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Introduction
Heat is a primary weather-related cause of 
human mortality in the United States (Centers 
for Disease Control and Prevention 2006). 
Numerous studies have demonstrated that 
mortality increases significantly when some 
location-specific, temperature-based threshold 
is exceeded (Gosling et al. 2009; Hajat and 
Kosatsky 2010). The statistical robustness of 
this relationship has prompted the imple-
mentation of heat-warning systems and other 
intervention strategies in many localities to 
mitigate heat mortality that is largely prevent-
able (Ebi and Schmier 2005; Smoyer-Tomic 
and Rainham 2001).

Despite the growth of this research area 
as well as the interest arising from a poten-
tial increase in heat-related mortality from 
higher thermal exposure in the future, few 
researchers have systematically examined how 
the time of weather observation influences 
the heat–mortality relationship. Prior studies 
of heat-related mortality have considered 
lag effects to account for the time between 
the onset of debilitating conditions and 
the resulting mortality event (Braga et  al. 

2001; Davis et  al. 2003a). A few studies 
have compared different exposure variables 
to determine whether there is an optimal 
variable to incorporate in heat-mortality 
models (Barnett et  al. 2010; Zhang et  al. 
2012). However, with few exceptions (e.g., 
Hondula et al. 2012), no one has explicitly 
examined if the observation time of the inde-
pendent variable (i.e., the heat metric being 
evaluated as the risk factor of interest), or the 
manner in which it is calculated, significantly 
influences the weather–mortality relationship.

Daily maximum temperature is  a 
common metric in heat-mortality studies 
because it is a proxy for the maximum thermal 
stress on the body (Hajat et al. 2006; Tan 
et al. 2007). Although maximum temperature 
typically occurs a few hours after peak sunlight 
intensity, on days with frontal passages, it 
can occur at any time of day (Bristow and 
Campbell 1984; Karl et al. 1986). In contrast, 
the physiological rationale for using minimum 
temperature is that, during heat wave periods 
with high minima, the body does not have 
the opportunity to sufficiently recover from 
the thermal stresses experienced during the 

previous day (Le Tertre et al. 2006; Schwartz 
2005). Minimum temperature typically 
occurs just after sunrise, but based upon air 
mass changes and cloud cover, the hour of 
minimum temperature also varies (Bristow 
and Campbell 1984; Karl et  al. 1986). 
The pattern of daily warming and cooling 
(between maximum and minimum tempera-
tures) is neither symmetric nor consistent, 
and by using maximum and minimum 
temperatures in epidemiological models, the 
researcher implicitly accepts that the exposure 
(independent) variable is being sampled at 
different times of the day.

Environmental health researchers apply 
different conceptualizations of maximum 
and minimum temperature in temperature–
mortality associations, with some (e.g., 
Medina-Ramón and Schwartz 2007) selecting 
maximum and minimum temperature based 
on the highest and lowest values of 24 hourly 
observations taken at the “top” of each 
hour, whereas others (e.g., Guo et al. 2013) 
use readings from maximum–minimum 
thermometers, in which the maximum and 
minimum may occur at any time (i.e., the 
extreme readings need not align with the 
hourly observations). To avoid possible statis-
tical biases that can occur with shifts in the 
sampling time of maximum and minimum 
temperature, some researchers have selected 
specific times of day to characterize exposure 
[e.g., 0700 or 1400 hours local standard time 
(LST)] using the times typically associated 
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Background: Extreme heat is a leading weather-related cause of mortality in the United States, 
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relationships.

Objectives: We examined how the strength of the relationship between daily heat-related mortality 
and temperature varies as a function of temperature observation time, lag, and calculation method.

Methods: Long time series of daily mortality counts and hourly temperature for seven U.S. 
cities with different climates were examined using a generalized additive model. The temperature 
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methods of calculating daily maximum, minimum, and mean temperature. We estimated the 
temperature effect on mortality for each variable by comparing the 99th versus 85th temperature 
percentiles, as determined from the annual time series.

Results: In three northern cities (Boston, MA; Philadelphia, PA; and Seattle, WA) that appeared 
to have the greatest sensitivity to heat, hourly estimates were consistent with a diurnal pattern in 
the heat-mortality response, with strongest associations for afternoon or maximum temperature 
at lag 0 (day of death) or afternoon and evening of lag 1 (day before death). In warmer, southern 
cities, stronger associations were found with morning temperatures, but overall the relationships 
were weaker. The strongest temperature–mortality relationships were associated with maximum 
temperature, although mean temperature results were comparable.
Conclusions: There were systematic and substantial differences in the association between 
temperature and mortality based on the time and type of temperature observation. Because the 
strongest hourly temperature–mortality relationships were not always found at times typically 
associated with daily maximum temperatures, temperature variables should be selected indepen-
dently for each study location. In general, heat-mortality was more closely coupled to afternoon 
and maximum temperatures in most cities we examined, particularly those typically prone to 
heat-related mortality.
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with the daily high or low (e.g., Davis et al. 
2003b). Another commonly used thermal 
variable is daily mean temperature (e.g., 
Donaldson et al. 2003; Huynen et al. 2001), 
but even this variable can be computed in a 
variety of ways, including the average of the 
maximum and minimum (which are tempo-
rally variant) and the average of hourly 
readings. Thus, the choice of observation time 
is seemingly given little consideration in the 
overall study design but it has an inherent 
influence on the exposure variable used in 
the research.

A variety of indices and human comfort 
models have been developed that incorporate 
factors in addition to air temperature that 
influence the human heat load, including 
radiative and convective heat exchange and 
heat loss via evaporation (Gosling et  al. 
2009; Jendritzky and Tinz 2009; Koppe 
et al. 2004), but these models require more 
input variables. In the United States, the 
most commonly used index is apparent 
temperature (AT, also known as the Heat 
Index), a variable that combines temperature 
with humidity (and a minor wind correc-
tion) (Steadman 1984). Several systematic 
comparisons have been conducted between 
heat mortality associations and different 
exposure metrics. City- and national-scale 
studies have most frequently reported that 
daily maximum or mean summary variables 
(either air temperature or AT) produce 
stronger relationships than daily minima 
(Anderson and Bell 2009; Armstrong et al. 

2011; Baccini et  al. 2008). There is less 
agreement regarding the performance of 
air temperature versus AT and other more 
complex daily summary metrics such as air 
mass types (Hajat et al. 2010; Metzger et al. 
2010; Zhang et al. 2014), and there is some 
evidence that optimal variable selection varies 
by location, season, and age cohort (Barnett 
et al. 2010; Conti et al. 2005). None of these 
studies, however, have considered observa-
tion time and type of temperature observa-
tion, which could also materially influence 
temperature–mortality associations.

The purpose of this research is to deter-
mine whether variations in air temperature 
observation time and type impact the resulting 
relationship to heat-related mortality. For 
example, would different mortality relation-
ships result if 0700 hours temperature is used 
as the exposure variable versus 1500 hours 
temperature or a daily mean temperature? 
Does the method used to calculate daily 
mean temperature materially influence the 
results? Is either maximum or minimum 
temperature more closely associated with heat 
mortality? To our knowledge, no one has 
explicitly examined the relationship between 
hour-by-hour variations in temperature and 
heat-related mortality. If these factors do vary 
significantly, then this information could 
inform variable selection when attempting 
to estimate the burden of extreme heat on 
human health and help guide the develop-
ment and deployment of certain adaptation 
strategies for coping with health impacts.

Methods
Daily mortality frequencies were acquired 
from the departments of health in seven cities: 
Atlanta, Georgia; Boston, Massachusetts; 
Minneapolis-St. Paul, Minnesota; Philadelphia, 
Pennsylvania; Phoenix, Arizona; Seattle, 
Washington; and St. Louis, Missouri. These 
cities were selected because they represent a 
range of climates (Table 1) and heat-mortality 
responses and their heat-mortality relationships 
have been studied extensively as part of a larger 
project (Hondula et al. 2014, 2015; Saha et al. 
2014). Boston, Minneapolis, Philadelphia, 
Atlanta, and St. Louis are all located in the 
eastern half of the United States where moist 
tropical days regularly occur during the summer 
months; dry tropical days are less common 
but also occur. The frequency and intensity 
of these synoptic-scale occurrences vary, with 
Atlanta and St. Louis being most commonly 
exposed and Boston and Minneapolis expe-
riencing more moderate but still potentially 
dangerous heat events. Seattle is located in the 
Pacific northwestern region and generally expe-
riences mild and dry summer weather, with 
occasional heat waves that occur when high 
pressure stagnates over the region. These events 
represent a significant deviation from normal 
weather experienced in the region. Phoenix 
is located in the semiarid southwest region of 
the country, and its climate is characterized 
by an intense dry heat that lasts for nearly the 
entire warm season. Phoenix occasionally deals 
with periods of elevated humidity conditions 
in the late summer months when regional wind 

Table 1. Locations and data sources.

City (abbreviation) 
and geographic 
centroid

Climate 
classification 

(Köppen type)a 

Summerb 
maximumc 

temperature 
range (median)

Geographic 
area

Population of 
study area in 

2000
Mortality data 

source
Period of 

record

Average 
number 

of deaths 
per year

Weather 
data 

missing Weather station location
Atlanta (ATL) 

33.875°N 
84.301°W

Consistently hot, 
humid summers 
(Cfa)

16.7–40.0°C 
(31.1°C)

4,807 km2 2,810,278 Georgia Dept. 
of Community 
Health

1994–2007  
(14 years)

15,242 3.4% Hartsfield Jackson Atlanta 
International Airport 
33.637°N, 84.428°W

Boston (BOS) 
42.392°N 
71.102°W

Mild but humid 
summers with 
periodic hot spells 
(Dfa)

11.7–38.3°Cd 
(26.7°C)

724 km2 1,536,926 Massachusetts 
Dept. of Public 
Health

1987–2007 
(21)

13,047 1.0% General Edward Lawrence 
Logan International Airport 
42.363°N, 71.006°W

Minneapolis (MSP) 
44.956°N 
93.197°W

Mild summers with 
periodic hot spells 
(Dfa)

11.7–38.3°Cd 
(27.3°C)

3,637 km2 2,265,814 Minnesota Center 
for Health 
Statistics

1992–2008 
(17)

13,715 1.0% Minneapolis-St. Paul 
International Airport 
44.882°N, 93.222°W

Philadelphia 
(PHL) 40.011°N 
75.134°W 

Warm but variable 
summers with 
annual heat waves 
(Cfa)

15.0–39.4°C 
(30.0°C)

352 km2 1,509,525 Pennsylvania 
State Dept. of 
Health

1983–2008 
(26)

15,752 3.1% Philadelphia International 
Airport 39.872°N, 
75.241°W

Phoenix (PHX) 
33.563°N 
112.030°W

Hot and arid with 
occasional periods 
of high summer 
humidity (BSh)

23.9–50.0°C 
(41.1°C)

5,357 km2 2,944,227 Arizona Dept. of 
Health Services

1989–2007 
(19)

19,117 0.3% Phoenix Sky Harbor 
International Airport 
33.434°N, 112.012°W

St. Louis (STL) 
38.614°N 
90.459°W

Warm to hot and 
humid summers 
(Cfa)

14.4–41.7°C 
(31.1°C)

1,751 km2 1,401,298 Missouri Dept. of 
Health

1980–2008 
(29)

13,681 2.4% Lambert St. Louis 
International Airport 
38.747°N, 90.361°W

Seattle (SEA) 
47.536°N 
122.259°W

Mild, dry summers 
with minimal 
rainfall (Csb)

11.7–37.8°C 
(22.8°C) 

1,071 km2 1,567,483 Washington State 
Dept. of Health

1988–2009 
(22)

10,833 0.8% Seattle-Tacoma 
International Airport 
47.449°N, 122.309°W

aClimate types are extracted from a 0.5° resolution map of the updated Köppen–Geiger classification developed by Kottek et al. (2006). bBased on June–August observations during 
the study period. cWhere maximum is considered the highest temperature recorded during the day regardless of time (the metric defined as max in Table 2). dThe observed summer 
maximum temperature ranges for these two cities during the study period are, in fact, identical.
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patterns shift to transport moisture northward 
from the Gulf of Mexico, Gulf of California, 
and/or eastern tropical Pacific Ocean.

The periods of record vary between cities 
based on the availability of health records, 
with Atlanta having the fewest years of data 
(14  years) and St. Louis having the most 
(29  years) (Table  1). Mortality data were 
provided at the ZIP Code Tabulation Area 
(ZCTA) scale, and these daily counts were 
aggregated for the 48–101 ZCTAs that 
encompassed each metropolitan area (U.S. 
Census Bureau 2012). 

Hourly temperature data from all 
calendar months were acquired from a first-
order weather station in each metropolitan 
area (Table 1). Missing observations, which 
accounted for no more than 3.4% of all obser-
vations (Table 1), were linearly interpolated 
from the nearest values using the linear inter-
polation function in SPSS (version 21; SPSS, 
IBM). The large majority of interpolated 
observations were isolated missing values. Here, 
“hourly” refers to observations taken at least 
once per hour, but often at a much higher reso-
lution. The measurement frequency varies over 
time as National Weather Service measurement 
protocols have changed. As an example, a 24-hr 
period during a high heat event in Philadelphia 
is shown in Figure 1 in which observations 
were taken four times per hour. Maximum 
(max) and minimum (min) temperature were 
determined from the extremes observed each 
day (Table 2)—these observations are free 
to occur at any time of the day (in Figure 1, 
e.g., max and min occur at 1615 and 0515 
hours, respectively). These were compared 
with the maximum and minimum tempera-
tures acquired from the observation taken 
nearest the “top” of each hour (max-hr and 
min-hr) (Figure 1 and Table 2). Daily mean 
temperature was calculated in three different 
ways: as the average of max and min (mean), 
the average of max-hr and min-hr (mean-hr), 
and the average of 24 measurements taken at 
the top of each hour (mean24) (Table 2). So 
in this example, because of the long period of 
consistent low temperatures before sunrise, the 
actual minimum temperature (min) was close 
to the hourly minimum temperature (min-hr), 
but the actual maximum was almost 2°F higher 
than the hourly value (Figure 1). These differ-
ences influenced the calculation of daily mean 
temperature, which on this day varied by 1.4°F, 
depending upon the formulation used.

Each city’s mortality time series was 
modeled using a generalized additive model 
of the form:

Log(M) = s(time, k = y × a)  
	 + s(temp, k = 4),	 [1]

where M is the daily mortality count, s repre-
sents a fixed thin-plate regression spline with 

k – 1 degrees of freedom, “time” is an integer 
counter for each day in the period of record, 
y represents the number of years in each city’s 
period of record, a  is the number of degrees 
of freedom used for modeling the “time” term 
for each year (we used 7 degrees of freedom 
per year for the main analysis and 5 degrees 
of freedom per year as a sensitivity analysis), 
and “temp” represents the daily temperature 
time series as measured either at each hour 
or for one of the formulations of maximum, 
minimum, or mean temperature shown in 
Table 2 (following, e.g., Anderson and Bell 
2009). The model used a quasi-Poisson link 
function to account for overdispersion in 
the mortality data and was constructed with 
year-round temperature and mortality data.

We ran separate models to estimate 
relative risks (RRs) for each exposure variable 
on the day of death (lag 0) and each of the 
three lag days (lag 1–3), including the seven 
daily temperature exposure metrics (Table 2) 
and 24 hourly temperature measurements 
on each day. Mortality is archived at daily 

intervals, so a mortality event recorded on 
a day with extreme heat is characterized as 
lag 0, mortality on the day following high 
heat is lag 1, and so on. In one analysis, the 
seven daily summary temperature metrics 
are compared with the RR of mortality for 
each day. Additionally, an hourly analysis is 
performed in which the RR of mortality is 
modeled separately for each hour. Only the 
independent variable (air temperature) varies 
for a given day—mortality varies daily but not 
hourly. Temperature percentiles were defined 
separately for each different independent 
variable and based on data from the entire 
calendar year. The 85th percentile corresponds 
to approximately the 55th hottest day of an 
average year, or roughly the median summer 
temperature for a 3-month warm season.

Each RR represents the estimated risk of 
mortality at the 99th percentile of the metric-
specific temperature distribution (M99) 
relative to the 85th percentile (M85):

	 RR = eM99 – M85.	 [2]

Figure 1. Example demonstrating the calculation of different temperature variables during a high heat 
event in Philadelphia, Pennsylvania (17 July 2013). Each observation is shown (open circle) along with the 
hourly observation taken closest to the “top” of each hour (closed circle). Variable definitions: max, min: 
highest and lowest temperature between midnight and midnight regardless of observation time; max-hr, 
min-hr: highest and lowest temperature of the 24 observations made over the course of a day that occur 
near the top of each hour; mean: the average of max and min; mean-hr; the average of max-hr and min-hr; 
mean24: the average of 24 hourly observations made at the top of each hour.
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Table 2. Temperature variables used in heat-mortality modeling.

Variable abbreviation Description
Max Maximum temperature between midnight and midnight as recorded by a maximum/minimum 

thermometer. Can occur at any time.
Max-hr Maximum temperature of 24 hourly values taken at the observations nearest the top of each 

hour (e.g., midnight, 0100 hours).
Min Minimum temperature between midnight and midnight as recorded by a maximum/minimum 

thermometer. Can occur at any time.
Min-hr Minimum temperature of 24 hourly values taken at the observations nearest the top of each 

hour (e.g., midnight, 0100 hours).
Mean (Max + min)/2.
Mean-hr [(Max-hr) + (min-hr)]/2.
Mean24 Average of 24 hourly values taken at the top of each hour.
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For example, in Philadelphia, the estimated 
RR of mortality for the 99th percentile of 
maximum temperature on lag 0 (max) was 
1.051, whereas the estimated RR for the 99th 
percentile of minimum temperature on lag 0 
(min) and of hourly temperature measured 
at 0400 hours LST were 1.042 and 1.033, 
respectively (Figure 2).

The confidence interval (CI) for each RR 
was calculated using the equation

e
1.96M M se se99 85 M99 M85

2 2!- +
CI = ^ ^h h8 B , 
� [3]

where “se” is the standard error for mortality 
predictions at a given temperature percen-
tile (Gardner and Altman 1989). Statistical 
significance was determined when the CI for a 
given temperature effect did not include one. 
(As a sensitivity analysis, we also estimated 
RRs comparing the estimate risk at the 99th 
percentile to the 90th percentile, instead of 
using the estimated risk at the 85th percen-
tile as the reference value.) We also extracted 
a generalized cross-validation score for each 
model to use as a diagnostic of model fit 
(Wood 2006).

Analyses were run using the mgcv package 
(version 1.7-6) with R version 2.13.2 (R Core 
Team 2012; Wood 2006). Model-based 
estimates of the risk of mortality and corre-
sponding standard errors for the 99th and 
85th percentiles of each temperature metric’s 
distribution were extracted using the “terms” 
feature of the predict function.

Results
Statistically significant relationships between 
temperature and mortality were estimated 
for each city except Atlanta. The strength 
of these relationships varied markedly, and 
often systematically, when comparing across 
cities, temperature metrics, and lag  times 
(Figures 3 and 4).

As an example, estimated RRs for 
Philadelphia are presented in Figure 3. RRs 
for the estimated risk of mortality at the 
99th versus 85th percentile of the hourly 
temperature distribution were statistically 
significant beginning at 0900 hours LST 
on the day before death (lag 1, 0900 hours 
LST RR = 1.025; 95% CI: 1.002, 1.048) 
through every hour of the day of death 
(lag  0, 2300 hours LST RR  =  1.044; 
95% CI: 1.021, 1.066). However, the stron-
gest temperature–mortality relationships 
were evident at 0900 hours LST on lag 0 
(RR = 1.056; 95% CI: 1.033, 1.080) and 
at 1900 hours LST on lag 1 (RR = 1.048; 
95% CI: 1.025, 1.071). On each lag day, 
RRs were lowest during the early morning 
hours (after midnight through approximately 
0600 hours LST) and highest during the late 

morning through late evening hours (approxi-
mately 0900–2200 hours LST), suggesting 
a diurnal pattern of heat impacts. However, 
patterns of RRs for hourly temperatures on 
the day of death (lag 0) should be interpreted 
with caution because temperature “exposures” 
measured later in the day are increasingly 
likely to have occurred after the time of death, 
and positive associations are therefore more 
likely to reflect correlations of hourly tempera-
tures later in the day with temperatures 
earlier in the day, rather than actual effects 
of hourly heat on mortality. We include the 
full 24 hr on lag 0 for completeness, but these 
late-day relationships should be considered 
with caution.

RRs for mortality at the 99th versus 85th 
percentile of each of the seven daily tempera-
ture metrics were broadly consistent with the 
hourly RRs. For example, in Philadelphia, 
RRs were statistically significant for all 
daily exposure metrics on lag 0 (Figure 3A, 
inset). However, by lag 1, RRs for the two 
minimum temperature metrics (min and 
min-hr) were no longer significant, and none 
of the daily metrics were significant predic-
tors of mortality by lag 2. Cross-validation 
scores computed for the hourly variables for 
Philadelphia (Figure 3B) show that model fit 
was strongest when temperatures near midday 
were used from lag 0, close to the observa-
tion time associated with the largest effect 
size. Model performance deteriorated rapidly 
between lag 0 and lag 1.

In Boston and Seattle, there were statis-
tically significant relationships throughout 
the day of lag  0 and most (or all) of the 

hours of lag 1 (Figure 4B,E). In both cities, 
the relationship was markedly weaker in 
the early morning hours of lag  1, but in 
the case of Seattle, these relationships were 
still significant. Thus, the general pattern 
of diurnality observed in Philadelphia was 
also present in Boston and Seattle: The 
mortality–temperature relationships tended 
to be weaker in the late overnight hours and 
strongest between late morning and evening. 
These hourly results were consistent with the 
daily summary variables—whereas RRs for 
at least two of the three mean temperature 
metrics (mean, mean-hr, and mean24) and 
both maximum temperature metrics (max and 
max-hr) were still significant on lag 1 for both 
cities, one or both of the minimum tempera-
ture metrics was not. It is noteworthy that at 
lag 3 for Seattle, all RRs were negative for the 
daily metrics and most of the hourly metrics, a 
pattern that might reflect “mortality displace-
ment,” the idea that reduced mortality rates 
may occur 72–96 hr after a major heat event 
that hastens the time of death in frail indi-
viduals (Hajat et al. 2005; Saha et al. 2014). 
However, evidence of mortality displace-
ment must be interpreted with caution in 
the absence of information on the length or 
severity of each heat event.

A different pattern of mortality–temperature 
relationship was evident in Minneapolis and 
St. Louis (Figure 4C,F). In these cities, a few 
hours at lag 0 had weak (but statistically signifi-
cant) relationships, but almost none were 
evident by lag 1 and later. In Minneapolis, the 
strongest association with hourly temperatures 
was at 0700 hours LST on lag 0 (RR = 1.042, 

Figure 2. Modeled relative risks comparing mortality at each percentile of the temperature range for three 
different temperature metrics to mortality at the 85th percentile of the temperature range. The relative 
risks are shown for three different same-day (lag 0) temperature metrics for Philadelphia. The solid 
black line shows the relative risks for daily maximum temperature (max); solid gray for daily minimum 
temperature (min); dark dashes for 0400 hours local standard time (LST) temperature. Percentiles are 
calculated separately for each temperature metric. Vertical lines indicate temperature percentiles used 
in the calculation of relative risks and confidence intervals. Here, the relative risk of mortality for the 99th 
versus 85th percentile of each temperature metric is estimated at 1.051 for max, 1.042 for min, and 1.033 for 
temperature at 0400 hours LST.
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95% CI: 1.011, 1.074), and associations with 
daily mean and daily minimum temperature 
metrics were slightly stronger than RRs for 
the maximum temperature metrics on lag 0. 
In St. Louis, hourly RRs were most positive 
in the afternoon of lag 0 as compared to the 
morning, when the RRs decline. The overall 
pattern on lags 0 and 1 suggests a diurnal 
relationship similar to that found in Boston 
and Seattle, even though hourly RRs were 
significant after noon on lag 0 only, and all 
hourly RRs were < 1 on lags 2 and 3. The 
relationship was strongest in St. Louis in the 
afternoon on lag 0 (RR = 1.031; 95% CI: 
1.012, 1.050 at 1500 hours LST) and for 
both maximum temperature variables 
compared with mean or minimum tempera-
tures. Negative RRs for hourly temperatures 
and mortality on lags 2 and 3 in Minneapolis 
and St. Louis might reflect mortality 
displacement, though RRs are close to the 
null, and associations between temperature 
and mortality on lag 0 were generally weak 
for St. Louis.

We were unable to detect a significant 
mortality–temperature relationship for Atlanta 
using all-cause mortality records (Figure 4A). 
Neither the hourly nor summary variables 
were clearly related to mortality in Atlanta.

In Phoenix, although all hourly RRs on 
all lag days were positive, only a few were 
statistically significant (Figure 4D). Between 
lag 1 and lag 0 as well as lag 2 and lag 1, RRs 
were larger for the overnight and morning 
hours from roughly 2000 hours LST to 
0800 hours LST, suggesting a relationship 
that differs from the other six cities. None 
of the daily summary variables were signifi-
cantly associated with mortality in Phoenix. 
So unlike Philadelphia, Boston, and Seattle, 
where RRs showed evidence of a diurnal 
pattern, the strongest mortality–temperature 
models for Phoenix are constructed using 
morning temperatures for specific hours.

In general, for the six cities with signifi-
cant relationships, RRs for daily minimum 
temperature (min and min-hr) were closer 
to the null than RRs for the daily maximum 
and mean temperature metrics, though 
differences were generally small and limited 
to lag  0 and lag  1. Some subtle differ-
ences were evident based on calculation/
observation method for the daily summary 
variables. In Boston, for example, the RR 
for lag 1 mean temperature was estimated 
as 1.030 (95% CI: 1.002, 1.058), for lag 1 
mean-hr as 1.029 (95% CI: 1.002, 1.056), 
and for lag 1 mean24 as 1.025 (95% CI: 
0.998, 1.052)—so mean and mean-hr were 
significant but mean24 was not. Differences 
in RR estimates were similarly small for the 
maximum and minimum metrics. The confi-
dence intervals, which indicate the precision 
of effect estimates, exhibited similar widths 

for the different methods of calculating mean, 
maximum, and minimum temperatures.

Cross-validation scores for models 
using hourly temperature observations were 
consistently lowest on lag 0 compared with 
lags 1–3 (Figure 5). The times of best model 
fit commonly occurred during the daytime 
hours as opposed to overnight, with most 
cities showing better model fit in the late 
morning than in the afternoon. Minimum 
cross-validation scores did not uniformly align 
with the times associated with the largest RR.

Discussion
Evidence for stronger temperature–mortality 
relationships in northern cities and weaker 
or nonsignificant models in southern cities 
is consistent with previous research indi-
cating that cooler locations are more suscep-
tible to heat impacts (Kalkstein and Davis 
1989; Medina-Ramón and Schwartz 2007), 
possibly because of reduced acclimatization 
or adaptation (Davis et al. 2003a; Gosling 
et  al. 2009). Identification of the stron-
gest associations between temperature and 

Figure 3. (A) The main panel shows the relative risk of mortality (with 95% confidence intervals) in 
Philadelphia for temperatures at the 99th percentile compared with the 85th percentile estimated using 
separate models for temperatures at each hour and on each lag day, where lag 0 represents the day 
of death, lags 1–3 represent the 1, 2, and 3 days before the day of death. Inset panels show RRs for the 
seven daily temperature metrics on each lag day: max = maximum temperature; max-hr =maximum hourly 
temperature; min = minimum temperature; min-hr = minimum hourly temperature; mean = (max + min)/2; 
mean-hr = (max-hr + min-hr)/2; mean24 = average value of the 24 hourly temperatures. All models are 
adjusted for time trends (7 df). (B) Cross-validation scores for each of the hourly models examined in A; 
lower cross-validation scores indicate better model fit.
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mortality on the day of the heat event or on 
the following day is likewise consistent with 
prior findings (Davis et al. 2003b; Gosling 
et  al. 2009). However, to the best of our 

knowledge, no previous research has docu-
mented the hourly variability in the strength 
of temperature–mortality relationships, 
nor has there been any comparison of daily 

summary temperature variables computed 
using different methods. Here, we show that 
the selection of time-of-day and summary 
measure for the independent variable can 

Figure 4. Relative risks and 95% confidence intervals for mortality in association with each temperature metric at the 99th versus 85th percentile of the 
temperature distribution for (A) Atlanta, (B) Boston, (C) Minneapolis, (D) Phoenix, (E) Seattle, and (F) St. Louis, respectively. Each relative risk is estimated using 
a separate model for temperatures at each hour and on each lag day, where lag 0 represents the day of death, lags 1–3 represent the 1, 2, and 3 days before the 
day of death. Inset panels show relative risks for the seven daily temperature metrics on each lag day: max = maximum temperature; max-hr =maximum hourly 
temperature; min = minimum temperature; min-hr = minimum hourly temperature; mean = (max + min)/2; mean-hr = (max-hr + min-hr)/2; mean24 = average value 
of the 24 hourly temperatures. The key for the daily metrics is shown in A. All models are adjusted for time trends (7 df).
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influence the strength of the temperature–
mortality association in the resulting model.

In three of the seven study cities (Boston, 
Philadelphia, and Seattle), associations 
between mortality and hourly temperatures 
during the daytime and evening were stronger 
than associations with hourly temperatures 

during the morning hours, and associa-
tions between mortality and daily mean or 
maximum temperature metrics were slightly 
stronger than RRs based on daily minimum 
temperature metrics. Thus, warm days and 
evenings had a greater mortality impact in 
these cities than warm nights. Contrasting 

theories on heat mortality emphasize either 
the impact of extreme conditions that focus 
on the physiological stress placed on the body 
or the lack of a period of early morning respite 
during heat waves when the body recovers 
from daily thermal stress (Basu and Samet 
2002; Braga et al. 2002; Koppe et al. 2004). 

Figure 5. Cross-validation scores for models of RRs for mortality in association with hourly temperatures at the 99th percentile relative to the 85th percentile, esti-
mated using separate models for each hour and lag day, adjusted for time trends using a time spline with 7 degrees of freedom per year. (A) Atlanta, (B) Boston, 
(C) Minneapolis, (D) Phoenix, (E) Seattle, and (F) St. Louis. Lower cross-validation scores indicate better model fit.

00 00 00 0006 12 18 06 12 18 06 12 18 06 12 18

Local time

Cr
os

s-
va

lid
at

io
n 

sc
or

e

Cr
os

s-
va

lid
at

io
n 

sc
or

e

Cr
os

s-
va

lid
at

io
n 

sc
or

e

Cr
os

s-
va

lid
at

io
n 

sc
or

e

Cr
os

s-
va

lid
at

io
n 

sc
or

e

Cr
os

s-
va

lid
at

io
n 

sc
or

e
00 00 00 0006 12 18 06 12 18 06 12 18 06 12 18

00 00 00 0006 12 18 06 12 18 06 12 18 06 12 18 00 00 00 0006 12 18 06 12 18 06 12 18 06 12 18

00 00 00 0006 12 18 06 12 18 06 12 18 06 12 18 00 00 00 0006 12 18 06 12 18 06 12 18 06 12 18

Local time

Local time Local time

Local time Local time

Atlanta Boston

Minneapolis

Seattle St. Louis

Phoenix

1.0835

1.083

1.0825

1.082

1.0815

1.081

1.0805

1.08

1.0795

1.079

1.0785

1.075

1.074

1.073

1.072

1.071

1.07

1.069

1.06

1.059

1.058

1.057

1.056

1.055

1.054

1.053

1.052

1.09

1.088

1.086

1.084

1.082

1.08

1.0925

1.092

1.0915

1.091

1.0905

1.09

1.0895

1.089

1.0885

1.088

1.087

1.086

1.085

1.084

1.083

1.082

1.081

1.08

1.079

Lag 3 Lag 2 Lag 1 Lag 0 Lag 3 Lag 2 Lag 1 Lag 0

Lag 3 Lag 2 Lag 1 Lag 0 Lag 3 Lag 2 Lag 1 Lag 0

Lag 3 Lag 2 Lag 1 Lag 0 Lag 3 Lag 2 Lag 1 Lag 0



Davis et al.

802	 volume 124 | number 6 | June 2016  •  Environmental Health Perspectives

In Philadelphia, for example, mortality 
relative risk estimates for 2000 hours LST on 
lag 1 were 4% higher for the 99th versus the 
85th percentile of temperature (RR = 1.040; 
95%  CI: 1.017,  1.062). However, there 
is no relative increase in mortality at 0400 
hours LST on lag 1 (RR = 1.005; 95% CI: 
0.984, 1.026). This morning–daytime contrast 
in the estimated temperature effect could 
occur because morning temperatures are not 
strong indicators of the days with the highest 
peak heat stress, a proposition supported 
by the correlation coefficients shown in 
Table 3. For example, the correlation between 
minimum temperatures (which tend to occur 
in the morning) and maximum temperatures 
(which tend to occur in the afternoon) was 
no higher than 0.577 in any city for days with 
mean temperatures above the 85th percentile 
of the annual mean temperature distribution. 
Additionally, morning temperatures may be 
less consequential for mortality impacts than 
afternoon temperatures because the relatively 
cooler morning conditions provide some 
protective effect and/or people’s behaviors and 
activities in the mornings are less likely to lead 
to heat stress.

An inherent assumption with this 
approach is that heat impacts are relative 
depending on climate, an assumption that 
is widely supported in the literature (Braga 
et al. 2001, 2002; Davis et al. 2003a, 2003b; 
Donaldson et al. 2003; Kalkstein and Davis 
1989; Medina-Ramón and Schwartz 2007; 
Pattenden et al. 2003). It is noteworthy that 
the diurnal changes in RR present in three 
northern cities (Boston, Philadelphia, and 
Seattle) are also evident in St. Louis, a location 
historically associated with high heat mortality 
(Medina-Ramón and Schwartz 2007), even 
though our results show a significant effect 
only at lag 0. Perhaps these northern cities 
lack the infrastructure (e.g., building materials, 
mechanical cooling systems) to fully mitigate 
heat effects in the afternoon and early evening. 
Although one might argue that the older 
housing stock built during times of histori-
cally cooler climates is less adaptable to heat 
impacts, the urban heat island effect, in which 
higher temperatures are observed in developed 
versus rural areas, has a much greater impact 
on minimum than maximum temperatures 
(Oke 1987).

The lack of strong or consistent relation-
ships between temperature and all-cause 
mortality in Atlanta and Phoenix is supported 
by prior research showing a muted impact in 
warmer climates (Anderson and Bell 2009; 
Davis et  al. 2003a, 2003b; Kalkstein and 
Davis 1989). Here, air conditioning and other 
cooling mechanisms (such as evaporative 
coolers, in the case of Phoenix) are prevalent, 
some infrastructure (e.g., buildings, parks, 
walkways) is designed to mitigate summer 

heat, and the populations have become accli-
mated (Chuang et al. 2013; Hartz et al. 2013). 
In Phoenix, it is noteworthy that the strongest 
mortality relationships at lag 0 and lag 1 are for 
the early morning and mid-morning hours and 
not the afternoon or evening. This finding is 
particularly relevant for efforts to diminish the 
climatic effects of future urbanization in the 
Phoenix metropolitan area, where mortality 
projections show wide disparities between 
maximum and minimum temperatures, the 
latter of which is primarily impacted by the 
urban heat island effect (Georgescu et al. 2011; 
Hondula et  al. 2014). Because these cities 
experience potentially dangerous heat on a 
more routine basis than the other study cities, 
choice of a lower baseline temperature percen-
tile (e.g., the 75th or 80th percentile) and/
or choice of a different response variable (e.g., 
deaths specifically coded as heat related) may 
have revealed an association between heat and 
health undetected by the approach we used. In 
Phoenix, for example, the association between 
temperature and mortality has been shown to 
be stronger for models based on heat-related 
deaths versus those based on all-cause mortality 
(Petitti et al. 2015).

The results for Minneapolis-St. Paul are 
inconsistent with expectations. Although 
there are some statistically significant heat–
mortality associations at lag 0 (e.g., RR at 0600 
hours LST = 1.039; 95% CI: 1.009, 1.069) 
and late evening at lag 1 (e.g., RR at 2000 
hours LST = 1.033; 95% CI: 1.005, 1.062), 
the overall mortality response was much 
less evident than in Boston, Philadephia, 
or Seattle. Other research has identified a 
demonstrable heat impact in Minneapolis 
using different periods of record and 
methods (Anderson and Bell 2009; Davis 
et  al. 2003b; Hondula et  al. 2015), with 
varying effect estimates for different demo-
graphic groups reported elsewhere (O’Neill 

et al. 2003, 2005). It may also be noteworthy 
that the somewhat shorter period of record 
in Minneapolis may have resulted in less 
robust RRs and larger confidence intervals 
compared with the other cities in this research. 
With respect to the daily summary tempera-
ture metrics, the differences in effect esti-
mates tended to be minimal. Thus, based on 
this sample of cities, the impact of different 
methods of calculating the mean, maximum, 
and minimum temperature is small, and 
researchers are therefore encouraged to use 
the most convenient method. However, the 
selection of the daily metric to use—mean, 
maximum, or minimum—is more critical 
owing to differences in the estimated RR 
of mortality across the different cities 
we examined.

We observed that the times and days asso-
ciated with the optimal cross-validation scores 
were not always the same as those that were 
associated with the largest model-estimated 
RR values. These two values are not directly 
comparable because they are calculated using 
different portions of the temperature distribu-
tion. RR is based on only the 99th and 85th 
percentile temperatures, whereas the cross-
validation scores use the entire distribution. 
Models that do not provide a good fit across 
the entire temperature distribution but have 
a steep slope at high temperatures will appear 
to provide contrasting information between 
the RR and cross-validation scores. It is also 
possible that certain models are driven by a 
small number of highly influential data points 
that, when removed for subsetting the data for 
cross validation, lead to poorer model fit.

The temperature metrics we evaluated 
are often considered to be highly correlated 
with one another; if so, the differences in the 
shape of the temperature–mortality curves 
derived from different metrics (Figure 2) and 
the associated relative risk point estimates and 

Table 3. Correlation coefficients between selected pairs of temperature observations for each city 
(abbreviations in Table 1).

Temperature metrics compared/ 
time span of comparison Atlanta Boston Minneapolis Philadelphia Phoenix Seattle St. Louis

All-city 
average

1200 & 1800 hours LST
Entire summerb 0.713 0.863 0.859 0.829 0.838 0.882 0.818 0.829
Days ≥ 85th percentilec 0.498 0.629 0.644 0.594 0.598 0.772 0.568 0.615

1200 hours LST & meana
Entire summer 0.883 0.933 0.901 0.911 0.888 0.934 0.912 0.909
Days ≥ 85th percentile 0.793 0.828 0.795 0.805 0.690 0.884 0.812 0.801

Maxa & mina
Entire summer 0.655 0.758 0.733 0.705 0.645 0.634 0.783 0.702
Days ≥ 85th percentile 0.423 0.472 0.535 0.376 0.143 0.395 0.577 0.417

Mean & mean24a
Entire summer 0.992 0.997 0.995 0.996 0.993 0.995 0.997 0.995
Days ≥ 85th percentile 0.974 0.991 0.988 0.986 0.975 0.989 0.990 0.985

Max lag 0 & max lag 1
Entire summer 0.755 0.558 0.677 0.659 0.724 0.692 0.672 0.677
Days ≥ 85th percentile 0.660 0.341 0.459 0.484 0.553 0.457 0.456 0.487

aMean refers to daily mean temperature [(max + min)/2], where max and min are the highest and lowest temperature, 
respectively, recorded at a station on a given day regardless of observation time. bJune–August. cBased on daily mean 
temperature [(max + min)/2]; percentile is defined based on all calendar months.



Temperature measurements and heat-related mortality

Environmental Health Perspectives  •  volume 124 | number 6 | June 2016	 803

cross-validation scores associated with different 
metrics (Figures 3–5) may seem to be surpris-
ingly large. The extent to which these tempera-
ture metrics are, in fact, highly correlated with 
one another, depends on the portion of the 
temperature distribution under consideration. 
When examined from an annual perspective, 
most temperature observations and metrics are 
correlated because of seasonality; all metrics 
follow a similar progression throughout the 
course of the year. But differences between 
these metrics at the high end of the tempera-
ture distribution—those associated with 
summertime and extreme heat conditions—are 
most important in determining the RR esti-
mates examined here. Temperature metrics 
are not as highly correlated at the extremes as 
they are for the entire summer or calendar year 
because the influence of seasonality becomes 
muted. For example, in comparing the overall 
correlations from all days during the summer 
months (~ 92 days) to the correlations from 
only those days with daily mean temperatures 
[(max + min)/2] above the 85th percentile 
of daily means (~ 55 days), the correlation 
between 1200 and 1800 hours LST tempera-
tures (averaged across all cities) dropped from 
0.829 to 0.615 (Table 3). Similarly, the corre-
lation between daily maximum and minimum 
temperature declined from 0.702 to 0.417. 
The differences between these time series are 
carried forward into temperature–mortality 
models and can be manifested as large differ-
ences in the estimated temperature effect 
(as seen, for example, in Figure 2 and RR 
estimates in Figures 3 and 4).

Our results depend on accurate reporting 
of the date of death in the mortality records. 
We cannot control for possible inter-city 
biases associated with reporting practices, 
but we assume that any errors are randomly 
distributed. Because air temperature is 
highly autocorrelated, the hourly models 
are not independent. Although this would 
generally be a concern in the development 
of statistical models, it is not an issue in this 
research because our only goal was to compare 
temperature–mortality models at each hour. 
To allow for a quantitative comparison 
between cities and different temperature 
observation times and daily summary metrics, 
we selected consistent values for the percen-
tiles of temperature used as the exposure 
contrast for the RRs (metric-specific 99th 
percentile vs. 85th percentile defined based 
on year-round data) and degrees of freedom 
in the smoothing splines (k = 7). The tempera-
ture percentiles we examined may not be the 
most appropriate representations of baseline 
and extreme heat conditions across all cities 
and observation times, and the absolute differ-
ences between the percentiles we examined 
certainly vary from one city to another and 
one time of day to another. Comparisons 

using other temperatures and splines influ-
enced the point estimates and CIs of some 
the models but not the general shape of the 
curves (data not shown). Point estimates using 
the 90th percentile temperature metrics as the 
baseline were smaller and a higher number 
of CIs using the 90th percentile included the 
null, but the progression of estimates from 
one observation to another remained similar. 
Differences between the models with 5 or 
7 degrees of freedom were generally minor 
and showed no systematic pattern toward 
larger or smaller point estimates or CIs. The 
siting of the meteorological stations used 
in this study may introduce some bias into 
the results, particularly because some of the 
stations are located in cities with a strong 
urban heat island effect (which impacts the 
diurnal temperature range) and/or one that 
has amplified over the study period (e.g., 
Chow et al. 2012; Hondula et al. 2012). We 
anticipate that any such bias would be small 
in light of other studies that have reported that 
temperature–mortality models using single 
meteorological stations perform just as well as 
those that incorporate multiple meteorological 
stations from different locations across urban 
areas (Guo et al. 2013; Schaeffer et al. 2016). 
Additional research is required to understand 
how well airport observations correlate to 
actual temperatures experienced by urban resi-
dents (e.g., Bernhard et al. 2015; Kuras et al. 
2015). Despite the relatively long temporal 
records of mortality, sample size differences 
between cities may have influenced preci-
sion of effect estimates, although we did not 
observe any large biases related to sample size. 
Finally, because each day is examined inde-
pendently, this study design does not allow 
us to specifically examine mortality displace-
ment or the impacts of high heat over several 
consecutive days.

To our knowledge, this research is the first 
to examine the relationship between hour-by-
hour temperature variations and temperature 
variable selection on heat-related mortality in 
the United States. The examination of hourly 
differences (Figures 3 and 4) provides a novel 
way of characterizing how the association 
between temperature and mortality evolves 
over fine time scales between the day of death 
and exposure 3 days prior. Cross-validation 
metrics indicate that models using tempera-
tures from lag 0, and especially daytime hours 
on lag  0, were better predictors of excess 
mortality than other available options.

Conclusions
After comparing 24 hourly temperatures and 
several different methods of calculating daily 
mean, maximum, and minimum temperature 
at lags of up to 3 days, we found differences 
in mortality effect estimates based solely on 
temperature variable selection in three cities 

commonly considered to be heat sensitive 
(Boston, Philadelphia, and Seattle). In these 
cities, afternoon, maximum, and daily mean 
temperatures were most strongly related to 
mortality, primarily at lag 0 (i.e., high heat 
occurring on the day of death). However, 
in cities where high summer temperatures 
are common (Phoenix, St. Louis, Atlanta), 
the relationships were weaker, and there 
was some evidence of a greater influence of 
morning temperatures at lag 0. In all cities, 
the relationships weakened significantly on or 
after lag 1, and some cities showed evidence 
of a mortality displacement effect by lag 3. In 
some cases, the statistical significance of effect 
estimates for mean, maximum, and minimum 
temperature depended on the manner in 
which the value was measured or calculated. 
In general, however, daily mean or maximum 
temperatures were more strongly associated 
with mortality than minimum temperatures, 
and differences between relative risks based 
on alternative versions of the same tempera-
ture metric (e.g., between maximum tempera-
ture based only on hourly measurements vs. 
the maximum temperature measured at any 
time during the day) were much smaller than 
differences between relative risks estimated for 
different temperature metrics (e.g., maximum 
vs. minimum daily temperature).

The lack of a single, consistent relationship 
across cities is consistent with prior research 
(Barnett et al. 2010; Hajat et al. 2010) and 
argues for the development of city-specific 
models. Based on these findings for a sample 
of U.S. cities from different climate zones, 
we recommend rigorous consideration and 
precise articulation of independent variable 
choice as well as examination of a number of 
alternative metrics (especially given the ready 
availability of hourly weather observations) 
when performing population-scale health risk 
assessment related to heat stress.
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