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Abstract

Parallel advances in molecular imaging modalities and in gene- and cell-based therapeutics have 

significantly advanced their respective fields. Here we discuss how the collaborative, preclinical 

intersection of these technologies will facilitate more informed and effective clinical translation of 

relevant therapies.

In recent years, investigators have made impressive progress in the bench-to-bedside 

translation of gene- and stem cell-based therapies to address a wide range of pathologies in 

preclinical and clinical settings. Similar advances in bioimaging have provided powerful 

tools to monitor their in vivo fate and function. Here, we provide an overview of relevant 

gene- and cell-based therapy and highlight the applications of molecular imaging 

technologies to evaluate graft function, regulation, and interaction with host tissue. We 

emphasize particular strategies to facilitate the continued, collaborative synergy between 

molecular imaging technologies and gene- and stem cell-based therapeutics, which will 

expedite their assessment and development.

Clinical and preclinical experience

Corrective gene therapy in the clinics

Gene- and stem cell-based therapies hold potential to help treat a variety of diseases. 

Investigators have successfully illustrated the principle of isolating, engineering, and re-

introducing a “corrected” graft for a variety of diseases with lineage-restricted phenotypes, 

including X-linked
1
 and adenosine deaminase deficient

2
 severe combined immunodeficiency 

disease, chronic granulomatous disease
3
, adrenoleukodystrophy

4
, and Wiskott-Aldrich 

Syndrome
5
. These therapies, largely limited experimentally to retroviral insertion of the 

corrected gene product in autologously derived hematopoietic stem cells (HSCs), have been 

met with widely publicized and appropriately directed concerns regarding their safety, 

despite encouraging demonstrations of phenotype correction. Follow-up reports have shown 
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leukemic
6
 and pre-leukemic

7
 induction, clonal T cell expansion

8
, and genomic instability

7 

secondary to retroviral-mediated insertional mutagenesis in or near proto-oncogenes. Such 

events, due to untargeted genome editing, served as an impetus for the temporary Food and 

Drug Administration (FDA) ban on gene therapy in 2002. The subsequent lifting of the ban 

in 2003 heralded a more skeptical, and slow-progressing era that has continued to the 

present for a field yet to realize its full potential.

Allogeneic stem cell transplantation in the clinics

Though the aforementioned near pause in gene therapy led to more cautious development in 

this arena, interest in autologous or allogeneic stem cell-based approaches strengthened 

significantly. Despite wide interest in use of bone marrow-derived mesenchymal stem cells 

(MSCs) for a range of regenerative therapies, including those for inflammatory
9
, joint

10
, and 

cardiac diseases
11

, among others, questions regarding the clinical efficacy of various stem 

cell protocols remain. In addition to marginal improvement observed in several stem cell 

trials, there is also evidence of detrimental side effects as seen with skeletal myoblast 

therapy for cardiac repair
12

. The discrepancy between the more definitive preclinical success 

of stem cell therapies and their less promising early clinical results may be partly attributed 

to a lack of knowledge regarding in vivo graft behavior.

Promising new therapeutic products are now emerging, in particular those making use of 

human embryonic stem cell (hESC) and induced pluripotent stem cell (iPSC) derivatives. 

These include the now defunct Geron trial using allogeneic hESC-derived oligodendrocyte 

progenitor cells for spinal cord repair
13

, the Advanced Cell Technology trial using hESC-

derived retinal pigment epithelium cells (RPEs) for Stargardt's macular dystrophy
14

, and the 

upcoming RIKEN Japan trial using autologous iPSC-derived RPEs for age-related macular 

degeneration
15

. As with earlier somatic cell therapies, pluripotent stem cell therapeutics will 

also need to be extensively tested and evaluated by bioimaging technologies to better 

understand their fate in vivo.

Genetically engineered stem cells

With the goal of optimizing clinical impact, the most promising approaches combine gene 

and cell therapy to deliver a corrected or beneficial gene in a therapeutically relevant cell. As 

an emerging paradigm, T cell immunotherapy offers hope for more targeted chemotherapy 

by genetically instructing T cell trafficking, direction, or redirection toward tumor cells, with 

the potential to engineer bi-specific T cells with engineered proliferation and anti-tumor 

specificities
16

. A noteworthy, single-patient case example of using PET imaging to track the 

fate of genetically-labeled and therapeutically-manipulated cytolytic T lymphocytes (CTLs) 

has demonstrated a valuable platform for integrating gene-cell therapy with molecular 

imaging
17

. In this report, CTLs labeled with the PET reporter gene herpes simplex virus 

thymidine kinase (HSV-tk) were infused intracranially after resection of a glioblastoma 

multiforme. PET imaging after administration of the PET reporter probe 9-(4-[18F]-

fluoro-3-hydroxymethylbutyl)-guanine ([18F]FHBG) revealed not only accumulation of the 

engineered CTLs in the patient’s primary tumor but also homing to another metastatic site.
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In addition to studying the in vivo fate of transplanted engineered cells, ex vivo edited cells 

also offer a valuable investigative platform. For instance, the ability to reprogram patient-

specific adult somatic cells to iPSCs by overexpression of pluripotent transcription factors
18 

has been used for ex vivo disease modeling. Notable examples of recapitulating disease 

phenotypes in a dish include amyotrophic lateral sclerosis
19

, spinal muscular atrophy
20

, long 

QT syndrome
21

, and inherited cardiomyopathies
22,23

, among others. Beyond disease 

modeling, this platform has also expedited development of high-throughput drug screening
24 

as well as gene correction in monogenic diseases
25

.

Bioimaging

From disease modeling to disease monitoring

Gene- and stem cell-based approaches have suffered from a lack of knowledge and control 

over in vivo graft behavior. Requiring years of preclinical testing, their combined 

progression will need to overcome the obstacles that have impeded these approaches 

independently and should benefit significantly from insights gained from bioimaging of 

gene and stem cell fate. Historically, lineage mapping by physical or genetic labeling has 

contributed extensively to our understanding of development and stem cell behavior, and 

assisted in the isolation of important cell populations. To better understand why gene and 

cell therapies have fallen short of their potential to date, an approach similar to that taken by 

developmental biologists should be more fully adopted by molecular imaging specialists and 

translational researchers. The coupling of therapeutic cells or vectors to reporter cassettes to 

permit live, longitudinal imaging of cellular processes may provide key insights that will 

help elucidate and harness their full regenerative and corrective capacities, while 

simultaneously addressing safety and regulatory concerns (Figure 1)
26,27

.

Defining and labeling the therapeutic population

Imaging Modalities

For regenerative medicine, several cell types are of interest due to their multipotent (e.g., 

MSCs) or pluripotent (e.g., ESCs and iPSCs) nature. Therapeutic applications of some of 

these cells have been explored through clinical trials, but unresolved concerns surrounding 

safety and efficacy are limiting their full clinical implementation
28

. Chief barriers to full 

regulatory acceptance of pluripotent stem cell-based therapeutics are their immunogenic and 

tumorigenic potential; addressing these will require in vivo tracking of transplanted grafts
29

. 

In vivo tracking of cell fate involves either “direct” physical labeling of cells by incubating 

them with a contrast agent, or “indirect” genetic labeling of cells by transfecting them with 

reporter gene construct(s). The position of and signal from these labels can then be tracked 

using a charged coupled device (CCD) camera for bioluminescence imaging
30

 or 

fluorescence imaging (FLI), single photon emission computed tomography (SPECT), 

positron emission tomography (PET), and magnetic resonance imaging (MRI), among other 

modalities. Selection of the optimal labeling technique and imaging modality depends on the 

cellular processes that need to be studied as well as the read-outs that are most desirable, 

with each labeling and imaging strategy having distinct advantages and disadvantages
31

. To 

date, most clinical studies have relied on “direct” labeling strategies to track homing and 
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migration of multipotent stem cells or engineered cells (see Table 1). These studies have 

answered critical questions in regenerative medicine, such as the importance of early stem 

cell engraftment on predicting late functional improvement
32

 and the optimal route of cell 

delivery (comparing transendocardial versus intracoronary routes) into the heart
33

. In 

addition, these cardiac regenerative studies highlight the importance of combining 

bioimaging of organ function with that of cell homing to assess which part of a diseased 

organ might benefit most from cell therapy
34

. For immunotherapy using modified cytolytic 

T-lymphocytes or tumor-specific dendritic cells (DCs), bioimaging has provided clinicians 

with important insight into the kinetics of anti-tumor cell infiltration into tumor tissue
17,35

. 

By using fluorinated (19F) contrast agents to label human DCs for MRI, pre-clinical studies 

have further demonstrated DC migration to draining lymph nodes, with superior assessment 

of cell quantity compared to that obtained by other MR imaging labels
36,37

.

With the current focus on moving pluripotent stem cell derivatives to clinics
38

, in vivo 
tracking of these cells is critical in assessing their homing and proliferative potential over 

time, as well as the exclusion of teratoma formation
39

. In preclinical studies, more emphasis 

is placed on “indirect” genetic labeling over “direct” physical labeling because the former 

technique is not subject to signal dilution upon cell division nor discordance between signal 

intensity and cell viability upon graft loss
40,41

. Of note, label uptake by inflammatory cells 

may produce a false positive readout of graft persistence, due to uncoupling of the label 

from its original host cell
42

. Preclinical genetic labeling of stem cells with fluorescent 

proteins or bioluminescent enzymes has provided investigators with important information 

regarding graft behavior in small animal models, offering both fast read-outs of longitudinal 

cell survival and low costs per imaging study. However, the penetrance of these signals is too 

low for detection in humans, hence largely limiting their application to small animal 

models
43

. By contrast, PET and SPECT provide higher sensitivity than do optical 

techniques, making them better suited for monitoring biological processes in large animal 

and human studies
17,32,33,44,45

, while also sensitively permitting visualization of as low as 

1×105 engrafted cells
30

. Although spatial resolution remains a limitation with nuclear 

medicine imaging, it could be overcome by combining with computed tomography
46

 (CT) 

or with MRI. However, the combined PET-CT approach may not be ideal for repetitive 

assessment of gene or stem cell fate due to the high exposure to ionizing radiation. Hence 

the combined PET-MRI approach may offer an attractive alternative because of its radiation-

free and high spatial resolution qualities
47

.

Cell labeling strategies

Labeling cells to enable a combined PET-MRI approach will be of great clinical value for 

gene and cell therapies. Numerous PET reporter systems have been previously described, 

including those using dopamine-D2 and somatostatin receptors. However, these systems 

suffer from low sensitivity, as endogenous receptor expression leads to high background 

signal
48–50

. The sodium iodide symporter (NIS) has been proposed as an alternative reporter 

gene due to its wide substrate availability, labeling stability, and well-understood metabolism 

and substrate clearance
51

. However, the presence of NIS in other tissues such as the thyroid, 

stomach, and urinary tract reduces its reporter specificity. For PET imaging in gene and stem 

cell therapy settings, the most widely used label to date has been the HSV-tk reporter 
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gene
17,52–54

. This construct offers several benefits, including quantitative and anatomic 

evaluation of reporter gene expression
55

. It also has the ability to function as a suicide gene 

upon administration of exogenous acycloguanosine substrates in pharmacological amounts, 

making it particularly ideal for ablating unwanted tumorigenic findings
54

.

For MRI, the chemical exchange saturation transfer (CEST) as a contrast agent has been 

used to improve detection sensitivity. It is based on the principle that mobile protons 

resonate at a frequency distinct from those in bulk fluid. A proton signal specific to a 

molecule or CEST substrate is selectively saturated with signal. These protons’ movement 

toward, exchange with, and subsequent signal transfer to bulk water results in the exchange 

transfer of signal loss
56

. While all 1H-based MR reporter genes rely on (super)paramagnetic 

substances and water relaxation for contrast
57–59

, the contrast produced by CEST agents can 

additionally be switched on and off by frequency selection. Using a lysine-rich protein 

(LRP) reporter, Gilad et al. demonstrated this principle by creating a contrast material that is 

detectable in the micromolar range, biodegradable, and capable of distinguishing live from 

dead cells, thus enabling the constant monitoring of endogenous expression levels in 

daughter cells
60

. Newer CEST contrast agents such as human protamine-1 address 

immunogenic concerns regarding the use of animal reporter proteins, and are being 

investigated for in vivo imaging applications
61

. Another advantage is that the separation of 

signals from different CEST contrast agents enable multiple, simultaneous measurements 

possible from distinct target populations
62,63

. In contrast to fusion reporter genes, the use of 

a single reporter gene for multimodal imaging with photoacoustics, MRI, and PET is being 

explored
64

.

Targeted genome editing

Significant advances have been made with respect to genome editing technologies, but these 

advances have not yet been extensively integrated with bioimaging tools. To date, the 

majority of genetic engineering to a targeted locus has been accomplished by use of zinc-

finger nucleases (ZFNs). More recently, transcription activator-like effector nucleases 

(TALENs) have offered a similarly promising tool, coupling a generic FokI nuclease domain 

with a specific DNA-binding domain. For ZFNs and TALENs, DNA-binding modules are 

engineered to match a target DNA sequence. There, they direct double strand breaks and 

facilitate potential DNA alterations and repair under non-homologous end joining (NHEJ) or 

homology-directed repair (HDR). A third genome editing system also offers strong potential 

for improving targeted gene therapies: the clustered regularly interspaced short palindromic 

repeats (CRISPR) system uses RNA-guided Cas9 DNAse activity to generate sequence-

specific target cleavage
65

.

To date, these three genome editing approaches have been used for correction or modeling of 

α1-antitrypsin disease
66

, sickle cell anemia
67

, and Parkinson’s disease
68

. Recently, Wang et 

al. demonstrated how ZFN technology can introduce a reporter cassette into the safe-harbor 

AAVS1 locus of human ESCs and iPSCs with readout capacity by three independent 

systems: bioluminescence imaging (Fluc), positron emission tomography imaging (HSV-tk), 

and fluorescence imaging (mRFP)
27

. This work provides a platform for future introduction 

of a dual reporter gene and corrected cassette under the control of the target site promoter, 
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providing important insights into temporal and spatial activity of cell fate. Collectively, these 

three approaches (ZFN, TALEN, and CRISPR) make potent tools for genomic targeting. 

Investigators now have the ability to (1) guide genomic integration of reporter genes and 

corrected genes, and (2) to monitor the behavior of edited grafts with bioimaging platforms.

Conclusions

Gene and stem cell therapies, individually or integrated into one therapeutic product, have 

yet to realize their full potential. Two significant hurdles are (1) a lack of regulatory 

confidence in the safety and specificity of genomic manipulations in gene correction or in 

cell differentiation, and (2) a lack of understanding into the long term survival kinetics and 

behavior of transplanted cells or integrated gene products. We propose here that bioimaging 

will play a critical role in overcoming these barriers by providing more quantitative and 

longitudinal readouts of graft and vector behavior, and lead to more informed and 

comprehensive patient care. The use of bioimaging in an integrated, collaborative approach 

will offer valuable insight into the delivery, engraftment, survival, and host tissue 

interactions of vectors and cells, as well as early knowledge of off-target behavior and 

oncogenic events. By providing powerful tools for guiding clinical practice and scientific 

development, bioimaging is assured of a bright future as a research field.

Supplementary Material
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Figure 1. Pathways in gene- and cell-based therapies
(A) A variety of cell types, including somatic cells (HSCs, T-cells) and pluripotent stem cell 

(ESCs, iPSCs) derivatives, are available to investigators to address a wide range of 

pathologies across fields. (B) To enable in vivo monitoring of transplanted cells by protein, 

enzyme, and receptor-based platforms, cells can be labeled either “directly” (with a physical 

compound such as iron particles or radiotracers) or “indirectly” (by genetic integration of 

reporter gene(s)). (C) Targeted genome editing can be achieved by several techniques, 

including ZFN, TALEN, and CRISPR approaches. Dual editing of cells to integrate 

corrected gene products with reporter cassettes will facilitate informed assessment of their 

safety and efficacy by bioimaging. HSCs, hematopoietic stem cells; ESCs, embryonic stem 

cells; iPSCs, induced pluripotent stem cells; MRI, magnetic resonance imaging; PET/

SPECT, positron emission tomography/single photon emission computed tomography; BLI, 
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bioluminescent imaging; ZFN, zinc finger nuclease; TALEN, transcription activator-like 

effector nuclease; CRISPR, clustered regularly interspaced short palindromic repeats.
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