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Abstract Post-transcriptional regulation of gene expression
plays a critical role in almost all cellular processes.
Regulation occurs mostly by RNA-binding proteins (RBPs)
that recognise RNA elements and form ribonucleoproteins
(RNPs) to control RNA metabolism from synthesis to decay.
Recently, the repertoire of RBPs was significantly expanded
owing to methodological advances such as RNA interactome
capture. The newly identified RNA binders are involved in
diverse biological processes and belong to a broad spectrum
of protein families, many of them exhibiting enzymatic activ-
ities. This suggests the existence of an extensive crosstalk
between RNA biology and other, in principle unrelated, cell
functions such as intermediary metabolism. Unexpectedly,
hundreds of new RBPs do not contain identifiable RNA-
binding domains (RBDs), raising the question of how they
interact with RNA. Despite the many functions that have been
attributed to RNA, our understanding of RNPs is still mostly
governed by a rather protein-centric view, leading to the idea
that proteins have evolved to bind to and regulate RNA and

not vice versa. However, RNPs formed by an RNA-driven
interaction mechanism (RNA-determined RNPs) are abundant
and offer an alternative explanation for the surprising lack of
classical RBDs in many RNA-interacting proteins. Moreover,
RNAs can act as scaffolds to orchestrate and organise protein
networks and directly control their activity, suggesting that
nucleic acids might play an important regulatory role in many
cellular processes, including metabolism.
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The landscape of RNA-binding proteins

RNA assembles with proteins forming dynamic complexes
named ribonucleoproteins (RNPs). The sequence of the tran-
script, its processing and the activity of the available RNA-
binding proteins (RBPs) determine the composition of the
RNP [42, 82], establishing an additional layer of information
(the RNP code) that determines the fate of the RNA, shaping
transcriptome and proteome. RNPs are not static, and their
remodelling allows adjustments in gene expression under con-
ditions that require adaptive changes. Dysfunction of RBPs is
often linked to disease [19, 26, 28, 75, 88], which reflects the
relevance of protein-RNA interactions in cellular homeostasis.

Given the complexity of RNA metabolism, it was estimat-
ed that RBPs comprise 3–11 % of the proteome of bacteria,
archaea and eukaryotes and they are significantly more con-
served across evolution than proteins lacking RNA-binding
activity [3, 40]. Most of the RBPs discovered over the last
three decades match the classical view of RBP architecture
with a modular combination of well-characterised RNA-bind-
ing domains (RBDs) such as the RNA recognition motif
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(RRM), the K homology domain (KH) and the DEAD box
helicase domain [76]. Individual RBDs recognise short
stretches of RNA (approx. 2–10 nucleotides in length) with
often low affinity. RBPs usually build their affinity and spec-
ificity for RNA on the cooperative function of multiple clas-
sical RBDs [49, 76], as exemplarily illustrated by the four
RRMs that work together in nucleolin (NCL) or the
poly(A)-binding protein (PABP).

A number of studies in the last two decades reported RNA-
binding activities in proteins lacking classical RBDs, suggest-
ing that the scope of RBPs was initially underestimated. These
newly discovered RNA binders contain protein domains with
dual function (e.g. enzymatic and RNA-binding activities)
[114], folds of unknown function [54] and protein regions
lacking a defined tertiary structure in the unbound state [95].
Given the growing evidence of unorthodox RNA-binding ac-
tivities within proteins previously unrelated to RNA biology
[24, 50, 86], system-wide approaches were developed aiming
at determining the complete repertoire of RBPs.

In silico approaches were successfully used to identify pro-
teins harbouring classical RBDs and highly homologous pro-
tein domains that may likely bind RNA as well [3, 40, 65].
However, the capacity of these methods to discover RNA-
binding architectures that lack similarities with classic RBDs
was very limited. To circumvent this, different in vitro and in
vivo approaches for comprehensive identification of RBPs
were developed. In two parallel studies, Scherrer et al. and
Tsvetanova et al. used protein arrays to identify RBPs in
Saccharomyces cerevisiae. A significant fraction of the yeast
proteome (∼4000 proteins) was purified and immobilised on a
membrane. The resulting array was subsequently incubated
with a mixture of fluorophore-labelled RNAs, and fluores-
cence retained at each protein spot was used as readout for
RNA binding. Using this method, these studies identified 180
[103] and 42 [111] proteins, respectively, as RBPs.
Surprisingly, many of the identified proteins were not related
to RNA biology, including dozens of metabolic enzymes such
as oxidoreductases and proteins involved in lipid metabolism,
calling for further in vivo validation of their RNA-binding
activities.

More recently, two independent works described a new
method for the unbiased and comprehensive identification of
RBPs from living cells, which is referred to as RNA interac-
tome capture [8, 18]. In brief, native protein-RNA interactions
are covalently immobilised by applying ultraviolet (UV) light
to cultured cells [45, 52, 92]. UV irradiation induces short-
lived free radicals at the nucleotide base that can attack amino
acids in close proximity. Because proteins do not efficiently
absorb UV light at these wavelengths, protein-protein cross-
linking is not detectable [18, 107]. After irradiation, a stringent
purification of polyadenylated (poly(A)) RNA is performed
under denaturing conditions, followed by identification of co-
purified, cross-linked proteins by quantitative mass

spectrometry. The initial RNA interactome studies lead to
the identification of 1106 RBPs in HeLa [18] and HEK293
[8] cells, with an extensive overlap between the two datasets
(545 proteins). Both datasets do not only validate RNA bind-
ing of known RBPs, but they are also catalogued as novel
RNA binders hundreds of proteins previously unrelated to
RNA metabolism (561 proteins) [8, 18]. The newly identified
RBPs belong to different protein families, participate in mul-
tiple biological processes, mediate distinct molecular func-
tions and, surprisingly, in most of the cases, lack known
RBDs (Fig. 1).

Subsequently, this methodologywas extended to determine
RNA interactomes in different cell lines and species. Kwon
et al. added 283 novel RNA-binding proteins from mouse
embryonic stem cells to the growing list of RBPs. Sixty-
eight of these proteins are highly expressed in undifferentiated
cells, suggesting a role in stem cell physiology [63]. Three
independent studies identified 120 [81], 765 [78] and 678
[13] RNA binders in S. cerevisiae. Surprisingly, many en-
zymes from classical biochemical pathways, particularly from
glycolysis, were found to moonlight as RNA-binding proteins
in this unicellular organism. And finally, the interactome of an
entire multicellular organism was derived from the worm
Caenorhabditis elegans, identifying 594 poly(A) RNA-
interacting proteins [78].

Comparison of the datasets revealed a conserved core of
eukaryotic RNA-binding proteins, comprising ∼250 RBPs
[13], most of which have known functions in RNA biology,
e.g. in transcription, translation, RNA transport, degradation
and/or modification. Surprisingly, around 9 % of the con-
served RBPs also have reported enzymatic activities [13].
Presumably, datasets from additional species, including the
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Fig. 1 RNA interactome capture discovers many RNA-binding proteins
that lack identifiable RNA-binding domains. RNA interactome capture
from different human cell lines [8, 13, 18] identified a total of 1218
proteins as RNA binders, most of which do not contain an identifiable
RBD (∼55 %). The remaining proteins harbour domains known to bind
RNA, most commonly the RNA recognition motif (RRM, accounting for
∼13 % of the proteins), DEAD/DEAD box helicase domain (accounting
for ∼4 %) and the K homology domain (KH, accounting for ∼3 %)
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most common eukaryotic model organisms (e.g. Drosophila
melanogaster, Danio rerio, Arabidopsis thaliana) will be-
come available soon, enabling further inter-species compari-
sons and even deeper insights into RNA biology.

What sequences do the (novel) RBPs bind?

With the world of RBPs rapidly expanding and with more and
more RBDs being identified, the need arises for a rapid iden-
tification of their binding motifs and target RNAs to gain
insight into RBP function.

Numerous experimental methods have been developed to
study protein-RNA interactions. These ribonomic analyses
range from the determination of in vitro binding specificities
of recombinant RNA-binding proteins (or domains thereof) to
the purification and subsequent analysis of native RNPs.
Employing a panel of recombinant and purified RBPs in sin-
gle and competitive binding reactions against a complex pool
of RNA ligands in vast excess (RNAcompete) has recently
yielded the binding specificities of 207 RBPs from various
species. Not surprisingly, it also revealed that two proteins that
share a high degree of identity between their RBDs are likely
to have similar or even identical RNA sequence specificity
[98]. Another powerful method involves immunopurification
of native RBPs from cell extracts and analysis of bound RNAs
either by hybridisation to microarrays (RIP-Chip) or high-
throughput sequencing (RIP-Seq) [84]. As described above
for interactome capture, in vivo UV cross-linking has been
employed to stabilise the highly dynamic environment of ri-
bonucleoproteins and to preserve protein-RNA interactions
through stringent affinity purification protocols, followed by
the subsequent analysis of co-purified RNA (cross-linking and
immunoprecipitation (CLIP), CRAC and related methods)
[5]. The ‘freezing’ of protein-RNA interactions by UV
cross-linking in living cells (or entire organisms) ensures that
only interactions are captured that occur under native, cellular
conditions. This is particularly important, as concerns were
raised, that protein-RNA interactions which do not necessarily
reflect the in vivo situation can occur after cell lysis in the
extract [80, 100, 101].

Common to the aforementionedmethods is that they do not
only test for binary interactions of one protein (or RBD) with a
single RNA species (or short oligonucleotide) but rather pro-
duce global or transcriptome-wide binding profiles. However,
in most cases, studies are limited to individual RNA-binding
proteins (or their respective RBDs). Expanding the analyses to
other RBPs has been hampered either by the complexity of the
experimental procedures, the availability of antibodies or the
requirement for recombinant protein production.

Structural analyses of protein-RNA complexes have resulted
in the identification of interaction surfaces and amino acids of
proteins that are directly involved in RNA binding. This has

significantly advanced our understanding of the principles that
underlie binding specificity and RNP formation [6, 17].
Moreover, structures that contain multiple RBDs in complex
with their ligand have unveiled how protein domains cooperate
to recognise longer, continuous stretches of RNA to increase
both RNA affinity and specificity [49]. However, our current
structural knowledge of protein-RNA complexes is still rather
limited. While the protein data bank (as of January 2016) lists
more than 116,000 protein (or protein domain) structures, only
less than 1.7 % (approx. 1800) are in complex with RNA.
Moreover, the vast majority of the structural information on
RNPs is derived from X-ray crystallography that requires rigid
folds, such as globular protein domains. Hence, intrinsically
unfolded proteins that bind RNA (see below) are highly
underrepresented.

Understanding RNA-binding specificity of proteins

Being able to predict the target RNA motif(s) based on the
amino acid sequence of an RBD would greatly advance our
understanding of RBPs and facilitate prediction of their cellular
function(s), even if the proteins have not yet been extensively
studied. However, the molecular basis of sequence-specific rec-
ognition of nucleic acids is well understood for only a subset of
RNA-binding domains.

Pumilio and FBF homology (PUF) proteins employ a re-
petitive and modular scaffold for sequence-specific binding to
RNA, each repeat recognising one nucleobase [116].
Breaking of this recognition code has allowed a rational de-
sign of custom proteins, tailored to recognise specific RNA
sequences of interest, producing numerous genetically
encoded tools to study RNA biology [117]. But despite the
accumulating knowledge about RNP biology, understanding,
predicting and engineering the specificity of RBDs other than
the PUF domain remains a challenge. Hence, binding motif
inference based on known specificities of closely related pro-
teins still remains an approximation that requires experimental
confirmation.

Moreover, RBPs do not necessarily only bind in a
sequence-specific manner, recognising a stretch of specific
nucleobases. The exon junction complex (EJC, its core com-
prising the proteins eukaryotic initiation factor (eIF)4AIII,
Y14, Magoh and MLN51) has no apparent sequence specific-
ity and is deposited ∼20 nucleotides upstream of exon-exon
junctions by the splicing machinery. Its binding to the RNA is
remarkably stable, allowing the EJC to stay associated with
the RNA during nuclear export and requiring a dedicated dis-
assembly factor in the cytoplasm [39, 64]. Other proteins rec-
ognise an RNA structure rather than a sequence or both. The
protein Staufen 1 regulates messenger RNA (mRNA)
localisation, stability and translation through binding to
double-stranded RNA motifs of variable sequence. Analysis
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of its binding sites by CLIP has not only led to the identifica-
tion of its RNA targets but also revealed thousands of RNA
regions that form duplexes in vivo [99, 108]. Last but not
least, a single protein (or protein complex) can recognise
and bind to different RNA elements that are diverse in
sequence and structure. This is exemplified by the RNA-
binding protein She2p from S. cerevisiae that, together with
its partner She3p, associates with different cis-acting RNA
elements (so-called ‘zipcodes’) to mediate subcellular trans-
port and localization of mRNAs [51, 87].

The complexity of protein-RNA interactions is probably
best illustrated by the RNA recognition motif. Although being
the most abundant and best-studied RBD, the RRM is also one
of the most versatile. Despite a shared architecture, RRMs uti-
lise different surfaces for RNA binding and display various
different modes of interaction, thus making target prediction
extremely difficult [6, 30]. Moreover, the RRM-type protein
fold can also be employed for the interaction with proteins
instead of RNA, giving rise to U2AF homology motifs
(UHMs). These domains are highly similar to classical RRMs
but lack some of the critical amino acids involved in RNA
recognition, having instead evolved sequence characteristics
that optimise the interaction with peptide ligands [60].
Interestingly, some RRMs can engage in both RNA and protein
binding. This has been reported e.g. for the RRM domain of
eIF3b, which associates with eIF3j or hepatitis C virus mRNA,
presumably in a mutually exclusive manner [34, 93]. Another
example is the RRM2 of the PABP that simultaneously inter-
acts in a cooperative manner with the eIF4G and the poly(A)
tail of the RNA to support translation initiation [102].

Taken together, this further complicates prediction of bind-
ing motifs and also highlights that in the cellular context,
interactions between RBPs and their targets occur in a com-
plex environment with many different binding partners avail-
able. Moreover, association with one ligand often impacts on
interactions with other factors. Both mutually exclusive bind-
ing and highly synergistic binding have been reported for a
number of RBPs. One example is the Drosophila RNA-
binding protein Sex lethal (Sxl) which harbours two RRMs
that bind U-rich sequences with high affinity. On the one
hand, Sxl can compete with and evict other RNA-binding
proteins or complexes such as U2AF, CstF64 and others [36,
37, 44], and on the other hand, it also acts as a nucleation
factor to recruit proteins such as Upstream of N-ras (Unr) or
Held-out wings (How) [1, 33, 44, 48]. This way, Sxl acts as a
remodeler of RNPs, modulating their composition to control
RNA fate.

Synergistic RNA binding of two proteins does not always
necessitate a direct interaction between the two RBPs. Neither
do antagonising factors always have to compete for binding to
the same RNA element to exhibit a mutually exclusive bind-
ing behaviour. The RNA itself can relay the information of a
binding event to a distal si te through structural

rearrangements. This can either improve accessibility or im-
pede interaction with other factors. Exemplarily, the 3′ un-
translated region (UTR) of vascular endothelial growth factor
(VEGF) mRNA shows mutually exclusive and stimulus-
dependent binding of two protein complexes, the HILDA
(hypoxia-inducible hnRNP L-DRBP76-hnRNPA2/B1) com-
plex and the interferon gamma (IFN-γ)-activated inhibitor of
translation complex (GAIT). Binding of the HILDA complex
results in a conformational change of the RNA that occludes
the binding site of the GAIT complex. This creates a binary,
molecular switch to adjust gene expression in response differ-
ent stimuli [97, 124].

Despite the complexity of the interactions and experimen-
tal challenges to characterise RNPs, detailed insights into
binding specificities and target RNAs have been obtained
for numerous proteins [5]. This has revealed that in many
cases, RBPs associate with mRNAs encoding functionally
related proteins, forming the so-called ‘RNA operons’ [58].
Thus, a limited set of (or even individual) RBPs can control
entire pathways through the coordinate regulation of function-
ally related transcripts, fine-tuning and adjusting gene expres-
sion to the cellular requirements.

In light of this, RNA interactome capture could well prove
a treasure trove for RNA biologists. Experimentation can now
be extended to proteins that previously had not been implicat-
ed in RNA biology but were identified as novel RNA binders
by interactome capture, resulting in the discovery of novel
RBDs. Exemplarily, interactome capture has contributed to
the identification of the NHL domain (named after the NCL-
1, HT2A and LIN-41 proteins) as a bona fide RBD. Several
NHL domain-containing proteins were found to co-purify
with RNA [8, 18, 63]. Subsequent biochemical and structural
studies confirmed sequence-specific RNA-binding activity
and discovered functions in post-transcriptional regulation of
gene expression [63, 69–71].

Furthermore, identification of the RNA targets of newly
discovered RBPs will provide insights into their cellular func-
tion and further advance our understanding of RNA metabo-
lism. This is exemplified by the fas-activated serine/threonine
kinase (FASTK) family. In humans, six FASTK protein family
members are present and all of them co-purify with RNA in
interactome profiling [18]. FASTK proteins harbour a RAP
domain (RNA-binding domain abundant in apicomplexans)
which exhibits a high degree of homology with the bacterial
endonuclease-like fold and was predicted to bind RNA [18,
65]. Loss of the RAP domain in FASTKD2 is linked to mito-
chondrial cytochrome C oxidase-defective encephalomyopa-
thy, a rare neurological disorder [41]. Recent work identified
FASTKD2 as a component of mitochondrial RNA granules,
implicating a function in mitochondrial RNA processing [4].
Finally, the identification of its target RNAs has paved the
way for functional studies and established a link between
FASTKD2 activity, mitochondrial dysfunction and human
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disease [96]. This example highlights how RNA interactome
studies can guide experimentation in the discovery of unprec-
edented aspects of RNA biology.

In light of this, the newly identified RBPs and the growing
number of novel RBDs that have been functionally validated
by independent laboratories [13, 23, 38, 66, 88] predict a new
age in RNA research with exciting discoveries to be made.

RNA binding through low-complexity protein
regions

Besides the abundance of proteins without a recognisable,
classical RBD, large-scale datasets of RNA binders harbour
another surprising finding: the identified proteins are enriched
in low-complexity regions mainly composed of the amino
acids serine (S), proline (P), glycine (G), arginine (R), lysine
(K) and tyrosine (Y) [18]. These amino acids do not combine
randomly but rather form defined patterns: G often co-occurs
with R or Y, generating RG or YG repeats that can appear
multiple times within a given protein region giving rise to
highly repetitive sequences. Both serine and proline have a
high propensity to be in disordered regions [68], and it has
been predicted that many of the low-complexity regions in
RBDs are intrinsically disordered regions (IDRs) which na-
tively lack stable three-dimensional structure [16, 18, 46].

Interestingly, also ribosomal proteins often contain
long extensions enriched in the amino acids G, R and
K (Fig. 2a). While being flexible and often disordered
in solution, these protein tails are found to adopt spe-
cific conformations in the ribosome, reaching deep into
the core of the RNP and forming extensive interactions
with the ribosomal RNA (Fig. 2b) [14, 15, 61]. Here,
the flexibility and small size of G allows tight packing
against the RNA, while the basic amino acids R and K
contribute to RNA folding by mediating electrostatic
interactions and neutralising the negative charge of
the RNA backbone [61]. Similarly, unstructured tails
rich in basic amino acids have been reported to play
a role in protein-DNA interaction. By projecting into
the minor grove of the DNA double strand, they in-
crease local affinity and promote hopping and linear
diffusion along the DNA molecule [112, 113]. And
finally, a low-complexity, repeti t ive motif , the
arginine-glycine-rich RGG box motif that is found in
numerous RBPs [110], was demonstrated to interact
with RNA [29]. In the fragile X mental retardation
protein (FMRP), an RGG box binds with high affinity
to guanidine-rich RNA sequences. This interaction is
mediated by a combination of shape complementarity
facilitated by the flexible G linker and the electrostatic
potential of the arginines [95].

In addition to directly interacting with nucleic acids, IDRs
in RNA-binding proteins have been shown to contribute to
assembly and formation of RBP ultrastructures such as P bod-
ies, stress granules or nuage [16]. They can directly promote
quick phase transitions, resulting in the formation of drop-
lets—membrane-free, dynamic cellular subcompartments that
harbour specific RNPs [53, 89]. Acting as assembly domains,
IDRs are capable of recruiting other IDR-containing proteins
to these granules, enabling the formation of specialised com-
partments by phase transition. This molecular aggregation
results in the formation of hydrogels and amyloid-like fibres,
and misregulation of aggregation has been linked to several
neurological disorders [47, 56, 67, 120].

Comparison of RNA interactome datasets from different
organisms has revealed an expansion in the number of short
linear motifs in RBPs in higher eukaryotes compared to uni-
cellular yeast, while the number of classical RBDs remains
similar [13]. In sum, the occurrence of IDRs might explain
the RNA-binding properties of ∼100 novel human RBPs that
lack globular RBDs [18].

RNA-binding proteins and protein-binding RNAs

Surprisingly, interactome capture has also identified a number
of proteins as RNA binders which do neither contain an iden-
tifiable globular RBD nor a predicted IDR. In human cell
lines, more than half of the identified RBPs have no detectable
RBD and have not been associated with functions in RNA
metabolism before (Fig. 1) [8, 13, 18]. Similar results were
obtained for rodents [63] and C. elegans [78], and an even
larger fraction of proteins that lack identifiable RBDs were
observed in yeast [13, 78, 81]. This raises an important ques-
tion: are these proteins ‘false positives’ in interactome analy-
ses, or do they contain novel (and yet unidentified) RBDs and/
or bind RNA by non-conventional means?

Alike to proteins, also RNA can fold into intricate three-
dimensional structures that serve various functions including
catalytic activity, a classical example being the ribosome—a
macromolecular and complex RNA machinery. Moreover, it
has been demonstrated by systematic evolution of ligands by
exponential enrichment (SELEX) that RNA sequences can be
derived (so-called ‘RNA aptamers’) to selectively bind vari-
ous different classes of small molecules [43]. Examples can
also be found in nature: some bacterial mRNAs harbour
sequences/structures with high affinity and specificity for var-
ious, structurally diverse metabolites. Ligand binding usually
results in a conformational change of the RNA and in altered
gene expression, forming a so-called ‘riboswitch’ that allows
tailoring of protein production according to the nutritional
status and cellular requirements [90].

Insofar, it is surprising that our understanding of RNPs is
still mostly governed by a rather protein-centric view and the
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Fig. 2 Protein-RNA interaction through low-complexity, extended
protein regions and protein-binding RNAs. a, b The S. cerevisiae
ribosomal protein L23 (RPL23) contains a C-terminal domain that folds
into an RRM-like topology, whereas the N-terminal, low-complexity
region adopts an idiosyncratic, extended conformation (a). In the 60S
ribosomal subunit, the lysine- and arginine-rich N-terminal domain of
RPL23 participates in extensive interactions with the ribosomal 25S and
5.8S RNAs (b). RNAs are depicted in grey, neighbouring proteins RPL8
and RPL35 in light blue; in the structure based on Ben-Shem et al. [14]

(PDB ID: 4V88), residues within 20A of the RPL23 protein are depicted.
c HCV IRES bound to a 40S ribosomal subunit. The HCV IRES (blue)
displays an elongated structure that binds the solvent side of the 40S
ribosomal subunit. Interactions are formed mostly with ribosomal
proteins (eS1/S3A, uS7/S5, eS7/S7, uS11/S14, eS25/S25, eS26/S26,
eS27/S27 and eS28/S28, proteins depicted in yellow) and, only to a
lesser extent, with the ribosomal 18S RNA (shown in grey). In the
structure based on Yamamoto et al. [123] (PDB ID: 5FLX), individual
panels represent different orientations (rotated by 90°)
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idea that proteins evolve to bind RNA and not vice versa.
Often, it is difficult to differentiate between these two possi-
bilities and there is clear evidence for co-evolution of proteins
and RNA that interact to form an RNP. In fact, a continuous
and densely populated spectrum exists, with one extreme be-
ing protein-determined RNPs (represented by many mRNPs)
and the other one being RNA-determined RNPs like ribo-
somes [126]- the latter often considered relics, reminiscent
of an RNA world in early evolution. In many RNA-
determined RNPs such as ribosomes and other ribozymes,
the enzymatic function is provided by the RNA, exposing it
to much higher evolutionary pressure and often limiting the
function of the bound proteins to being folding catalysts
(RNA chaperones).

It is tempting to speculate that in RNA interactome
datasets, the abundance of proteins that lack identifiable
RBDs might, to some extent, reflect the capture of RNA-
determined RNPs. In this case, RNAs have evolved to interact
with proteins which hence do not require canonical RBDs.

An example of RNA-determined RNPs can be observed in a
number of viral RNAs. Complex RNA secondary structures
which promote viral translation can be found in the 5′ untrans-
lated region of many different viruses, among them are picor-
naviruses, hepatitis C virus, herpes simplex virus and others.
These so-called internal ribosome entry sites (IRESs) allow
non-canonical and cap-independent translation initiation by
functionally replacing some (or even all) eukaryotic translation
initiation factors (eIFs), which are otherwise needed for normal,
cap-driven translation [32]. Cap-dependent translation initiation
is complex and requires the step-wise and hierarchical assembly
of an RNP that then serves to recruit a small ribosomal subunit.
By directly binding and stably recruiting specific eIFs (or even
entire ribosomal subunits), viral IRESs can bypass some of the
initial assembly steps, essentially becoming independent of ini-
tiation factors that act early. Exemplarily, the IRES of enceph-
alomyocarditis virus binds directly to eIF4G, bypassing the
requirement for eIF4E [72, 94], and the hepatitis C virus
IRES interacts directly with the eIF3 complex and small ribo-
somal subunits (Fig. 2c) [74, 105, 109]. The binding of HCV
IRES to eIF3 requires a certain geometry of the RNA and
involves specific bases at critical positions [59], and structural
studies have revealed extensive interactions between the IRES
and eIF3, covering a broad surface area [104]. Moreover, an
association of the HCV IRES with small ribosomal subunits
employs mostly interactions with ribosomal proteins and only,
to a lesser extent, interactions with the 18S ribosomal RNA
(Fig. 2c) [123]. Even though classical RNA-binding domains
of protein interaction partners appear to be involved to some
extent, the interactions with the IRES involve surface areas of
the proteins that differ from the ones that are usually employed
for canonical interactions [93]. In sum, this supports the notion
that the viral RNA evolved to specifically bind cellular proteins
to support viral translation. IRES activity has also been reported

for some cellular RNAs; however, factor requirements and in-
teractions are not nearly as well characterised as for their viral
counterparts [35, 121].

What appears to be a common theme to aptamers and IRES
elements is that ligand/protein binding requires (extensive)
RNA structure elements. While in rare cases promoting inter-
nal translation initiation, extensive RNA structures in 5′UTRs
or even coding regions of mRNAs are otherwise inhibitory to
translation. Hence, mRNAs whose major role is to serve as
templates for protein synthesis are less likely to contain such
intricate structural elements that function in protein binding.
However, for non-coding RNAs, these constraints do not ap-
ply and one might envision that RNA aptamers that bind pro-
teins might be more common in this class of RNAs. In fact,
many of the well-studied non-coding RNAs form extensive
secondary structures to associate with proteins. This includes
several classes of abundant RNAs such as small nuclear
RNAs (snRNAs) involved in splicing [122], small nucleolar
RNAs (snoRNAs) that direct RNA modification [119], the
RNA moiety of the signal recognition particle (SRP RNA or
7SL RNA) critical for membrane protein insertion and protein
secretion [73], RNase P RNA essential for transfer RNA
(tRNA) processing [83] and telomerase RNA involved in
chromosome maintenance [127].

Functional and structural roles of RNA

The function of RNA extends well beyond the mere coding
for peptides. Exemplarily, RNA is not only the major struc-
tural component of ribosomes but also contributes catalytic
activity and delivers amino acids for protein synthesis.
Moreover, RNAs play integral roles in RNA processing and
modification, are involved in sensing of metabolites and act as
scaffolds to organise larger complexes. Several classes of
small non-coding RNAs provide specificity for proteins, act-
ing as guides. In eukaryotes, microRNAs (miRNAs), small
interfering RNAs (siRNAs) and Piwi-associated RNAs
(piRNAs) assemble with proteins of the argonaute clade and
recruit them to their nucleic acid targets by (partial) sequence
complementarity, eliciting gene regulatory pathways [79].
Similarly, snoRNAs and the closely related small Cajal
body-specific RNAs (scaRNAs) direct RNAmodification, de-
termining targets through base paring interactions [119]. In
prokaryotes, clustered regularly interspaced short palindromic
repeat (CRISPR)-Cas immune systems rely on RNAs to iden-
tify foreign nucleic acids, targeting them for degradation [77].
Here, CRISPR RNAs (crRNAs) and trans-encoded crRNAs
(tracrRNAs) serve as guides for Cas nucleases to direct DNA
cleavage [55]. Harnessing the power of Cas nucleases and
their RNA guides has revolutionised genome editing in many
organisms [22, 55, 77, 106].
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In telomerase, the RNA moiety does not only serve as a
template for synthesis of telomeric repeats by the telomerase
reverse transcriptase (TERT) but also provides a flexible scaf-
fold to assemble the entire RNP, providing binding platforms
for the Ku heterodimer, the LSm heteroheptameric protein
complex and TERT [126].

Recently, long non-coding RNAs (lncRNAs), a heteroge-
neous and functionally diverse group of transcripts in eukary-
otes, have gained widespread attention. They are
polyadenylated, often contain extensive secondary structure
and elicit different functions, serving e.g. as scaffolds, decoys
and/or guides [62, 115]. Exemplarily, the formation of
paraspeckles, a nuclear compartment rich in factors with roles
in RNA processing, depends on the lncRNA nuclear-enriched
autosomal transcript 1 (NEAT1). The RNA plays an architec-
tural role, interacting with and nucleating several proteins
such as paraspeckle protein 1 (PSP1); splicing factor,
proline- and glutamine-rich (SFPQ) protein; and p54nrb/
NONO (non-POU-domain-containing octamer-binding pro-
tein). Knockdown of the RNA results in a loss of paraspeckles
and redistribution of proteins [25], reflecting the importance
of the RNA for the spatial organisation of this compartment.

RNA as a regulator of protein activity

The structural role of RNA in the organisation of RNPs, where
it e.g. serves as a (flexible) scaffold, is well documented, and
its function as guide for proteins, directing them to their sites/
sequences of action, is also well established. But can RNAs
also regulate the activity of their bound protein partners?

Some of the best-documented examples, highlighting the
function of RNAs as regulators of protein activity, are found in
innate immunity. Toll-like receptors involved in the pattern
recognition of pathogens are activated by double-stranded
RNA (TLR-3), single-stranded RNA (TLR-7/8) and bacterial
ribosomal RNA (TLR-13) [57, 91, 125]. The activity of the
cytoplasmic retinoic acid-inducible gene I (RIG-I)-like recep-
tors, nucleotide oligomerization domain (NOD)-like receptors
and interferon-induced proteins with tetratricopeptide repeats
(IFITS) depends on recognition of RNAs with 5′-triphosphate
structures [2, 9]. And finally, protein kinase R (PKR) is acti-
vated by long double-stranded RNA (dsRNA) which is often
generated during viral replication. dsRNA can trigger PKR
dimerisation resulting in autophosphorylation and activation
[7, 27]. Among the PKR targets is the eIF2α that plays critical
role in translation initiation, escorting the initiator tRNA to the
small ribosomal subunit. Phosphorylation of eIF2α by PKR
traps it in an inactive state [31], impairing cellular translation
and viral replication.

But RNA regulation of protein activity is neither restricted
to innate immunity nor eukaryotes. Bacterial 6S RNA is a
∼200-nt-long, non-coding RNA which inhibits transcription

of housekeeping genes in Escherichia coli and Bacillus
subtilis. It adopts a rod-shaped secondary structure with a
flexible central region, thereby mimicking an open promoter
to bind and inhibit the bacterial RNA polymerase [118]. 6S
RNA is one of the most abundant RNA species in bacterial
cells during stationary growth phase and was identified in all
branches of the bacterial kingdom [11]. While the sequence of
this ncRNA varies widely between species, its secondary
structure is predicted to be highly conserved among prokary-
otes as well as its binding to RNA polymerase and its inhib-
itory activity [12]. Other RNAs that directly interact with the
transcription machinery to regulate gene expression have also
been identified in eukaryotic organisms and viruses [10].

In light of RNA being a regulator of protein function, it is
intriguing that many of the proteins that are found to associate
with RNA are reported to exhibit enzymatic activities. Dozens
of enzymes from intermediarymetabolism associate with RNA,
including almost all glycolytic enzymes [13, 21, 85, 86]. A
particularly interesting example is glyceraldehyde-3-
phosphate dehydrogenase (GAPDH), a key enzyme in glycol-
ysis that has recently been reported to interact with the 3′ UTR
of the IFN-γ mRNA, inhibiting its translation [21]. The RNA-
binding activity of GAPDH depends on the glycolytic activity
of the cell: upon activation, the metabolism of T lymphocytes
shifts from oxidative phosphorylation to aerobic glycolysis,
preventing the association of GAPDH with RNA and allowing
IFN-γ translation [21]. Similarly, cellular iron metabolism
controls the function of the iron regulatory protein (IRP) 1. In
iron-deficient cells, IRP1 binds to and regulates translation and
stability of various RNAs; however, in the presence of iron, it
assembles an iron sulfur cluster (4Fe-4S) and functions as a
cytoplasmic aconitase [20, 85, 114]. GAPDH and IRP1 present
two interesting examples of mutually exclusive regulation:
RNA binding is incompatible with enzymatic activity and pro-
tein function switches from metabolism to post-transcriptional
regulation of gene expression.

Taken together, RNA is more than a mere bystander mol-
ecule that is being regulated by proteins. Various RNAs can
play active roles in the organisation of ribonucleoproteins,
sometimes even shaping entire subcellular compartments.
Moreover, RNAs can control the function and activity of their
bound protein partners, adjusting cell physiology to changing
cellular requirements. In sum, this has fuelled the hypothesis
that RNA may orchestrate enzymatic activities by bringing
together all the enzymes that are part of a given metabolic
pathway into large protein assemblies, forming metabolons
with superior metabolic performance [20].

Scaffolding, protein binding and regulation of enzymatic
activity have, however, only been described for a limited set of
RNAs. The large number of unconventional RNA-binding
proteins that were recently discovered might be a hint that
many more examples of functionally active RNAs are waiting
to be discovered. Characterisation and functional studies of
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RNPs that contain novel RNA-binding proteins with enzymat-
ic activities will pave the way for a better understanding of
how RNA biology integrates with other, in principle unrelat-
ed, cell functions such as intermediary metabolism.
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