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Abstract

The musculoskeletal system evolved in mammals to perform diverse functions that include 

locomotion, facilitating breathing, protecting internal organs, and coordinating global energy 

expenditure. Bone and skeletal muscles involved with locomotion are both derived from somitic 

mesoderm and accumulate peak tissue mass synchronously, according to genetic information and 

environmental stimuli. Aging results in the progressive and parallel loss of bone (osteopenia) and 

skeletal muscle (sarcopenia) with profound consequences for quality of life. Age-associated 

sarcopenia results in reduced endurance, poor balance, and reduced mobility that predispose 

elderly individuals to falls, which more frequently result in fracture because of concomitant 

osteoporosis. Thus, a better understanding of the mechanisms underlying the parallel development 

and involution of these tissues is critical to developing new and more effective means to combat 

osteoporosis and sarcopenia in our increasingly aged population. This perspective highlights 

recent advances in our understanding of mechanisms coupling bone and skeletal muscle mass, and 

identify critical areas where further work is needed.
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Introduction

The musculoskeletal system is of paramount importance in our daily lives. In addition to the 

commonly identified actions of bone and muscle to support upright stance, facilitate 

movement and breathing, and serve as a protector of our internal organs, these tissues also 

serve critical metabolic roles. Bone serves as an internal reservoir for calcium to ensure the 

proper function of nerves and muscle,(
1) and skeletal muscle is responsible for over 80% of 

carbohydrate storage.(
2) Recent studies suggest that the skeleton also contributes to glucose 

homeostasis, further intertwining the actions of bone and muscle beyond locomotion.(
3)
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Mammalian bone and skeletal muscle involved with locomotion develop in close association 

from the somitic mesoderm, and accumulate their final adult mass according to specific 

genetic instructions and environmental cues. Changes in muscle and bone mass brought 

about by exercise, disuse, or aging are also tightly correlated in both humans and 

experimental animal models. However, the precise mechanisms responsible for this 

synchronization remain unclear. It has been widely assumed that coordination of muscle and 

bone mass occurs through muscle force-generated mechanical signals, which transduce 

anabolic activity in the adjacent bone.(
4) Indeed, evidence from human and animal studies 

supports the role of mechanical signals as a factor coordinating muscle and bone volume, as 

is discussed in detail here. The shared mesodermal origin of muscle and bone(5) presents an 

additional possibility; that common molecular networks serve to coordinate their mass.(
6–11)

Clearly, a better understanding of how muscle and bone synchronize their mass throughout 

life is critical to the development of more effective strategies to improve musculo-skeletal 

health and function. In this regard, many of the studies we review herein suggest a dominant 

role of muscle over bone in synchronizing the mass of these two tissues (at least in postnatal 

life). Such a hierarchy of control in synchronizing the musculo-skeletal system, if brought to 

bear through additional study, could completely shift our paradigm for treating osteoporosis 

and frailty. In this perspective, we review recent findings regarding the mechanisms that 

coordinate the mass of muscle and bone—from early development through aging and 

involution—and discuss how these data might help guide our approaches to treating 

disorders in both tissues.

Developmental Biology of the Musculoskeletal System

Locomotion in vertebrates requires muscles to contract and work against the levers of an 

internal skeleton, enabling the movement of body parts. The vertebrate skeleton is composed 

of bone and cartilage linked to skeletal muscle through tendons (for an excellent review of 

tendons in musculoskeletal development see Schweitzer and colleagues(12)). The skeleton 

forms in a discrete stepwise process initiated by condensation of mesodermal mesenchymal 

precursors at the future sites of bone. Following condensation, these precursors differentiate 

into chondrocytes to form a cartilage anlage (endochondral bone formation) or directly into 

osteoblasts to form bone (intramembranous bone formation), depending upon positional 

cues.(
13) Once formed, the skeleton is continually remodeled throughout life, which allows 

for repair of microdamage and adaptive response to increased or decreased mechanical 

loads. The process of bone remodeling is achieved by the coordinated actions of the bone-

forming osteoblasts, bone-resorbing osteoclasts, and osteocytes—terminally differentiated 

cells of the osteoblast lineage that are embedded in mineralized bone and appear to serve a 

multitude of functions including mechano-sensation, regulating bone remodeling (via 

receptor activator of NF-kB ligand [RANKL] and Sclerostin), and participating in phosphate 

homeostasis (via fibroblast growth factor 23 [FGF23]).(
14) The rate and degree of coupling 

of bone formation to resorption during remodeling is regulated by autocrine, paracrine, and 

endocrine factors including, but not limited to, Wnts, Hedgehog, and Notch, bone 

morphogenetic protein (BMP) families, transforming growth factor-β (TGF-β), growth 

hormone (GH), and insulin-like growth factor-1 (IGF-1), FGF-2, interleukin-6 (IL-6) type 

cytokines, and ephrinB2 and B4.(
15)
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Myogenesis occurs immediately adjacent to, and concurrent with, the development of the 

skeleton during embryogenesis. In the case of skeletal muscle in the trunk and limbs, 

precursors from the paraxial mesoderm differentiate and fuse to form multinucleated 

syncytia, or myofibers, that comprise skeletal muscle.(
16) Specification of mesodermal 

precursor cells into the myogenic lineage occurs in the somite for limb muscles, under the 

control of Pax3/7.(
17) Signals from surrounding tissues then increase myoblast expression of 

myogenic factors (Myf5/MyoD) and drive further differentiation and myogenesis.(
17,18) 

During primary myogenesis, myoblasts fuse to form nascent myotubes, with relatively few 

nuclei. Secondary myogenesis is characterized by subsequent recruitment and fusion of 

additional myoblasts and ultimately gives rise to the multinucleated, mature myofibers. 

However, it would appear that not all Myf5/MyoD expressing myoblasts fuse. Muscle 

satellite cells (which are Pax7-positive and recently demonstrated to have previously 

expressed Myf5 and MyoD) can first be observed under the basal lamina of muscle fibers in 

late fetal stages. These satellite cells do not divide and remain on the periphery of the 

myofibers to serve as the source of new myonuclei during postnatal growth and injury 

repair.(
17,18) Similar to the regulation of bone development and mass, skeletal muscle 

development and maintenance is regulated by morphogens and growth factors, many of 

which overlap with those involved in skeletogenesis, such as Wnts, Hedgehog, Notch, FGFs, 

IGF-1, and TGF-β.(
16) Among the most dominant factors controlling muscle size is 

myostatin, a member of the TGF-b superfamily. Myostatin negatively regulates skeletal 

muscle size by activating ACVR2B and initiating Smad2/3 signaling.(
19,20)

Many of the overlapping signaling pathways present in muscle and bone development exert 

similar functions in both tissues. For example, GH and IGF-1 increase proliferation and 

differentiation of both osteoblasts(21) and myoblasts(22) during development in mice. Some 

differences are apparent, however, in the activity of these growth factors between muscle and 

bone. GH appears to uniquely interact with sex steroids in determining the sexually 

dimorphic patterns of the skeleton.(
23)

Wnt signaling is also critical for the development of both muscle and bone and exhibits 

significant overlap in function between the two tissues. In muscle, Wnts control myogenic 

regulatory factor (MRF) expression during early embryogenesis to initiate the myogenic 

program, as well as regulating satellite cell differentiation, self renewal, and muscle fiber 

growth in response to loading (the latter two through noncanonical signaling) in adult 

life.(
24) Similarly in bone, Wnt signaling is critical for the specification of mesenchymal 

progenitors toward the osteoblast lineage and responding to mechanical loading.(
25) 

Interestingly, the precise control of Wnts in regulating development seems to be dependent 

upon timing of exposure in bone,(
25) whereas in muscle, the level of Wnt signaling seems to 

be the primary modulator.(
24) A better understanding of the molecular bases underlying the 

divergent roles in these common signaling pathways of muscle and bone might reveal novel 

therapeutic targets.

The close physical linkage of bone and muscle development is evident even before birth. For 

example, the varying circumferential shape of different long bones occurs through 

asymmetric mineral deposition, apparently in response to site-specific mechanical strains 

applied to the newly forming bones by their associated muscle groups in utero.(
26) In 
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agreement with this notion, the shapes of long bones from muscular dysgenesis (mdg) mice, 

which lack muscular contraction due to an excitation-contraction coupling defect, are nearly 

uniformly circular and mechanically inferior to those of normal mice. Muscular contraction 

during embryogenesis has also been demonstrated to be critical for maintaining specification 

of joint progenitors to ensure proper joint morphogenesis. A study from Kahn and 

colleagues(27) noted the loss of elbow, midcarpal, and hip joints in three different mutant 

mice that lacked muscle, as well as the mdg mice described in the study by Sharir et al.(
26) 

Evidence supporting the importance of muscular contraction for proper skeletal development 

can also be observed in rare neuromuscular disorders that reduce human fetal muscle 

contraction. Fetal immobilization secondary to congenital myotonic dystrophy or spinal 

muscular atrophy resulted in thin, hypomineralized, and elongated long bones with multiple 

fractures.(
28,29) In addition to mechanical crosstalk during embryogenesis and fetal 

development, recent evidence suggests bone and muscle development are intimately linked 

through morphogen signaling. In both mouse and chick embryos, bone-derived Indian 

hedgehog (Ihh) promotes fetal myoblast survival and secondary myogenesis.(
30) Importantly, 

the ability of bone-derived Ihh to support myogenesis indicates that muscle-bone crosstalk is 

bidirectional.

Postnatal Coordination of Bone and Muscle Mass

During postnatal growth in mammals, bone and muscle mass increase dramatically and 

proportionally, achieving peak mass at around the same time (25–35 years old in 

humans).(
31) Longitudinal growth of long bones occurs through endochondral 

ossification.(
32) The growth plate generates a cartilaginous template that becomes new 

trabecular bone, elongating the metaphysis. Trabeculae near the outer edges of the bone 

eventually coalesce to form the metaphyseal cortex. As the bone elongates, those trabeculae 

near the center of long bones are resorbed to form the marrow cavity. In the diaphysis, cross-

sectional growth is mediated by the combination of periosteal cortical apposition and 

endosteal resorption. The postnatal growth of muscle results entirely from an increase in 

muscle fiber size (hypertrophy), although the mechanism(s) driving this process has been 

widely disputed. Muscle hypertrophy had long been thought to require the proliferative 

activity of satellite cells and their fusion with existing muscle fibers,(
33–35) but recent 

evidence has demonstrated hypertrophy of muscle fibers in the absence of satellite cells.(
36)

Genetic background

A fundamental determinant of peak bone and muscle mass is genetic background. Bivariate 

linkage analysis in large human populations has identified significant quantitative trait loci 

(QTLs) shared by leg lean mass with shaft cross-sectional area on chromosome 12p12–

12p13 and with neck shaft angle on 14q21–22.(
37) Another study of 102 monozygotic and 

113 dizygotic older female twin pairs demonstrated shared genetic components in muscle 

cross-sectional area of the lower leg, bending strength of the tibial shaft, and compressive 

strength of the distal tibia from pQCT scans.(
38) Analogous studies in animal models also 

indicate that common gene subsets control bone and muscle mass. For example, inactivating 

mutations of myostatin cause hypermuscularity in mice, with increased cortical bone 

mineral content (BMC) at the L5 vertebra, larger spinous processes, and larger entheses on 
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the femur and humerus.(
39,40) It has also been proposed that genetic background might 

determine responsivity of the muscle-bone unit to mechanical stimuli. In support of this 

idea, Lang and colleagues(41) used structural equation modeling to examine the extent to 

which select genetic loci manifest their pleiotropic effects in the musculoskeletal system 

through adaptation to mechanical stimuli. Genetic analysis in male and female F2 offspring 

from a B6XD2 intercross demonstrated correlations among bone strength, muscle mass, and 

physical activity, and identified several QTLs associated with mechanosensitivity.

Sex steroids

Superimposed on these genetic determinants of bone and muscle mass are anabolic stimuli 

that occur postnatally, the most dominant of which is puberty. During the pubertal growth 

spurt, bone and muscle mass accumulate rapidly under the influence GH, IGF-1, and sex 

hormones.(
42) Pubertal increases in lean body mass are detected prior to increased BMC, 

suggesting that skeletal mass increases to accommodate stresses incurred from increased 

muscle force.(
43) In agreement with this concept, tibial cross-sectional moment of inertia is 

tightly correlated with the cross-sectional area of the calf muscles.(
44) Although females 

enter puberty first, males have a longer pubertal growth spurt and greater peak longitudinal 

growth velocity than females, which ultimately results in 10% greater height and 25% 

greater peak bone mass in males.(
45) In addition, male bones attain a larger diameter due to 

greater periosteal expansion and less endocortical apposition than females.(
46,47) These sex-

specific differences in skeletal acquisition are mediated by the differential effects of 

androgens and estrogen.(
48) Peak muscle mass is also higher in males(49,50) as a result of the 

well documented anabolic effects of androgens in muscle hypertrophy (in both sexes) 

commonly observed in professional bodybuilding. Additionally, testosterone increases 

muscle mass and strength in hypogonadal men(51) and normalizes the reduced muscle mass 

in orchidectomized rodents.(
52) By contrast, estrogen appears to have little direct effect on 

muscle hypertrophy, and replacement therapy fails to prevent loss of muscle mass and 

strength in aging females.(
53,54)

Mechanical forces

In addition to the genetic determinants and humoral factors affecting musculoskeletal mass, 

and likely in direct interplay with them, the level of physical activity in which a human or 

animal engages plays a tremendous role in determining postnatal muscle and bone mass. 

Physical activity exerts anabolic effects on the skeleton either directly, indirectly through 

mechanical forces generated by muscle action, or indirectly through endocrine regulation 

(ie, elevation of GH and IGF-1), and understanding the precise mechanisms underlying this 

anabolic response is an area of very active research. Exaggerated examples of mechanical 

effects achieved though vigorous exercise are seen in the increased bone density of the 

dominant arm (which also has increased muscle mass) of premier racquet sport 

participants.(
55–57) Thankfully for the majority, it appears that such benefits are not restricted 

to elite athletes. Both muscle and bone have recently been demonstrated to be responsive to 

low-magnitude mechanical signals.(
58) Genetic linkage studies in mice have been performed 

to tease out genes that may be responsible for the anabolic response of bone to mechanical 

stimulation. For example, Kesavan and colleagues(59) performed QTL analysis after 

applying bending loads to the tibias of 10 week-old female F2 mice from a B6XC3H 

DiGirolamo et al. Page 5

J Bone Miner Res. Author manuscript; available in PMC 2016 June 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



intercross and identified several loci that appeared responsible for mechano-sensitivity. 

Whether these same genes exert such effects in muscle is a question that clearly warrants 

further investigation.

Conversely, disuse or unweighting of the muscle-bone unit in immobilized individuals (bed 

rest) or after space flight, respectively, results in a dramatic loss of bone and muscle 

mass.(
60) In many cases, the loss of muscle appears to drive the loss of bone. For example, 

individuals with Duchenne muscular dystrophy and cerebral palsy—primary defects in 

muscle function—also have reduced bone mass and increased fracture risk.(
61–64) 

Furthermore, significant bone loss occurs in patients with spinal cord injury (SCI)(65); where 

rapid and profound muscle loss of muscle mass secondary to motor neuron loss is 

presumably the precipitating factor.(
66) Additional evidence supporting a primary role for 

muscle as a determinant of bone mass comes from studies in subjects exposed to chronic 

unloading during space flight. Individuals exposed to zero gravity experience minimal 

neuromuscular mechanical stimulation (bodies in space have mass but not weight), with 

significant muscular atrophy and bone loss (1% of total muscle and 1.8% to 2% of total bone 

lost per month(60)). Interestingly, the losses of muscle and bone during space flight are far 

less pronounced in the upper extremities that do not typically bear weight, but myriad 

physiologic changes in space (cardiovascular, etc.) make interpretation of such findings 

difficult.

Other studies in microgravity, or in settings designed to minimize the effects of gravity, 

suggest that the variable effects of loading and unloading on different regions of the 

musculo-skeletal system may actually stem from its biomechanical evolution to protect 

joints against the force of gravity.(
67) In this regard, the musculature of the human body can 

be largely anatomically divided into monoarticulate (muscles that cross a single joint) or 

biarticulate (muscles that cross two joints). In a complex movement, such as pedaling a 

bicycle, monoarticulate muscles generally maintain joint position while biarticulate muscles 

orchestrate the direction and force of leg movement.(
68) Using a ballistic knee movement 

model, Richardson and Bullock(69) experimentally eliminated gravitational load cues from 

subjects’ knee movements and demonstrated that biarticulate muscle recruitment increased 

with increasing speed, while monoarticulate muscles were unaffected. Conversely, activation 

of monoarticulate muscles in the knee and hip was significantly higher under weight bearing 

versus non–weight bearing conditions, with normal gravitational load.(
70) This suggested the 

presence of an “antigravity” system within the musculature, particularly monoarticulate, to 

support and protect joints and maintain posture under gravitational load. Indeed, in 

conditions of microgravity, such postural muscles demonstrate the greatest losses of 

mass.(
71,72) The loss of muscle mass from these postural muscles in unloaded conditions is 

also associated with fiber-type switching—from slow (endurance) to fast (easily fatigued) 

fibers.(
73) Similar changes are also observed in cases of immobility and bed rest.(

74) It 

should be noted that age-related fiber-type switching differs from that seen in microgravity 

or during bed rest; ie, the muscles that atrophy tend to be type IIX (fast) fibers with 

increasing dependence on type IIA (intermediate) and type I (slow) fibers.(
75) Thus, it is 

reasonable to suggest that aging and bed rest simultaneously impinge upon two different 

fiber types, compounding the impairment of muscle function. The atrophy of postural and 

stabilizing muscles during a hospitalization (and switch to easily fatigued fast fibers) might 
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predispose an elderly individual to poor(er) posture and biomechanics, which could lead to 

joint damage or even falls (because the age-related switch from fast fibers would make it 

more difficult to compensate for a loss of balance), creating a vicious cycle of muscle and 

bone loss from further inactivity.

Experimental maneuvers to mimic unloading in rodents, such as tail suspension, can 

reproduce some of the effects of microgravity, including rapid loss of muscle and bone.(
76) 

Interestingly, certain genetic strains of mice (C3H/HeJ) are resistant to unloading-induced 

bone loss.(
77) These models are beginning to be used to examine the underlying genetic 

determinants of responsiveness of muscle and bone to unweighting, with obvious 

implications for identifying potential therapeutic targets to prevent muscle and bone loss 

associated with more “down to earth” problems like injury and immobility.

Aging and Musculoskeletal Involution

The mass of both skeletal muscle and bone are profoundly affected by age. Age-related 

muscle atrophy, referred to as “sarcopenia,” is characterized by the loss of both strength and 

skeletal muscle mass.(
78) Muscle mass decreases by 3% to 8% per decade after age 30 years, 

and the pace of muscle loss only quickens after age 60 years.(
79) This loss of muscle mass 

and strength is due to progressive atrophy, loss of muscle fibers, reduced motor neuron 

input, and impaired function of the contractile apparatus within each fiber.(
80) Aging is 

further complicated by periods of bed rest or inactivity, due to an injury such as a hip 

fracture, which can result in profound losses of both bone and muscle in parallel.(
81) In a 

sample of community-dwelling seniors, hospitalizations were associated with a loss of lean 

mass and fat mass, as well as a loss of strength in men.(
82) Even in healthy older persons, 10 

days of bed rest can produce losses of strength of over 13% along with losses of aerobic 

capacity.(
83) Bed rest might also have deleterious effects on postural support that could 

predispose to joint damage and/or falls.(
67) Although the declines in muscle can be partially 

explained by reduced physical activity with age, sarcopenia also involves metabolic 

abnormalities, including reduced insulin sensitivity, fat and connective tissue infiltration, 

impaired oxidative defense, reduced hormone levels, and decreased mitochondrial 

activity(84–86) that further confound muscle function.

At the cellular level, these sequelae of sarcopenia can disturb the already faltering balance of 

protein synthesis and degradation present in aging muscle. Muscle atrophy occurs through 

the concerted actions of numerous signaling pathways and molecular mechanisms (recently 

reviewed by Bonaldo and Sandri(
87)) including insulin-like growth factor 1 (IGF-1)-Akt- 

mammalian target of rapamycin (mTOR)/Forkhead box O (FoxO), inflammatory cytokines 

and NF-kB signaling, myostatin/activin signaling, the ubiquitin-proteasome system, and the 

autophagy- lysosome system. Indeed, recent studies suggest that autophagy may play a 

significant role in sarcopenic muscle atrophy. Autophagy is critical in many cell types for the 

turnover of cellular components, both on a continual basis and in response to stress, nutrient 

deprivation, or cytokines.(
88) Evidence of muscle diseases in states of both excess(89) and 

defective autophagy(90) suggest that there may be an optimum autophagy flux in muscle to 

maintain contractile function, and disruption of normal autophagy with age might predispose 

muscle fibers to chronic contractile damage and, eventually, atrophy.(
91) As noted above, 
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mitochondrial function declines with age and results in progressive activation of autophagy 

to recycle these dysfunctional mitochondria, possibly causing just such a disruption in 

autophagy flux. In support of this notion, transgenic expression of peroxisome proliferator-

activated receptor gamma coactivator-1a (PGC1a) in skeletal muscle (a master regulator of 

mitochondrial biogenesis) prevented the age-related increase in autophagy and loss of 

muscle mass in mice.(
92)

In addition to these changes within the myofiber, muscle regenerative capacity is further 

hampered with age due to a reduction in—and impaired function of persisting—satellite 

cells.(
93) As described earlier, quiescent satellite cells reside between the sarcolemma and 

basal lamina of myofibers and are critical for postnatal growth and regeneration following 

injury. Although the precise mechanism leading to their decline and dysfunction remains to 

be proved, evidence from other tissue- resident stem cell populations, including 

hematopoietic and neural stem cells, implicate chronic exposure to inflammatory factors and 

oxidative stress as likely factors underlying the disruption of the balance of stem cell 

proliferation, self-renewal, and appropriate differentiation.(
94,95) Interestingly, despite the 

many indications of intrinsic defects in both myofibers and satellite cells with age, early 

work by Carlson and Faulkner(96) clearly demonstrated that the aged environment exerts a 

dominant effect on the regenerative capacity of muscle. In their study, the extensor digitorum 

longus (EDL) from young rats was transplanted into young or old rats, and vice versa. 

Surprisingly, the EDL from both young and old rats was able to regenerate to a similar 

extent in young recipients, whereas even young muscle regenerated poorly in the old 

recipients.(
96) More recently, elegant experiments involving parabioses between young and 

old mice demonstrated a rejuvenation of satellite cell populations in aged mice when 

exposed to the youthful shared circulation.(
97) These effects of the aged environment on 

muscle regenerative capacity have been shown to involve a decline in Notch signaling(98) 

and an increase in circulating Wnt molecules.(
99)

Concomitant with the loss of muscle, aging also results in progressive bone loss, leading to 

bone fragility and increased risk for osteoporosis and fractures. In fact, age-related muscle 

wasting may coexist with osteoporosis, establishing a vicious cycle between dysfunctional 

muscle and bone. This age-related loss of bone results from a decreased capacity to 

effectively remodel itself. Osteoblast numbers and function decline with age(100) in 

association with decreased levels of sex steroids, GH, and IGF-1.(
101–103) Interestingly, 

many of the same mechanisms that appear to impinge upon satellite cells with age also 

negatively affect the mesenchymal stem cells (MSCs) that give rise to osteoblasts, including 

oxidative stress.(
104) Further, exposing MSCs from aged mice to a decellularized 

extracellular matrix produced by the MSCs of young mice corrected the proliferative and 

osteogenic differentiation defects in aged MSCs.(
105) Unlike osteoblasts, osteoclast-

mediated resorption remains constant, or even increases (by as much as 90% in 

postmenopausal women).(
106) Ineffective remodeling of bone with advanced age is also 

partially explained by a reduction in responsiveness to mechanical loads,(
107) possibly via 

alterations in mechanosensation by osteocytes.(
14) Interestingly, this age-related decline in 

bone remodeling in response to mechanical load parallels that of the decreased muscle input, 

highlighting again, the possibility of a dominant role of muscle in the muscle-bone unit.
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Body composition changes with aging also include the accumulation of fat viscerally, in the 

bone marrow, and infiltrating between and within muscle fibers.(
108) The entity referred to as 

“sarcopenic obesity” is the co-occurrence of muscle loss with increases in adiposity, and it 

appears to be associated with functional disability.(
109) There may be an underlying link 

between sarcopenic obesity and osteoporosis, because both muscle and bone exhibit 

increased numbers of adipocytes with age. Intramuscular fat has been shown be associated 

with inflammatory markers,(
110) which may represent a mechanism explaining the recent 

observation that periaortic fat is associated with lower volumetric bone density of the 

adjacent spine.(
111) Thus, the age-related decline in muscle mass and bone mass may be 

partly linked to adipocyte physiology and their proinflammatory milieu.

Emerging Endocrine Roles

A number of studies support the notion of muscle functioning in an endocrine fashion to 

affect other tissues and organs, including liver, pancreas, vasculature, fat, and importantly for 

our discussion, bone (reviewed by Pedersen and Febbraio(112)). These muscle-secreted 

endocrine factors, termed myokines, include myostatin, leukemia inhibitory factor (LIF), 

IL-6, IL-7, brain-derived neurotrophic factor (BDNF), IGF-1, FGF-2, follistatin-like protein 

1 (FSTL-1), and irisin.(
112) It is reasonable to postulate that many myokines could exert 

direct effects on adjacent—or even distant—bone, especially IGF-1 and FGF-2, given the 

primary importance of these factors in bone development.(
15) Moreover, myokines could 

also indirectly impact bone through actions on other tissues. For example, IL- 6 can increase 

the secretion of insulin from the pancreas by increasing GLP-1 secretion from L cells and 

alpha cells.(
113) Insulin could then feed into the recently described bone–pancreas endocrine 

loop and exert secondary effects upon bone.(
3) Furthermore, the ability of muscle secreted 

irisin to induce brown-fat-like development of white fat(
114) could also indirectly impact 

bone, given the crosstalk between bone and fat.(
115,116) Additionally, the recent 

identification of a novel muscle secretory factor, musclin,(
117) which is identical in protein 

sequence to bone-derived osteocrin,(
118) suggests the possibility of an endocrine loop 

directly connecting muscle and bone.

Summary and Perspectives

Bone and muscle, from early embryonic development through aging and involution, are 

tightly coupled in both form and function. Numerous factors impact the relative mass of 

these two tissues, including genetic background, morphogens, sex steroids, other circulating 

factors (eg, GH and IGF-1), and mechanical forces. Although morphogens and genetic 

factors may primarily control muscle and bone development during embryogenesis, and sex 

steroids exert a dominant role during pubertal growth, it appears that mechanical forces exert 

an overarching control throughout life. In this regard, much of the data reviewed in this 

Perspective suggests that muscle predominates over bone in synchronizing tissue mass of the 

musculoskeletal system. That is not to say that communication between muscle and bone is 

necessarily unidirectional. As described in our discussion of the developmental biology of 

the musculoskeletal system, bone-derived Ihh is required for normal muscle development in 

mouse and chick embryogenesis. However, the postnatal setting clearly favors a strong 

influence of muscle on bone mass through mechanical signals, which likely employ the 
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actions of hormones and morphogens as determined by one's genetic background. 

Therapeutic approaches to treat age-related and disease-related musculoskeletal deficits 

based upon this “muscle-predominant” concept are an area of extremely active research, 

with many focused on targeting the myostatin/activin signaling pathway.(
119–128) More 

recent data suggests that components of this pathway may also function directly in 

osteoblasts in a manner analogous to that of skeletal muscle,(
129) and may represent a 

common molecular means by which bone and muscle coordinate their mass.

In the face of the wealth of evidence supporting a biomechanical link that coordinates bone 

and muscle mass, many important questions regarding the nature of this putative mechanism 

remain open. Are the responses to mechanical loading of bone and muscle occurring in 

parallel, or is muscle the primary responder to physical activity, transducing that signal to 

bone in a secondary fashion? What is the nature of the mechanical signal posited by the 

mechanostat theory?(130) Further, if osteocytes serve as the primary mechanosensor, how do 

they translate mechanical signals into the biochemical orchestration of bone remodeling? 

Does muscle function as a mechanical-endocrine converter, where the mechanical events 

experienced by muscle induce paracrine/endocrine effectors, which then influence bone 

development? This seems an ever more attractive hypothesis given evidence from the rapidly 

expanding myokine field and our growing understanding of organ system crosstalk in other 

physiologic contexts. Finally, many of the examples of postnatal coupling of bone and 

muscle cited in this Perspective are likely to involve some neurological input, given the well-

described roles of the nervous system in regulating both normal muscle(61,62,131,132) and 

bone mass,(
133–135) and may present an opportunity for unique therapeutic interventions. 

Answers to the questions above are critical for understanding the coordinate regulation of 

muscle and bone mass, and for identifying new targets to combat their inevitable decline 

with age.
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