 2014). This signal also shifts upward after PEGM treatment, suggesting
that MICU1 dimers or higher oligomers are also localized to the IMS. Similar results in parallel
experiments with MICU2 (Figure 5D) argue that both MICU1 and MICU2 are associated with the
outer leaflet of the mitochondrial inner membrane, a location in harmony with the cytoplasmic Ca®*-
sensing function of these proteins.

Interaction of MICUs with the pore-forming region

It has been established, as we also confirm here (Figure 5—figure supplement 1), that MICU1 forms
a stable complex with MICU2 (Kamer and Mootha, 2014; Patron et al., 2014), and that MICU1,
but not MICU2, is tightly associated with the MCU-EMRE complex (Kamer and Mootha, 2014;
Sancak et al., 2013). It however remains uncertain if MICU1 interacts with MCU or EMRE
(Hoffman et al., 2013; Sancak et al., 2013), a problem addressed using co-IP to examine associa-
tion of FLAG-tagged MICU1 with MCU or EMRE expressed individually in ME-KO cells. As illustrated
in Figure 5E, MICU1 can precipitate EMRE without MCU present and MCU without EMRE present.
This observation rules out a required MICU1-interacting surface contributed by both MCU and
EMRE. It also invites us to search for the molecular determinants mediating MICU1-EMRE interaction
in the absence of MCU.

The IMS localization of MICU1 (Figure 5C) implies that EMRE binds to MICU1 via its C-terminal,
IMS-exposed region containing the polyaspartate tail (EDDDDDD). This highly charged tail alerts us
to a complementary polybasic sequence (KKKKR), which though conserved in MICUT1, is absent in
MICU2 (Hoffman et al., 2013). Indeed, co-IP experiments demonstrate that MICU1 pulls down AN-
but not AC-EMRE (Figure 6A). Moreover, a MICU1 mutant carrying an electrostatically neutered
sequence (KKKKR =>EQEQR) readily complexes with MICU2, but not with EMRE (Figure 6B). These
results strongly argue that the EMRE-MICU1 interaction is mediated by this electrostatic pair. The
strict conservation of these charged sequences further suggests that the EMRE-MICU1 interaction
plays an important, previously unappreciated physiological role.

Functional role of the MICU1-EMRE interaction

The MICU proteins act as the Ca®*-sensing gate in the uniporter complex, shutting the pore at rest-
ing cellular Ca®* concentrations and opening it when cytoplasmic Ca®* exceeds ~1 uM. By binding
to both MCU and MICU1, EMRE might serve as an anchor to retain the MICU1-MICU2 pair near the
Ca®*-conducting pore. If so, disrupting the MICU1-EMRE interaction would yield a population of
channels free of MICUs, allowing unregulated, constitutive Ca?* permeation from the cytosol into
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Figure 6. Functional importance of the MICU1-EMRE interaction. (A-B) Co-IP experiments with WT- or EQEQ-
MICU1 (Flag-tagged) used to pull down WT or mutant EMRE proteins in ME-KO cells. MICU1 was detected using
anti-Flag, MICU2 by anti-V5, and AN- or AC-EMRE by anti-C8. (C-D) The effect of MICU1 knockdown on
mitochondrial Ca®* uptake in WT HEK 293 cells at high (C) or low (D) Ca®* conditions. Con: cells with no MICU
KD. sh1-3 indicates three stable cell lines expressing distinct shRNAs against MICUT mRNA. (E) Mitochondrial
Ca”" uptake (30 uM Ca?") using untransfected EMRE-KO cells, or cells expressing WT-, AN-, or AC-EMRE as
indicated. (F-G) Ca®* flux (0.5 uM Ca®*) via MCU complexed with WT- or AN-EMRE (F), or AC-EMRE (G) in the
presence or absence of stable MICU1 KD by shRNA2. Data shown in C-G represent mean + s.e.m. of 3-4
independent measurements. See also Figure 6—figure supplement 1.

DOI: 10.7554/elife.15545.014

The following figure supplement is available for figure 6:

Figure supplement 1. Biochemical characterization of MICU1 knockdown cells.
DOI: 10.7554/¢elife.15545.015

the matrix. To examine this idea, we quantify MCU-dependent Ca®* uptake by following accumula-
tion of the **Ca®* radioisotope into mitochondria in digitonin-permeabilized cells, an approach that
allows free extramitochondrial Ca®* to be buffered at well-defined submicromolar concentrations
without sacrificing sensitivity.

We first examine the effect of MICU1 knockdown (KD) on mitochondrial Ca%* uptake. Three
HEK293 cell lines stably expressing distinct short hairpin RNAs (sh1 — 3) were generated, all exhibit-
ing at least 70% decrease of MICUT mRNA and normal levels of MCU or EMRE protein (Figure 6—
figure supplement 1). Although insufficiently sensitive antibodies frustrate quantification of MICU1,
the MICU1-KD cell lines show a profound functional alteration in *°Ca®* uptake. At high Ca®*
(30 uM), rates of Ca%* transport into WT and MICU1-KD mitochondria are similar, while as expected,
uptake is virtually undetectable in ME-KO cells (Figure 6C). At low Ca%* (0.5 uM), however, MICU1-
KD mitochondria show massive Ca®" accumulation in the matrix (Figure 6D), in dramatic contrast to
WT, where very little Ca* uptake occurs. These observations confirm previous studies that identified
MICU1 as a molecular element controlling Ca®*-dependent activation of the uniporter complex
(Csordas et al., 2013; Mallilankaraman et al., 2012).

Functional manifestations of the EMRE-MICU1 interaction were further examined by comparing
4°Ca?* uptake supported by EMRE variants expressed in EMRE-KO cells. As above, WT-, AN-, or
AC-EMRE all activate MCU-dependent Ca?* uptake to a similar degree at high Ca®* (Figure 6E). At
low Ca®*, uptake is suppressed in mitochondria hosting WT or AN-EMRE, but is enhanced over 50-
fold by MICU1 knockdown (Figure 6F). In contrast, Ca%* rapidly enters mitochondria containing AC-
EMRE, which cannot bind MICU1, and the rate is only trivially increased after MICU1 KD
(Figure 6G). We thus conclude that MICU1 must bind EMRE to maintain uninterrupted engagement
with the MCU pore, thus conferring Ca?*-dependent gating upon what would otherwise be constitu-
tive Ca®* leakage into the mitochondrial matrix.
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Discussion

In the past few years, the mitochondrial Ca®* transport field has witnessed a molecular dawn follow-
ing a half-century of functional phenomenology. It is now firmly established that the human mito-
chondrial Ca®* uniporter is a Ca®*-activated Ca?* channel composed of at least four proteins: MCU,
EMRE, MICU1, and MICU2. The present work focuses mainly on EMRE, the least understood compo-
nent of the channel complex. Impressed by the functional dependence on EMRE arising as metazoan
uniporters evolved, we have endeavored to enrich our current view of the uniporter subunits and the
physiological purposes of the domain interactions mediating their assembly. Results here establish
(1) EMRE orientation in the inner membrane, (2) the molecular contacts governing EMRE interactions
with MCU and MICU1, (3) the disposition of the MICU1-MICU2 complex on the outer surface of the
inner-membrane, and (4) the functional purpose of the EMRE-MICU1 interaction. These findings lead
to a molecular model (Figure 7) featuring a central role of EMRE in orchestrating uniporter
responses to intracellular Ca®* signaling.

When a Ca?* channel in the plasma membrane opens, or when an intracellular store releases
Ca?*, a cytoplasmic Ca* wave is generated. Once the wave hits mitochondria, Ca®* can rise above
~1 uM, activating the uniporter to catalyze rapid Ca®* entry into the mitochondrial matrix. Mitochon-
dria can therefore serve as a buffer to shape intracellular Ca®* signals (Demaurex et al., 2009).
Moreover, Ca?" entry boosts ATP output by accelerating the citric acid cycle, but excessive, sus-
tained Ca®* accumulation in the matrix triggers caspase-dependent apoptosis (Rizzuto et al., 2012).
Thus, mitochondria can also decode Ca?* stimulation as either metabolic or death signals. Failure of
the uniporter to appropriately respond to Ca?* signals would perturb these crucial physiological pro-
cesses and could also produce other serious problems. For instance, if the uniporter fails to stay
inactive under resting conditions, the large negative inner membrane potential of energized mito-
chondria would drive continual Ca?* influx. Removing these Ca®* ions requires the action of Na*/
Ca?" and Na*/H* exchangers at a cost of 3 H" entering into the matrix for each Ca®* expelled.
Unregulated, ‘leaky’ uniporters would therefore divert protons away from the F,F;-ATPase, partially
uncoupling electron transport from ATP synthesis.

The recent discovery of MICU proteins (Baughman et al., 2011; Mallilankaraman et al., 2012)
has enhanced our mechanistic understanding of how cellular Ca* signals control uniporter activity.
It is now clear that the mitochondrial response to physiological Ca?* is mediated by the Ca®*-sensing
gate formed by the MICU subunits that engage the pore-lining MCU proteins at the external face of
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the inner membrane. This modular design comes with a potential danger: that the gating and ion-
conducing subunits might dissociate sporadically, producing unregulated Ca?* channels. How could
this problem be prevented? It is likely that MICU1 has a high intrinsic affinity to MCU, since at least
part of the MICU1-MCU complex survives lengthy co-IP experiments. Moreover, diffusion of MICUs
confined to two dimensions within the inner membrane raises the local density of MICUs near the
MCU pore. These factors combined could in principle reduce the population of MICU-free, unregu-
lated uniporters — a condition that might be particularly helpful to protist and plant mitochondria,
where MCU and MICUs are the only components of the uniporter complex.

The small, single-pass membrane protein EMRE emerges in animals as a new subunit of the uni-
porter complex. A crucial finding here is that the presence of EMRE in the uniporter complex
ensures that the channel conducts Ca®* only when cytoplasmic Ca®* rises above resting levels. This
requires EMRE to use its polyaspartate tail to bind MICU1, as if it functions as ‘'molecular glue’ to
prevent dissociation of MICU1 from the MCU pore, a circumstance that would produce catastrophic
Ca?" leakage (Figure 7). Alternatively, EMRE might allosterically transmit the Ca®* signal from
MICUs to the pore; in this case, disrupting EMRE-MICU1 interaction would also prevent MICUs from
properly gating the Ca®* pathway. We consider this allosteric scenario unlikely, as the mechanism by
which MICU1 gates MCU probably evolved in early eukaryotic evolution when EMRE was absent.

The understanding that EMRE safeguards mitochondria against inappropriate Ca®* uptake helps
us appreciate the physiological importance of the strict EMRE-dependence of uniporter function
appearing in animals. As in any multisubunit protein, it is inevitable that EMRE might occasionally
dissociate from MCU, and some tissues under natural or pathological conditions might express MCU
in excess of EMRE. Under these situations, a population of EMRE-free uniporters could arise. These
channels would also lack MICUs, which would no longer be EMRE-linked to the pore. But the MCU-
activation function of EMRE would ensure that these channels would become inactive, preventing
them from wreaking havoc on normal cell physiology (Figure 7).

We should point out that our results clash with several published assertions regarding the uni-
porter complex. First, single-channel recordings in planar lipid bilayers have been used to argue that
the human MCU protein alone is sufficient to reconstitute a Ca?* channel without EMRE (De Stefani
et al., 2011; Patron et al., 2014). These recordings, however, obtained with in vitro-expressed pro-
tein of uncharacterized purity, show channel properties vastly different from uniporter currents
directly patch-recorded from intact mitoplasts (Kirichok et al., 2004). Second, a recent study
(Vais et al., 2016) using protease digestion argues that EMRE adopts a N,+-C;,, orientation, oppo-
site to that deduced here. Interpretation of the assay, however, is based on an unjustified assump-
tion that the N- and C- termini of EMRE are digested at similar rates. In contrast, our results are
supported by two lines of direct and independent evidence — mass tagging of substituted cysteines
and the functional competence of the MCU-EMRE fusion protein (Figure 1). This same study also
claims that EMRE uses its C-terminal tail to sense matrix Ca®*, producing a biphasic response of uni-
porter activity to matrix Ca%*. However, this phenomenon, to our best knowledge, has not been
observed in any mitochondrial Ca®* uptake experiments in the literature or in previous patch record-
ings (Kirichok et al., 2004). We also note a recent study appearing when our work was under review
(Yamamoto et al., 2016) that deduced, using an epitope-tagging method, a N;,-Co.: EMRE orienta-
tion fully consistent with our results. That study also shows that a Pro-to-Ala substitution 3 residues
N-terminal to the predicted TMH - a region left unperturbed in our 22-residue deletion AN-EMRE
construct - abolishes EMRE-MCU interaction. Thus, a small portion in the N-terminus of EMRE near
the TMH might also be involved in binding MCU.

In summary, our results argue that EMRE mediates two distinct functions — MCU activation and
MICU retention - through two distinct types of subunit-subunit interactions. These functions conspire
to achieve a single physiological outcome: obligatory linkage of the Ca®*-conducting and Ca®*-sens-
ing machineries, a necessary condition for the uniporter complex to respond rapidly and accurately
to the elaborate Ca®*-signaling network that has evolved in animal cells.
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Materials and methods

Molecular biology, cell culture, and transient expression

Site-directed mutagenesis was performed using the QuickChange mutagenesis kit (Agilent). HEK
293 cells were grown in Dulbecco’s modified Eagle's medium supplemented with 10% FBS, and
were incubated at 37°C, 5% CO,. The HEK-293 cell line was supplied by Dr. D.E. Clapham
and authenticated by short tandem repeat profiling conducted by ATCC, and was free of myco-
plasma as determined by PCR based detection using a kit supplied by ATCC (30-1012K). Transient
transfection was performed using Lipofectamine 3000 (Life Technologies), following manufacturer’s
instructions. Cells were used for downstream analysis 1-2 days after transfection.

RNA interference

Stable knockdown was achieved by lentivirus, using the transfer vector pLKO.1 puro (Sigma) for Ué-
driven shRNA expression. The viral titer was determined with a p24 ELISA kit (Clontech, Mountain
View, CA). WT HEK293 cells were exposed to the virus for 12 hr, using a multiplicity of infection of
5-10. Afterwards, the culture was incubated with 2 pg/mL puromycin for 2 days to eliminate untrans-
duced cells. The efficiency of knockdown was evaluated by quantitative PCR (qPCR). Detailed gPCR
procedure and the shRNA sequences are reported in Extended Experimental Procedures.

Gene knockout by CRISPR/Cas9

Gene knockout by CRISPR/Cas9 was performed using the published protocol (Ran et al., 2013). In
brief, the pSpCas?(BB) vector containing the 20-nucleotide guide sequence was transfected into
HEK 293 cells. After two days of incubation, single cells were isolated by serial dilutions, and
expanded for 2-4 weeks. Gene KO was assessed by sequencing and Western blot. Two sets of
guide sequences (see Supplementary file 1) were used to rule out off-target effects.

Western blot and co-immunoprecipitation

For Western blot, proteins on an SDS gel were transferred onto nitrocellulose membranes, which
were blocked by 5% milk in TBS, and then incubated with the primary antibody diluted in TBST (TBS
+ 0.1% Tween-20). Signal development was done using alkaline phosphatase conjugated secondary
antibodies (Pierce) and the NBT/BCIP substrate (Life Technologies). The primary antibody and dilu-
tion used: a-MCU (Sigma, HPA016480, 1:2000), a-EMRE (Santa Cruz, 86337, 1:400), a-FLAG (Sigma,
F1804, 1:4000), 0-V5 (Life Technologies, 46-0705, 1:5000), o.-Cyt-C (Santa Cruz, 13156, 1:1000), o-8-
actin (Santa Cruz, 69879, 1:500), o-Letm1 (Abcam, 55434, 1:2000). Monoclonal anti-1D4 and -C8
antibodies were produced in house.

All co-IP experiments were performed at 4 °C. Transfected HEK 293 cells were grown in a 10-cm
dish to confluency, were harvested, and then lysed in 1-mL solubilization buffer (SB, 100 mM NaCl,
20 mM Tris, 1 mM EGTA, 25 mM DDM, pH 7.5-HCI), supplemented with an EDTA-free protease
inhibitor cocktail (cOmplete Ultra, Roche). The cell lysate was clarified by centrifugation, and a small
portion of the sample was taken for whole cell lysate analysis. Antibody-conjugated Sepharose
beads (25 uL) were added, and after 1 h, the beads were collected on a mini column, washed with
2-mL SB, and eluted with 200-pL SDS-gel loading buffer for Western blot. Antibody affinity gel used:
FLAG (Sigma, A2220), V5 (Sigma, A7345). 1D4 and C8 affinity gels were produced using 20-mg 1D4
or C8 antibody per 1-g Sepharose 4B (GE Healthcare).

Mitoplast production

Mitoplasts were formed at 4°C by standard procedures that yield outside-out, stable transport
vesicles. Protease inhibitor (cOmplete Ultra, Roche) was present in all steps. HEK 293 cells from a
15-cm dish were pelleted, resuspended in 2-mL mitochondria resuspension buffer (MRB, 250 mM
sucrose, 5 mM HEPES, 1 mM EGTA, pH 7.2-KOH), and lysed by passing through a 27.5 g needle 15
- 20 times. Nuclei and cell debris were removed by spinning the cell lysate at 1000 g for 10 min. The
supernatant was spun down at 10,000 g for 10 min, resuspended in 2-mL MRB, and then spun down
again to pellet crude mitochondria. To obtain mitoplasts, mitochondria were resuspended in 800-uL
hypotonic shock buffer (5 mM sucrose, 5 mM HEPES, TmM EGTA, pH 7.2-KOH), and subjected to
osmotic shock for 10 min. Then 200 pL of high-salt storage buffer (750 mM KCI, 100 mM HEPES,
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2.5 mM EGTA, pH 7.2-KOH) was added, and mitoplasts were subsequently sedimented by centrifu-
gation at 20,000 g for 10 min. The supernatant, which contains proteins in the outer membrane and
the intermembrane space, was collected if further analysis is required.

Thiol modification

Mitoplasts were resuspended in the thiol-modification buffer (100 mM NaCl, 50 mM MOPS, pH 7.0-
NaOH), to which 1 mM PEGM (Sigma) in the presence or absence of 1 mM DDM (Anatrace) was
added. The samples were incubated for 1-4 hr at RT before the reaction was quenched with 5 mM
cysteine. All reagents were prepared fresh before experiments.

Carbonate extraction

Mitoplasts were resuspended either in carbonate extraction buffer (120 mM NaCOs, pH 10.5- or
11.5-NaOH) or in a control solution (250 mM sucrose, 25 mM Tris, pH 7.0-HCI). The samples were
incubated at 4°C or RT for 1 hr, and then spun down with ultracentrifugation at 200,000 g for 1 hr.
The supernatant contains proteins extracted by carbonate, while the membrane pellet containing
integral membrane proteins.

Mitochondrial Ca?* uptake assays

All Ca®* uptake assays were repeated at least 3 times on multiple preparations, and traces in figures
show typical responses. For the fluorescence-based assay, 10’ HEK 293 cells were suspended in 10-
mL Ca?* flux wash buffer (CWB, 120 mM KCl, 25 mM HEPES, 2 mM KH,PO4, 1 mM MgCl,, 50 uM
EGTA, pH 7.2-KOH), pelleted at 1000 g for 5 min, and resuspended in 2.5-mL recording buffer (RB,
120 mM KClI, 25 mM HEPES, 2 mM KH,PO,4, 1 mM MgCl,, 5 mM succinate, pH 7.2-KOH). 2 mL of
the cell suspension was loaded into a stirred quartz cuvette in a Hitachi F-2500 spectrophotometer
(ex: 506 nm, ex-slit: 2.5 nm, em: 532 nm, em-slit: 2.5 nm, sampling frequency: 2 Hz), with the tem-
perature maintained at 37°C by a circulating bath. In a typical experiment, reagents were added into
the cuvette in the following order: 0.5-uM calcium green 5N (Life Technologies), 30-uM digitonin
(Sigma), 10-uM CaCl,, and 2-uM Ru360 (Santa Cruz). Under these conditions, peak free Ca®* con-
centrations were close to 10 uM (11 + 6 SD, N=40, as determined by calibration). Because of uncer-
tainties in protein concentration, Ca®* uptake activity is reported as a linear fit to the fluorescent
signal obtained in the first 10 s after addition of 10-uM CaCl,, Activity was not altered by 5 uM
thapsigargin.

For the **Ca®* based uptake assay, 2 x 10° cells were suspended in 1.5-mL CWB, spun down at
2,000 g for 1 min, and resuspended again in 200-uL CWB, supplemented with 5 uM thapsigargin
and 30 uM digitonin. To initiate Ca®* flux, 100 uL of the cell suspension was transferred to either
400-uL high-Ca®* flux buffer (RB + 10 uM EGTA and 40 uM **CaCl,) or 400-uL low-Ca®* flux buffer
(RB + 0.69 mM EGTA, 0.5 mM CaCl,, and 20 uM **CaCl,, pH 7.2-KOH), with both solution contain-
ing 5-uM thapsigargin and 30-uM digitonin. At desired time points, 100 pL of the reaction mixture
was added into 5-mL ice-cold CWB, and then filtered through 0.45-um nitrocellulose membranes
(EMD-Millipore) on a vacuum filtration manifold (Millipore model 1225). The membrane was washed
immediately with 5-mL ice cold CWB, and later transferred into scintillation vials for counting. *°*Ca®*
radioisotope was purchased from Perkin Elmer, with a specific activity of 12.5 mCi/mg.

Bioinformatics

Sequences of MCU or EMRE homologues were collected using PSI-BLAST search of ~100 species.
EMRE was identified by the presence of the polyaspartic tail, and MCU by the conserved DIME
loop. Multiple sequence alignment was performed using the ClustalW2 online server (Larkin et al.,
2007). The helical wheels were plotted using Antheprot v 6.4 (Deleage et al., 2001). Mitochondrial
targeting sequence prediction was carried out using the TargetP 1.1 online server
(Emanuelsson et al., 2007).

Quantitative PCR

Whole cell RNA was extracted from HEK 293 cells grown in 6-well plates using TRIzol. Residual DNA
was removed using the TURBO DNA-free kit (Life Technologies). First strand cDNA synthesis was
performed with 1 pg RNA using M-MuLV reverse transcriptase (NEB), following manufacturer’s
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instructions. The sample was subsequently digested with RNaseH (NEB). gPCR was performed with
SsoFast EvaGreen Supermixes (BIO-RAD), using 0.5 uM B-actin or MICU1 primers, and 0.5, 2.5, 5, or
10 ng RNA for producing a standard curve. Detection of the PCR product was done with a CFX%96
real-time PCR detection system (BIO-RAD), using the following protocol: 95°C for 30 s, 50 cycles of
95°C for 5 s and 57°C for 5 s. The sequence of the primers is provided in Supplementary file 1.

ACt was calculated by subtracting the Ct for B-actin from the Ct for MICU1, with 3 independent
RNA extractions and gPCR measurements using 2.5 ng whole RNA. AACt was calculated by sub-
tracting the mean ACt for control WT cells from the mean ACt for each stable MICU1 knockdown
cells. The results were presented as the percentage of MICUT mRNA in MICU1 knockdown cells rela-
tive to MICU1T mRNA in WT control, using the equation% mRNA = 1/2/44¢t,
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