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SUMMARY

In Drosophila, negatively reinforcing dopaminergic
neurons also provide the inhibitory control of satiety
over appetitive memory expression. Here we show
that aversive learning causes a persistent depression
of the conditioned odor drive to two downstream
feed-forward inhibitory GABAergic interneurons of
the mushroom body, called MVP2, or mushroom
body output neuron (MBON)-g1pedc>a/b. However,
MVP2 neuron output is only essential for expression
of short-term aversive memory. Stimulating MVP2
neurons preferentially inhibits the odor-evoked activ-
ity of avoidance-directing MBONs and odor-driven
avoidance behavior, whereas their inhibition en-
hances odor avoidance. In contrast, odor-evoked ac-
tivity of MVP2 neurons is elevated in hungry flies, and
their feed-forward inhibition is required for expres-
sion of appetitive memory at all times. Moreover,
imposing MVP2 activity promotes inappropriate
appetitive memory expression in food-satiated flies.
Aversive learning and appetitive motivation therefore
toggle alternate modes of a common feed-forward
inhibitory MVP2 pathway to promote conditioned
odor avoidance or approach.

INTRODUCTION

Learning and internal states guide appropriate behavior by

altering the properties of neural circuits. A great number of

studies acrossphyla have elucidatedbrain structures andcellular

mechanisms that underlie these changes, but we still know rela-

tively little about how experience and states are implemented

in the functional connectivity of a neural network. Inhibition

across a range of timescales from milliseconds to days, medi-

ated by neurotransmitters, neuromodulators, and a variety of

neuropeptides, is emerging as a critical and general operating

principle of neural circuit function and behavioral control (Klaus-

berger and Somogyi, 2008; Fishell and Rudy, 2011; Letzkus

et al., 2015).
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Fast inhibition can spatially and temporally refine neural repre-

sentations of sensory stimuli so that specificity is maintained and

windows of time in which neural integration can take place are

established (Gabernet et al., 2005). In addition, fast and persis-

tent inhibition can alter neural excitability and the efficacy of

synaptic transmission and thereby re-route the flow of informa-

tion through circuits (Vogels and Abbott, 2005; Schwab and

Houk, 2015). It is therefore important to understand the mecha-

nisms that control, and the circumstances in which, the level of

inhibition is altered in the nervous system.

The reduced numerical complexity of the Drosophila brain

permits an understanding of these mechanisms at cellular reso-

lution. Studies in flies, mice, and primates have established that

dopaminergic neurons (DANs) play a critical role in reinforcement

andmotivation (Schultz et al., 1997; Wise, 2004; Bromberg-Mar-

tin et al., 2010; Berridge, 2012; Waddell, 2013). Across phyla

DANs appear to be heterogeneous (Matsumoto and Hikosaka,

2009; Lammel et al., 2011, 2012; Menegas et al., 2015; Beier

et al., 2015; Lerner et al., 2015; Mao and Davis, 2009; Clar-

idge-Chang et al., 2009; Krashes et al., 2009; Aso et al., 2010,

2012; Liu et al., 2012; Burke et al., 2012; Riemensperger et al.,

2013), and recordings suggest that some DANs respond to

reward-related events and others react to aversive, salient, or

surprising cues (Schultz, 2015; Matsumoto and Hikosaka,

2009; Cohen et al., 2012; Horvitz, 2000; Matsumoto and Takada,

2013). Genetic approaches in Drosophila and mice revealed that

DANs that can provide teaching signals to reinforce either appe-

titive or aversive memories, project to different locations in the

brain (Claridge-Chang et al., 2009; Aso et al., 2010, 2012; Liu

et al., 2012; Burke et al., 2012; Zweifel et al., 2011; Darvas

et al., 2011; Lammel et al., 2011, 2012). However, it is currently

unclear how the processes of reinforcement relate to those of

motivational salience.

Olfactory learning in Drosophila could provide an inroad. Flies

assign negative and positive values to odors in aversive and

reward based paradigms (Tully and Quinn, 1985; Tempel et al.,

1983). When subsequently tested for odor preference, they either

avoid or approach the conditioned odor. Individual odors are

uniquely represented as activity in relatively sparse subpopula-

tions of the �2,000 intrinsic Kenyon cells (KCs) per hemisphere

of the mushroom body (MB), providing cellular specificity to

odor memories (Honegger et al., 2011). During learning,

odor-activated KCs receive coincident reinforcing input from
lished by Elsevier Inc.
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combinations of positively or negatively reinforcing DANs (Wad-

dell, 2013). Stimuli such as sweet taste, nutrient value, and water

activate distinct populations of rewarding DANs in the protocere-

bral anteriormedial (PAM) cluster, which innervate different zones

on the horizontal lobes of the MB (Burke et al., 2012; Liu et al.,

2012; Lin et al., 2014; Huetteroth et al., 2015; Yamagata et al.,

2015). Reward quality therefore seems to be represented in

different DANs, and memories of these rewarding stimuli are pre-

sumably formed within the relevant orthogonal zones along the

odor-activated KC arbor (Owald and Waddell, 2015). In contrast,

aversive DANs innervate the heel, peduncle, and vertical lobes of

the MB (Riemensperger et al., 2005; Mao and Davis, 2009; Clar-

idge-Chang et al., 2009; Aso et al., 2010), but electric shock,

heat, and bitter taste appear to bottle-neck onto the same MP1,

also called PPL1-g1pedc DANs (Aso et al., 2012; Das et al.,

2014; Galili et al., 2014), suggesting that aversive memory lacks

quality information and might simply represent the magnitude of

aversion. Interestingly, studies suggest that negatively reinforcing

MP1 DANs also mediate hunger-dependent motivational control

overappetitivememoryexpression (Krasheset al., 2009;Waddell,

2013). In this context, MP1 DANs appear to be inhibitory since

blocking them releases inappropriate memory expression in

food-satiated flies (Krashes et al., 2009). Moreover, MP1 DANs

are themselves controlled by peptidergic inhibition—dNPF, the

fly equivalent of NPY—demonstrating that behavior can be

controlled through a hierarchical layering of inhibitory pathways.

Each of the 15 discrete MB zones that is defined by the inner-

vation of a particular type of DAN has a corresponding set of MB

output neurons (MBONs) (Aso et al., 2014a), suggesting that

DANs specifically modulate the efficacy of the KC-MBON

connection within a zone (Owald and Waddell, 2015). Indeed,

recent work has revealed a clear model for how DAN reinforce-

ment during learning can shape odor-driven behavior (Owald

et al., 2015; Owald andWaddell, 2015). Reward learning engages

DANs that modulate and suppress the conditioned odor-drive

from KCs to glutamatergic MBONs that intrinsically direct avoid-

ance behavior (Owald et al., 2015). In contrast, aversive learning

enhances conditioned odor-drive to these avoidance MBONs

(Owald et al., 2015; Bouzaiane et al., 2015) while also inhibiting

odor-drive to cholinergic (Séjourné et al., 2011), and perhaps

GABAergic, MBONs driving approach. Learning and internal

states are therefore likely to tune collections of MBON pathways

to skew the overall MBON network toward either directing

approach or aversion (Owald and Waddell, 2015).

The presynaptic terminals of MP1/PPL1-g1pedc DANs are

intermingled with the dendrites of MVP2 neurons (also called

MBON-g1pedc>a/b; Aso et al., 2014b), consistent with these

DANs modifying the KC-MVP2 junction (Owald and Waddell,

2015). Artificial activation of MP1 paired with odor presentation

was recently reported to induce an odor-specific depression at

this site (Hige et al., 2015). Here we show that aversive learning

causes a persistent and specific reduction in the relative condi-

tioned odor drive to MVP2, yet MVP2 output is only required for

the expression of short-term aversive memory. Anatomical and

functional connectivity suggests that MVP2 exert asymmetric

feed-forward inhibition over MBONs on the horizontal and verti-

cal MB lobes, preferentially promoting approach by inhibiting

avoidance directing pathways. Consistent with this model,
hunger generally increases MVP2 odor-driven responses, and

MVP2-dependent inhibition is required for the expression of

appetitive memory at all times in hungry flies. Moreover, activa-

tion of MVP2 neurons promotes the expression of appetitive

memory in food-satiated flies. Aversive learning and appetitive

motivation therefore differentially modulate the odor-drive of

the MVP2 neurons, which alters feed-forward inhibition onto

other MBON pathways within the neural network of the MB.

Reduced feed-forward inhibition is required for conditioned

avoidance, whereas increased feed-forward inhibition promotes

expression of conditioned approach.

RESULTS

GAL4 Control of GABA-ergic MVP2 Neurons
We used the R83A12-GAL4 (Jenett et al., 2012) and theMB112C

split-GAL4 combination (Aso et al., 2014b; Aso et al., 2014a)

drivers to investigate the role of MVP2 (MBON-g1pedc>ab) neu-

rons. Expression of a UAS-CD8::GFP transgene revealed that

R83A12 labels the MVP2 neurons in addition to six large cells

with processes confined to the sub-esophageal ganglion (Fig-

ure 1A). Neural expression in MB112C is restricted toMVP2 neu-

rons (Aso et al., 2014a) (Figure 1B). Double labeling the MB with

rCD2::RFP revealed that most MVP2 processes lie within or in

close proximity to the structure of the MB lobes, with a few pro-

cesses projecting outside in the crepine and superior intermedi-

ate protocerebrum (Ito et al., 2014; Aso et al., 2014a) (Figures

1A–1C and S1; Movie S1). Expressing the dendritic UAS-

DenMark (Nicolaı̈ et al., 2010) and presynaptic UAS-GFP-Syd-

1 (Owald et al., 2010) markers in MVP2 neurons with R83A12

control suggests that dendrites of MVP2 occupy the g1 and

base of the peduncle regions of the MB (Figure 1C), where

they are interspersed with the processes of the MP1 DANs (Fig-

ure 1D), whereas the presynaptic regions are mostly within, or in

close proximity to, the MB lobes (Figure 1C). UAS-GFP-Syd-1

also labels a ring of presynaptic active zones at the level of the

ab surface (abs) neurons, suggesting plausible feedback in this

area (inset Figure 1C). GABA immunostaining revealed that

MVP2 neurons are likely to be inhibitory (Figure 1E). A prior study

concluded that MVP2 neurons predominantly innervate the a1,

a2, a3, and b1 and b2 regions of the MB lobes, where they could

potentially provide feed-forward inhibition to other MBON com-

partments (Aso et al., 2014a) (Figure S1).

Aversive Learning Depresses Conditioned Odor Drive to
MVP2 Neurons
Several reports suggest that learning alters odor-drive to collec-

tions of MBONs (Séjourné et al., 2011; Plaçais et al., 2013; Pai

et al., 2013; Owald et al., 2015; Bouzaiane et al., 2015) to either

skew the overall MB output toward favoring approach or avoid-

ance (Owald et al., 2015; Owald and Waddell, 2015). Since

the presynaptic terminals of aversively reinforcing MP1/PPL1-

g1pedc DANs are confined to the same MB zones as the

dendrites of MVP2 neurons (Krashes et al., 2009; Aso et al.,

2014b) (Figure 1D), we reasoned that aversive learning might

alter the KC-MVP2 connection. We therefore measured odor-

evoked activity of MVP2 neurons in trained and control flies.

We expressed GCaMP6f (Chen et al., 2013) under MB112C
Neuron 90, 1086–1099, June 1, 2016 1087
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Figure 1. MVP2 MBONs Are Local

GABAergic Interneurons of the MB

(A and B) (A) R83A12-GAL4- and (B) MB112C-

GAL4-driven UAS-mCD8::GFP labels a single

MVP2 neuron per hemisphere. The most promi-

nent MVP2 neuron process innervates the heel

(g1) regions of the MB. MB co-labeled (magenta)

with 247-LexA::VP16-driven lexAop-rCD2::mRFP.

(C) DenMark labels MVP2 dendrites in g1 and ab

surface at the base of the MB peduncle. The pre-

synaptic active zone marker Syd-1 labels large

puncta throughout the a and b lobes and around

and outside the MB in the crepine and superior

intermediate protocerebrum (see also Figure S1;

Movie S1). Inset shows single confocal section

throughMVP2dendritesdetailing innervation of the

g and abs, but not abc or a
0b0 regions. A ring of Syd-

1 labeling within the dendritic field suggests MVP2

also feed back within the abs. Scale bars 20 mm.

(D1–D3) (D1) MVP2 dendrites labeled by R12G04-

LexA;lexAop-rCD2::mRFP are interspersed with

(D2) processes of MP1 DANs labeled by R22B12-

GAL4;UAS-mCD8::GFP. (D3) merge of (D1) and

(D2); scale bar 10 mm.

(E1–E3) (E1) GABA immunostaining overlaps

with (E2) MVP2 labeled with MB112C;UAS-

mCD8::GFP. (E3) Merge of (E1) and (E2); scale bar

10 mm.
control and performed two-photon functional calcium imaging

of odor-evoked responses at the level of the MVP2 dendrites in

living flies (Figure 2A). We first determined that MVP2 neurons

responded to odors, including 4-methylcyclohexanol (MCH)

and 3-octanol (OCT) that are typically used for olfactory learning

(Figure 2B; also Figure 6A). To test the effect of aversive training,

flies were loaded into the training arm of a T-maze and subjected

to either of two protocols: the ‘‘trained’’ group received 1 min

OCT (or MCH) presentation paired with 12 electric shocks

(CS+) followed by 1 min of MCH (or OCT) without reinforcement

(CS�); the control ‘‘mock’’ group experienced the same odor

regimen but without shock presentation. Flies were subse-

quently captured and individually mounted under the micro-

scope within 30–60 min after training. Aversive conditioning

decreased the response to the CS+ relative to the CS� for the

trained groups (Figures 2C and 2D). Importantly, no change

was apparent in the responses of mock-trained flies (Figure 2C).

As in a previous study (Owald et al., 2015), we also analyzed the

difference between the OCT toMCH (or MCH toOCT) responses

per individual fly and then compared the averaged difference

curves between the trained and the mock-trained groups. Again,

a robust depression of the CS+ relative to the CS�was observed

for the peak responses of the trained groups (Figure 2D). The

observed depression persisted for at least 3 to 4 hr after training

(Figures 2E and 2F). These data are consistent with a model that

learning drives synaptic weight changes of KC-MBON con-

nections (Okada et al., 2007; Cassenaer and Laurent, 2012;
1088 Neuron 90, 1086–1099, June 1, 2016
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and with a recent study that reported

odor-specific depression following the
pairing of odor exposure with artificial stimulation of MP1

DANs (Hige et al., 2015).

MVP2 Neurons Are Required for Expression of
Short-Term Aversive Memory
MP1 DANs mostly reinforce short-term aversive memory (Aso

et al., 2012). We therefore tested the requirement of MVP2 neu-

rons in aversive memory by blocking their output during memory

testing using R83A12 and MB112C to express the dominant

temperature-sensitive UAS-shibirets1 (shits1) (Kitamoto, 2001).

In each experiment we compared the performance of flies with

MVP2 neural blockade to controls carrying only the GAL4 or

UAS-shits1 transgene. We first tested 30 min aversive memory

performance by training flies at permissive 23�C and raising

them to restrictive 33�C before and during memory testing (Fig-

ure 2G). Performance of R83A12;shits1 and MB112C;shits1 flies

with impaired MVP2 neurons was statistically different to that

of their respective controls. Importantly, experiments performed

at permissive 23�C throughout did not reveal significant differ-

ences between the relevant groups (Figure S2A). We next tested

the requirement of MVP2 neurons for 3 hr aversive memory. Flies

were trained at permissive 23�C and raised to restrictive 33�C
30 min before and during testing. Strikingly, performance of

R83A12;shits1 flies with blocked MVP2 neurons was statistically

indistinguishable from that of control flies at this time (Figure 2H).

Therefore, although the decrease in conditioned odor-drive to

MVP2 neurons persists, MVP2 output is only essential for the
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Figure 2. Aversive Learning Drives Persis-

tent Depression of Conditioned Odor Drive

to MVP2 Neurons yet Output Is Only

Required to Express Short-Term Aversive

Memory

(A) Schematic of MVP2 neuron showing imaging

plane (dotted line).

(B) Example pseudocolor images of baseline and

MCH-evoked GCaMP fluorescence recorded

from MVP2 dendrites in a living fly. ROI indicated

by white ellipse.

(C) Aversive conditioning depresses the relative

CS+ to CS� odor-drive to MVP2 neurons. CS+

and CS� odor-evoked calcium transients were

imaged 30–60 min after mock or regular shock

conditioning (red curves: OCT, blue curves: MCH).

Data are mean [solid line] ± SEM [shaded area]

normalized curves (see Experimental Procedures).

(D) Bar graphs represent percent difference to the

mean mock integrated peak response (4.5 ± 1.5 s

after odor delivery, see methods) (Mann-Whitney

U-test; OCT is CS+ (top): n(mock) = 7, n(trained) =

11, p < 0.05. MCH is CS+ (bottom): n(mock) = 8,

n(trained) = 11, p < 0.05).

Difference of responses evoked by CS+ and CS�
after aversive conditioning relative to the mean

responses after mock training (red curve: OCT is

CS+, blue curve: MCH is CS+). Data are mean

[solid line] ± SEM [shaded area] normalized curves

(see Experimental Procedures).

(EandF)Sameas in (C) and (D), butodor-responses

were imaged 3 to 4 hr after training. Bar graphs

represent percent difference to the mean mock in-

tegrated peak response (4.5 ± 1.5 s after odor de-

livery) (Mann-Whitney U-test; OCT is CS+ (top):

n(mock) = 5, n(trained) = 5, p < 0.05. MCH is CS+

(bottom): n(mock) = 11, n(trained) = 8, p < 0.05).

(G) Blocking output from R83A12 or MB112C

neurons during testing impaired 30 min aversive

memory performance compared to the relevant

controls (Kruskal-Wallis, n = 18–22, p < 0.001 and

ANOVA, n = 10–13, p < 0.01, respectively).

(H) Blocking output from R83A12 or MB112C

neurons during testing did not impair 3 hr aversive

memory (Kruskal-Wallis, n = 25, p > 0.9 and

ANOVA, n = 9 to 10, p > 0.2, respectively).

(I) Activating R83A12 or MB112C neurons during

testing impaired 30min aversivememory (ANOVA,

n = 9 to 10, p < 0.001 and ANOVA, n = 13 to 14,

p < 0.01, respectively).

(G–I) Schematics depict temperature protocols. All

flies were trained at 23�C and tested at 33�C. Data
are mean ± SEM. See Figure S2 for permissive

control. Asterisks indicate statistical significance.
expression of short-term aversive memory. These data are

consistent with MP1 DANs principally reinforcing short-term

memory by modifying the KC-MVP2 junction, whereas expres-

sion of later phases of aversive memory relies on other pathways

such as V2a MBONs on the vertical MB lobes (Séjourné et al.,

2011; Bouzaiane et al., 2015).

We also tested whether MVP2 neuron stimulation with UAS-

dTrpA1 (Hamada et al., 2008) altered expression of aversive

memory. Flies in which MVP2 neurons were activated 15 min

prior to and during testing aversive memory showed a significant
decrease in performance compared to controls (Figure 2I).

Importantly, no significant differences were apparent if the

experiment was performed at 23�C throughout (Figure S2B).

We note that stimulating MVP2 neurons during memory testing

produced a similar defect to that obtained when MVP2 neurons

were blocked. A plausible explanation is that, when blocked, the

flies cannot transmit the learned relative odor-specific drive from

KCs to MVP2 neurons to the relevant downstream neurons.

Similarly, when the MVP2 neurons are continuously stimulated

the relative odor-specificity of MVP2 activity is lost.
Neuron 90, 1086–1099, June 1, 2016 1089
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Figure 3. Anatomy of MVP2 Processes in

Relation to M4/6 and V2aV2a0 MBONs

(A) Confocal projection of single MVP2 neuronwith

the M4/6 neurons labeled with R83A12-GAL4;

UAS-GCaMP6f (orange) and R21D02-LexA;

lexAop-rCD2::mRFP (cyan), respectively. Scale

bar 20 mm.

(B1–B3) Separate and merged channels of single

confocal section at the level of the M4/6 dendrites

in the b02 zone showing MVP2 processes inter-

mingled with the M4/6 axonal segment (white

arrows). Scale bar 10 mm.

(C1–C3) Separate and merged channels of single

confocal section at the level of the M6 dendrites in

the g5 zone show no overlap with MVP2 pro-

cesses except for a large diameter neurite passing

through. Scale bar 10 mm. Also see Movie S2.

(D) Confocal projection of singleMVP2 neuronwith

the V2aV2a0 neurons labeled with R12G04-LexA;

lexAop-rCD2::mRFP (orange) and R71D08-GAL4;

UAS-mCD8::GFP (cyan), respectively. Scale bar

20 mm.

(E1–E3) Separate and merged channels of single

confocal section at the level of the V2aV2a0 den-
drites in the a2a02 zone of the vertical MB lobe

showing a single MVP2 process close to the

axonal segment of V2aV2a0 (white arrow).

(F1–F3) Separate and merged channels of another

single confocal section showing several MVP2

processes (white arrows) within the mass of the

V2aV2a0 dendrites. Scale bar 10 mm. Also see

Movie S3.
MVP2 Neurons Asymmetrically Inhibit the MBON
Network
Optogenetic activation of MVP2 drives approach behavior (Aso

et al., 2014b), and most MVP2 processes lie within, or in close

proximity to the MB. We therefore hypothesized that MVP2

neurons might skew the MBON network toward approach by

preferentially inhibiting avoidance-directing MBONs. We first

investigated this model by looking at the anatomy of MVP2

presynaptic neurites and MBON processes in the vertical and

horizontal MB lobes. We used compatible GAL4 and LexA

drivers to co-label MVP2 neurons with either the M4/6 MBONs

on the horizontal lobes or the V2a and V2a0 MBONs on the ver-

tical lobes (Figure 3). These confocal analyses suggest that

MVP2 presynaptic terminals lie mostly outside themain dendritic

fields of the M4/6 neurons in the horizontal lobe tips and instead

appear clustered on the M4/6 neurites as they exit the MB lobe

region (Figures 3A–3C;Movie S2). In contrast, manyMVP2 termi-

nals lie within the MB neuropil occupied by dendrites of V2a and

V2a0 MBONs (Figures 3D–3F; Movie S3).

Since the detail of light microscope level anatomy is limited,

we next used odor-evoked activity and optogenetic control of

MVP2 neurons to test for functional connectivity between

MVP2 and M4/6 or V2aV2a0 MBONs (Figure 4). Flies were con-

structed that expressed GCaMP6f in M4/6 or V2aV2a0 MBONs

using either R21D02-GAL4 or R71D08-GAL4, respectively, and

CsChrimson (Klapoetke et al., 2014; Hoopfer et al., 2015) in

MVP2 neurons under R12G04-LexA. We then monitored MCH-
1090 Neuron 90, 1086–1099, June 1, 2016
or OCT-evoked responses in the presynaptic processes of

M4/6 or V2aV2a0 MBONs before, during and following red-

light-triggered MVP2 activation. Strikingly, whereas MVP2

activation induced a rapid and robust inhibition of OCT- and

MCH-evoked responses in M4/6 MBONs (Figure 4A) that recov-

ered after the activation ended, no effect was evident in V2aV2a0

responses (Figure 4B). Importantly, flies lacking retinal or the

CsChrimson transgene did not exhibit a measurable difference

on OCT- or MCH-evoked responses in M4/6 MBONs (Figures

S3A and S3B). Moreover, stimulating MVP2 neurons without

concurrent odor delivery did not induce a measurable M4/6

calcium response (Figure S3C). These data are consistent with

MVP2 neurons preferentially inhibiting horizontal lobe MBONs.

In addition, since aversive learning reduces conditioned odor-

drive to MVP2 neurons, disinhibition might explain why aversive

learning caused a relative increase in conditioned odor-evoked

responses in M4/6 neurons (Owald et al., 2015).

Naive odor-driven behavior can be steered by skewing the

balance of the outputs in the overall MBON network (Owald

and Waddell, 2015). Blocking either input or synaptic output

from the M4/6 MBONs converts naive odor avoidance into

approach (Barnstedt et al., 2016; Owald et al., 2015). We there-

fore also used naive odor-avoidance behavior to test whether

MVP2 neurons exert asymmetric influence on the MBON

network. We expressed UAS-shits1 with R83A12 or MB112C

and determined the effect on naive odor avoidance of blocking

MVP2 neurons (Figure 5). Flies chose between T-maze arms
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Figure 4. MVP2 Neurons Inhibit Odor-Evoked Responses in M4/6, but Not V2aV2a0 MBONs

Odor-evoked GCaMP6f responses measured in (A) M4/6 or (B) V2aV2a0 MBON axons (green) while CsChrimson-expressing MVP2 MBONs (orange) were

light-triggered.

(A) Schematic of experiment (top left). Data acquired from the most ventral part of M4b0 axons (dashed square). Lower left panels; representative images taken at

time points a, b, and c, after MCHpresentationwithout andwith stimulation ofMVP2 neurons. Calcium traces duringOCT (middle top panels, red) orMCH (middle

bottom panels, blue) presentation show robust odor-evoked responses in M4b0 axons in absence of LED stimulation. Triggering MVP2 neurons for 1 s with LED

ON produced a clear and reversible depression of the odor-evoked calcium transient. Data are mean curves [solid line] ± SEM [shaded area]. Quantification of the

DF/F at the a–c time points reveals a significant difference in the odor-evoked responses with LED ON (orange) compared to the same time point with LED OFF

(gray), for both OCT (top right) and MCH (bottom right) (two-way repeated-measures ANOVA, both interaction effect p < 0.001, n = 9).

(B) Schematic of experiment (top left). Data were acquired from the V2aV2a0 proximal axon segment (dashed square). Bottom left panels; representative images

taken at time points a, b, and c, after MCH presentation without and with stimulation of MVP2 neurons. Calcium traces during OCT (middle top panels, red) or

MCH (middle bottom panels, blue) presentation show robust odor-evoked responses in V2aV2a0 axons without and with LED-triggered stimulation of MVP2

neurons. Data are mean curves [solid line] ± SEM [shaded area]. Quantification of the DF/F at the a–c time points reveals no significant difference in the odor-

evoked responses with LED ON (orange) compared to the same time point with LED OFF (gray), for both OCT (top right) and MCH (bottom right) (OCT: two-way

repeated-measures ANOVA, no interaction effect p > 0.6, n = 13; MCH: Two-way repeated-measures ANOVA, interaction effect p < 0.05, ‘‘a’’ LED OFF versus

LED ON, p = 0.001, n = 13).
containing clean air or with MCH or OCT. Both R83A12;shits1

and MB112C;shits1 flies exhibited significantly enhanced MCH

(Figure 5A) andOCT (Figure 5B) avoidance behavior at restrictive

33�C but not permissive 23�C (Figures S4A and S4B). We

also expressed dTrpA1 in MVP2 neurons and tested whether

stimulating MVP2 neurons suppressed naive odor avoidance

behavior. Whereas all flies robustly avoided MCH or OCT at
23�C (Figures S4C and S4D), at restrictive 33�C, R83A12;dTrpA1
and MB112C;dTrpA1 flies displayed significantly weaker

avoidance of MCH (Figure 5C) and OCT (Figure 5D). Taken

with the aversive memory defect seen when MVP2 neurons are

blocked (Figure 2G) and the structural and functional anatomy

(Figures 3 and 4), these naive fly data are consistent with

GABA-ergic MVP2 neurons skewing the MBON network by
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Figure 5. MVP2 Neurons Inhibit Naive Odor Avoidance Behavior

(A and B) BlockingMVP2 neuron output in naive flies increases odor avoidance

for (A)MCH (R83A12: ANOVA, n = 10–12, p < 0.01;MB112C: ANOVA, n = 8–12,

p < 0.01) and for (B) OCT (R83A12: ANOVA, n R 16–20, p < 0.01; MB112C:

ANOVA, n = 15 to 16, p < 0.01).

(C and D) Stimulating MVP2 neurons in naive flies inhibits odor avoidance for

(C) MCH (R83A12: Kruskal-Wallis, n = 10–12, p = 0.01; MB112C: ANOVA,

n = 8–12, p < 0.01) and for (D) OCT (R83A12: ANOVA, n = 14–16, p < 0.01;

MB112C: Kruskal-Wallis, n = 16–20, p < 0.01). Flies chose between T-maze

arms containing MCH or OCT or a clean air stream at 33�C. See Figure S4 for

permissive controls.
preferentially inhibiting MBON pathways that generate avoid-

ance behavior.

Hunger Potentiates Odor-Evoked Activity of MVP2
Neurons
In addition to conveying negative reinforcement, the MP1 DANs

inhibit expression of sugar-reinforced appetitive memory in

food-satiated flies (Krashes et al., 2009). Furthermore, MP1

DANs are more active in food-satiated than in hungry flies (Pla-

çais and Preat, 2013). We therefore tested whether hunger

modulated MVP2 activity by monitoring odor-evoked responses

in hungry and food-satiated flies (Figure 6A). We again ex-

pressed GCaMP6f in MVP2 neurons using MB112C. Flies were

either housed in food vials and allowed to feed ad libitum (fed)

or were stored in vials with 1% agar as a water source and

deprived of food for 22–26 hr (starved) before being prepared

for live imaging. These experiments revealed a clear elevation
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of odor-evoked activity in starved compared to satiated flies.

Peak responses to MCH, OCT, ethyl acetate (EA), and pentyl ac-

etate (PA) were all significantly greater in starved versus satiated

flies. 6-methyl-5-heptan-2-one and geranylacetate showed a

trend toward increased responses in starved flies but did not

reach statistical significance (data not shown). The shape of

the responses, an odor-specific signature, appeared to be pre-

served in fed and starved flies. These data suggest that hunger

increases general odor-drive from KCs to MVP2 neurons—an

expectation of a release of MP1-directed modulation of the

KC-MVP2 junction—and thereby increases feed-forward inhibi-

tion in the MBON network.

We also tested whether appetitive conditioning altered relative

odor-drive to MVP2 neurons (Figures S5A and S5B). Flies were

again subjected to either of two protocols: the ‘‘trained’’ group

received 2 min OCT (or MCH) without reinforcement (CS�) fol-

lowed by 2 min of MCH (or OCT) paired with sucrose (CS+);

the ‘‘mock’’ group experienced the same odor regimen but

without reinforcer. Flies were individually mounted under the mi-

croscope 30–60 min after training. The averaged difference

curves between the trained and the mock-trained groups re-

vealed a potentiation of the CS+ relative to the CS� for the

peak responses of theOCT but not theMCH-trained groups (Fig-

ures S5A and S5B). We conclude that appetitive conditioning

may potentiate the relative conditioned odor-drive to MVP2

neurons.

MVP2 Neurons Are Generally Required for the
Expression of Appetitive Memory
Since MVP2 neurons are more excitable in hungry flies, we

reasoned that their output might be required to promote state-

dependent appetitive memory expression by inhibiting avoid-

ance-directing MBONs. We therefore used R83A12-and

MB112C-driven UAS-shits1 to assess the role of MVP2 neurons

in appetitive memory. All flies were food-deprived and trained

with odor and sugar at permissive 23�C, after which they were

raised to restrictive 33�C 30 min before and during testing

30 min, 3 hr, or 24 hr appetitive memory. Performance of flies

with blocked MVP2 neurons was statistically different to that of

their respective controls at every time point (Figures 6B–6D).

Experiments performed at 23�C throughout did not reveal signif-

icant differences between the relevant groups (Figures S5C–

S5E). Therefore, whereas MVP2 neurons only contribute to the

expression of short-term aversive memory, they are required

for flies to express all phases of sugar-reinforced appetitive

memory.

MVP2 Activation Promotes Appetitive Memory
Expression in Food-Satiated Flies
We hypothesized that blocking MVP2 output might impair appe-

titive memory performance because the flies are effectively

stuck in a food-satiated condition. To test this idea, we used

R83A12- and MB112C-driven expression of dTrpA1 to activate

MVP2 in food-satiated flies before and during assaying

memory performance. These flies and all controls were food-

deprived and trained with odor and sugar at 23�C. After

training, flies were transferred to 23�C food vials and were

either kept at this condition before testing 3 hr memory
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Figure 6. Elevated MVP2 Activity Promotes Appetitive Memory Expression in Hungry Flies

(A) Hunger increases odor-evoked responses in MVP2 neurons. Peak responses in starved flies (light curves; mean [solid line] ± SEM [shaded area]) are

statistically different to those in fed flies (dark curves; mean [solid line] ± SEM [shaded area]). Flies were exposed to 4-methylcyclohexanol (MCH), 3-octanol

(OCT), ethylacetate (EA), or pentylacetate (PA) for 5 s. Top: difference curves (gray) between the mean responses from fed and starved flies. Insets show

quantification of peak responses (4.5 ± 1.5 s after odor delivery, see Experimental Procedures; asterisks denote statistical significance;Mann-Whitney U-tests; all

n(starved) = 20, n(fed) = 21, p < 0.05).

(B–D) Blocking MVP2 output duringmemory testing impairs appetitive memory performance at all times. Flies were trained at 23�C and raised to 33�C before and

during testing (B) 30 min, (C) 3 hr, or (D) 24 hr memory. Performance of MVP2;UAS-shits1 flies was statistically different from controls for (B) (R83A12: Kruskal-

Wallis, n = 9, p < 0.01. MB112C: Kruskal-Wallis, n = 8 to 9, p < 0.01), (C) (R83A12: ANOVA, n R 11, p < 0.01), and (D) (R83A12: ANOVA, n = 10–12, p < 0.01.

MB112C: ANOVA, n = 10–12, p < 0.01).

(E) Feeding flies after training suppresses appetitive memory performance. Hungry flies were trained at 23�C, then stored in food vials before testing 3 hr memory

at 23�C. No statistical differences were apparent between flies expressing UAS-dTrpA1 in MVP2 neurons and relevant controls (R83A12: ANOVA, n = 10, p > 0.2;

MB112C: ANOVA, n = 9 to 10, p > 0.3).

(legend continued on next page)
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(Figure 6E) or were raised to 33�C 15 min before and during

testing 3 hr memory (Figure 6F). Feeding after training sup-

pressed performance in all groups except the R83A12;dTrpA1

and MB112C;dTrpA1 flies that were exposed to elevated

temperature prior to and during testing (Figures 6E and 6F).

Therefore, MVP2 neuron activation promotes inappropriate

appetitive memory expression in food-satiated flies. We also

used R83A12;dTrpA1 and MB112C;dTrpA1 to stimulate MVP2

neurons prior to 3 hr memory testing in food-deprived flies (Fig-

ure 6G). No significant improvement in memory performance

was apparent when MVP2 neurons were stimulated in this

condition.

In parallel, we reproduced the finding thatMP1DANblock pro-

motes appetitive memory performance in satiated flies (Krashes

et al., 2009). We used the same food deprivation and training

conditions as for the above MVP2 experiments, but expressed

UAS-shits1 in MP1 DANs using c061-GAL4;MBGAL80 (Figures

S5F–S5H). In these experiments, only satiated c061;MBGAL80;

shits1 flies that were exposed to elevated temperature 30 min

prior to and during testing displayed robust appetitive memory

performance (Figures S5F and S5G). As for MVP2 neuron activa-

tion, blocking MP1 neurons in hungry flies did not further

enhance appetitive memory performance (Figure S5H). There-

fore, MP1 inhibition and MVP2 activation promote appetitive

memory performance, consistent with the MP1:KC:MVP2

pathway representing a key part of the state of hunger in the

neural circuitry of the MB.

DISCUSSION

Prior work in Drosophila indicated that negative reinforcement

and hunger-state-dependent motivational control of appetitive

memory performance might be controlled by the same DANs

(Krashes et al., 2009; Claridge-Chang et al., 2009; Aso et al.,

2010, 2012). The presynaptic field of the MP1/PPL1-g1pedc

DANs occupies a defined region of the MB that also contains

the MVP2/MBON-g1pedc>ab dendrites (Krashes et al., 2009;

Aso et al., 2010, 2014b), suggesting that these DANs modulate

the efficacy of this specific KC-MBON connection. Our results

here demonstrate that the MVP2 MBONs also play a critical

role in the expression of short-term aversive memory and the

state-dependence of appetitive memory expression. Since

these findings directly mirror the described roles for the MP1

DANs (Krashes et al., 2009), we conclude that DAN modulation

of the KC-MVP2 junction is critical for both negative reinforce-

ment during olfactory learning and the motivational salience of

appetitive odor cues.

The GABA-ergic MVP2 neurons have postsynaptic and

presynaptic processes in the MB, suggesting that they are inter-

neurons of the MB and feed-forward inhibit other MBON com-

partments. Dendrites of MVP2 neurons (and the presynaptic

terminals of the MP1 DANs) innervate the g1 region and more
(F) Appetitive memory expression is promoted in fed flies by activation of MVP

n = 11–19, p < 0.01; MB112C: ANOVA, n = 14–17, p < 0.01). Hungry flies were tr

(G) Activating MVP2 neurons does not further enhance appetitive memory pe

Kruskal-Wallis, n = 8–10, p > 0.1). Hungry flies were trained, stored in empty via

illustrate the temperature protocols. See Figure S5 for permissive temperature c

1094 Neuron 90, 1086–1099, June 1, 2016
densely innervate the abs than the ab core (abc) region of the

ab ensemble (Krashes et al., 2009). MVP2 are therefore likely

to be primarily driven by abs KCs. Since abs neurons contribute

to conditioned approach and avoidance, whereas abc are partic-

ularly important for conditioned approach (Perisse et al., 2013),

there is an imbalance in the drive to approach and avoidance be-

haviors at this level of the MBON network.

Artificial activation of MVP2 neurons in naive flies drives

approach behavior (Aso et al., 2014b), consistent with them pref-

erentially inhibiting MBON compartments that direct avoid-

ance—as opposed to those that drive approach. Our anatomical

and functional connectivity and odor-directed behavioral data

are consistent with such a model. MVP2 stimulation inhibits

odor-evoked activity in M4/6 but not in V2aV2a0 MBONs.

MVP2 stimulation also promotes expression of approach mem-

ory in food-satiated flies, yet it inhibits naive odor avoidance

behavior. We conclude that MVP2 directly inhibit the M4/6 class

of horizontal lobe MBONs through synapses made on the pri-

mary axonal segment as it exits the MB lobes. Inhibition exerted

in this area might be expected to control the gain of the MBON

responses following integration of KC inputs in the MBON

dendrite in amanner similar to perisomatic inhibition inmammals

(Miles et al., 1996; Klausberger and Somogyi, 2008; Ellender and

Paulsen, 2010). Consistent with this anatomy and idea, we and

others (Lewis et al., 2015) did not find obvious changes in the

odor drive to the dendritic region of M4/6 neurons between hun-

gry and satiated flies (data not shown), but a hunger-dependent

decrease was apparent when odor-evoked responses were

measured in the efferent neurites (Figure S6A). In contrast,

MVP2 neurons do not functionally inhibit or densely innervate

the neurites of V2aV2a0 MBONs, nor does hunger reduce odor-

evoked responses in V2aV2a0 MBONs (Figure S6B). It therefore

seems likely that MVP2 neurons contact DANs or other neurons

that occupy the a2 compartment of the MB lobe (Aso et al.,

2014a).

Our data also demonstrate that aversive learning reduces the

relative conditioned odor drive to MVP2 neurons, which would

presumably decrease feed-forward inhibition onto the relevant

MBONcompartments and thereby render themmore responsive

to odors. Output from the glutamatergic M4/6 neurons, which

are postsynaptic to the KCs in the horizontal tip regions, is

required for expression of aversive and appetitive memory.

Furthermore, the relative odor-drive to M4/6 neurons was shown

to be depressed by reward learning (Owald et al., 2015) and

potentiated by aversive learning (Owald et al., 2015; Bouzaiane

et al., 2015). Since aversive learning reduces the conditioned

odor drive of theMVP2 neuron, we propose that the observed in-

crease in odor-drive to M4/6 after aversive learning results from

reduced feed-forward inhibition from MVP2. This would mean

that bi-directional output plasticity could emerge via a direct

junctional plasticity following reward conditioning, but a network

property of reduced MVP2 feed-forward inhibition after aversive
2 neurons 15 min prior to and during testing 3 hr memory (R83A12: ANOVA,

ained, then stored in food vials before testing 3 hr memory at 33�C.
rformance in hungry flies (R83A12: ANOVA, n = 9 to 10, p > 0.5; MB112C:

ls and tested for 3 hr memory at 33�C. All data are mean ± SEM. Schematics

ontrols.
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B Figure 7. Model Accommodating Role for

MVP2 in Aversive Learning and Appetitive

Motivation

(A) Wiring diagram of the relevant neurons in the

MB network. The MP1/PPL1-g1pedc DANs

(green) have a dual role in aversive reinforcement

and appetitive motivation and are modulated

by the hunger-sensitive dNPF-releasing neurons

(black). MP1 and V1 DANs convey negative

reinforcing properties of aversive stimuli

(minus symbol) to specific zones in the MB

ensemble where they modulate the connection

between odor-activated KCs (gray, inactive) and

the GABAergic MVP2/MBON-g1pedc>a/b inter-

neuron (magenta) or the V2a (orange) MBONs,

respectively. Active MVP2 neurons feed-forward

inhibit other parts of the MB network where they

modulate the odor-drive to some MBONs

including the glutamatergic (Glut) M4/6 MBONs

(brown) that promote avoidance behavior. It is

currently unclear what other MVP2 projections in

the horizontal and vertical lobes connect to

(dashed lines). Rewarding stimuli activate posi-

tively reinforcing DANs of the PAM cluster (green

with plus symbol), which modulate connections

between KCs and the M4/6 MBONs. We propose

that MVP2 neurons exert their function by bridging

between MBON compartments that each have

their own DAN input.

(B)Mode of the network evoked by aversive training. Red symbolizes high and blue low neural activity. Size of arrowhead indicates relative drive. Sites of plasticity

denoted by a change in the size of synaptic connections (circles), with smaller representing depression and larger representing potentiation. For simplicity, only an

effect on the neurons carrying the conditioned odor is illustrated. During aversive conditioning, coincidence between odor-driven activity in KCs (now orange) with

phasic MP1 and MV1-released dopamine leads to odor-specific synaptic depression (smaller blue circles) between odor-activated KC and the MVP2 and V2a

MBONs. After training, the reduced conditioned-odor drive to MVP2 (now blue) selectively weakens feed-forward inhibition onto the conditioned-odor drive to

M4/6 MBONs (red) that favor avoidance behavior. Via this feed-forward inhibitory mechanism, MP1-induced synaptic depression at the KC-MVP2 junction is

sign-inverted to an apparent potentiation of the KC-M4/6 junction (larger red circle)—importantly, while odor-specificity is maintained.

(C) Mode of the network following appetitive training and feeding. During appetitive conditioning coincidence between odor-driven activity in KCs with phasic

PAM-released dopamine leads to odor-specific synaptic depression (smaller blue circle) between odor-activated KC and the M4/6 MBONs. Satiation imposes

tonic activity of MP1 (red), which reduces general odor-drive to the KC-MVP2 junction, thereby switching MVP2 into a low mode (now blue). Learning-triggered

synaptic depression is effectively neutralized by reducedMVP2-mediated inhibition so that the drive to avoidanceMBONs is maintained (now dashed blue arrow)

and approach behavior cannot be efficiently expressed.

(D) Mode of the network following appetitive training and food deprivation. Hunger triggers dNPF neuron activity (now red) that suppresses MP1 activity (now

blue). This leads to general elevation of odor-evoked MVP2 activity (now red), which feeds forward to inhibit the avoidance MBON pathways. Increased feed-

forward inhibition, combined with odor-specific synaptic depression at the KC M4/6 junction (small blue circle) further reduces drive of avoidance MBONs and

skews the MBON network toward promoting conditioned approach behavior.
conditioning (Figure 7). Such a layered feed-forward network ar-

chitecture linking one site of DAN-driven KC-MBON plasticity to

another KC-MBON connection would provide a means to

achieve odor-specific bi-directional plasticity at a particular syn-

aptic junction using dopamine-driven synaptic depression in two

different places. We propose that this circuit design principle in

which plasticity at one site of a neuron can, via feed-forward in-

hibition, indirectly alter the efficacy of output elsewhere in the

same neuron, could be a general feature in the brain of the fly

and other animals. It is possible that the KC-MVP2 junction

also exhibits bi-directional plasticity, notably with inverted polar-

ity relative to M4/6 plasticity traces.

The layered network architecture places the aversive memory

relevant MVP2 plasticity on top of the M4/6 plasticity that is rele-

vant for appetitivememory (Owald et al., 2015). This organization

could accommodate the co-existence of aversive and appetitive

olfactory memories following conditioning reinforced by sugar
laced with bitter taste (Das et al., 2014). Immediately after such

training flies avoid the conditioned odor because the aversive

taste memory relieves feed-forward inhibition onto the sites

that are depressed by appetitive sugar plasticity and therefore

over-rides the expression of approach memory. However, as

the aversive memory decays, feed-forward inhibition returns

and appetitive memory is then expressed. A similar mechanism

might account for the time-dependent switch from conditioned

aversion to approach following odor conditioning reinforced by

alcohol (Kaun et al., 2011). It is notable that learning-induced

plasticity of relative odor-drive to MVP2 persists for at least

3 hr after training whereas output from MVP2 is dispensable

for the expression of aversivememory at that time. Since expres-

sion of different phases of aversive memory requires distinct

combinations of MBON pathways (Bouzaiane et al., 2015), we

propose that more persistent MVP2 plasticity might provide a

permissive gate for both the formation of aversive memory in,
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and the expression from, other parts of the MBON network. This

would be reminiscent of fear conditioning in the neural circuitry of

the mouse amygdala, where dopamine suppresses feed-for-

ward GABA-ergic inhibition from local interneurons to facilitate

the induction of long-term potentiation (Bissière et al., 2003).

MVP2 neuron output is required for the expression of sugar-re-

inforced approach memory at all times. Moreover, odors evoked

larger MVP2 responses in hungry than in food-satiated flies, and

elevating MVP2 activity in satiated flies promoted inappropriate

expression of appetitive memory. These results are consistent

with the model that hunger generally increases feed-forward in-

hibition through MVP2 to support appetitive memory expression

(Figure 7). This result is also the mirror-image of that with MP1

DANs whose activity increases when the flies are satiated (Pla-

çais and Preat, 2013) and whose inhibition leads to the expres-

sion of appetitive memory in satiated flies (Krashes et al.,

2009). Taken with prior work (Shen and Cai, 2001; Wu et al.,

2003; Krashes et al., 2009), we therefore propose that hunger in-

creases dNPF, which releases MP1 inhibition over the KC-MVP2

connection. This results in an increase of odor-evoked MVP2

feed-forward inhibition onto the MBON compartments such as

M4/6 that contain the KC-MBON synapses that are directly

modified by appetitive conditioning (Figure S6A) (Owald et al.,

2015). The increase of MVP2 inhibition into these, and other,

compartments allows more efficient expression of the appetitive

memory-directed approach behavior by effectively raising the

motivational salience of learned food-related odors. Appetitive

conditioning may also increase odor-specific recruitment of

MVP2 feed-forward inhibition.

Our findings therefore suggest that the MVP2 neuron pathway

functions in at least threemodes that are presumably selected by

the aversively reinforcing MP1 DANs. If the flies are aversively

conditioned, phasic MP1 specifically depresses conditioned-

odor drive to MVP2 neurons (Figure 7B). In a food-satiated fly,

tonic MP1 limits general odor-driven MVP2 activity (Figure 7C).

Lastly, in the hungry fly, lower MP1 activity generally enhances

odor-drive to MVP2 (Figure 7D). In the OFF modes, low-level

MVP2 feed-forward inhibition skews the MBON network toward

behavioral avoidance, whereas in the ON mode the increased

feed-forward inhibition from MVP2 skews the MBON network

toward favoring conditioned approach. The MP1 DANs signal

the aversive reinforcing properties of electric shock (Aso et al.,

2010; Aso et al., 2012), heat (Galili et al., 2014), and bitter taste

(Das et al., 2014), suggesting they provide general aversive influ-

ence. The satiated state presumably uses a tonic version of this

aversive signal (Plaçais and Preat, 2013) to limit the fly approach-

ing an appetitive odor cue.

The parallels between the fly and mammalian dopaminergic

systems appear striking. DANs in the basal ganglia of the

mammalian brain also support reinforcement learning and the

prediction of stimuli that potentially lead to rewarding outcomes

(Bromberg-Martin et al., 2010; Smith et al., 2011; Berridge, 2012;

Pignatelli and Bonci, 2015). Furthermore, like the fly DANs,

mammalian DANs can be anatomically divided into those that

generate aversion and different types of reward (Lammel et al.,

2011, 2012; Cohen et al., 2012; Lerner et al., 2015; Beier et al.,

2015; Tellez et al., 2016). GABA-ergic neurons in the mouse

ventral tegmental area, whose cell bodies are interspersed with
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the DANs, have been proposed to signal the value of expected

reward and provide a source of subtraction to DANs that

calculate a reward prediction error (Eshel et al., 2015). Negatively

reinforcingMP1DANs in the flymodulate odor-drive to theMVP2

neurons to provide the motivational control over actions to gain

reward. Therefore, MVP2 neurons may provide an inhibitory

bridge between MBON domains that are controlled by aversive

and rewarding DANs.

EXPERIMENTAL PROCEDURES

Fly Strains

Fly stocks were raised on standard cornmeal food at 25�C and 40%–50% rela-

tive humidity. All strain details are provided in the Supplemental Information.

Behavioral Analysis

Mixed sex populations flies were tested together in all behavior experiments.

For the UAS-Shits1 experiments, flies were 4- to 8-day-old and raised at 25�C
and 60% relative humidity (activation was 30 min prior to and during the test).

For the UAS-dTrpA1 experiments, the flies were 8 to 11 days old and raised

at 20�C and 50% relative humidity (activation was 15 min prior to and during

the test). Aversive and appetitive memory were assayed using a T-maze

as described previously (Tully and Quinn, 1985; Krashes and Waddell, 2008;

Perisse et al., 2013) and as described in more detail in the Supplemental

Information.

Imaging

To visualize native GFP or mRFP, we collected adult flies 4–6 days after eclo-

sion, and brains were dissected in ice-cold 4% paraformaldehyde solution in

PBS (1.86 mM NaH2PO4, 8.41 mM Na2HPO4, and 175 mM NaCl) and fixed

for an additional 60 min at room temperature. Samples were then washed

3 3 10 min with PBS containing 0.1% Triton X-100 (PBT) and 2 3 10 min in

PBS before mounting in Vectashield (Vector Labs). Imaging was performed

on Leica TCS SP5 X. The resolution of the image stack was 1,024 3 1,024

with 1 mm step size and a frame average of 4. Images were processed in

AMIRA 5.3 (Mercury Systems). The immunostaining against GFP, RFP, and

GABA was performed as described previously (Burke et al., 2012). We

used anti-GFP (chicken, abcam13970, 1:2,000), primary anti-DsRed (Rabbit,

Clontech 632496, 1:2,000) and anti-GABA (Rabbit, Sigma A2052, 1:2,000).

Two Photon Calcium Imaging

3- to 8-day-old UAS-GCaMP6f; MB112C female flies were imaged 30–60 min

or 3 to 4 hr after aversive or mock conditioning (Figures 2A–2F) and 30–60 min

after appetitive or mock conditioning in a T-maze (Figures S5A and S5B) or

following 22–26 hr of starvation or ad libitum feeding (Figure 6A). Flies were

trained as described. Imaging experiments were performed essentially as

described previously (Owald et al., 2015) and are described in more detail in

the Supplemental Information. In brief, flies were anesthetized <10 s on ice

and mounted in a custom-made chamber. The head capsule was opened un-

der room temperature sugar-free HL3-like saline (Yoshihara, 2012), and legs

and proboscis were immobilized with wax. Fluorescence was excited using

�140 fs pulses, 80 MHz repetition rate, centered on 910 nm generated by a

Ti-Sapphire laser (Chameleon Ultra II, Coherent). Images were acquired using

two-photon microscopy (Scientifica) with a 403, 0.8 NA water-immersion

objective, controlled by ScanImage 3.8 software (Pologruto et al., 2003).

Odors were delivered on a clean air carrier stream using a custom-designed

system (Shang et al., 2007).

In Vivo Optogenetic Stimulation

Female flies used for optogenetic stimulation were treated as for two photon

calcium imaging. Prior to optogenetic experiments all flies were housed on

standard cornmeal foodwith 1mM retinal for 1–3 days. Saline usedwas carbo-

genated (95% O2, 5% CO2) buffer solution (103 mM NaCl, 3 mM KCl, 5 mM

N-Tris, 10 mM trehalose, 10 mM glucose, 7 mM sucrose, 26 mM NaHCO3,

1 mM NaH2PO4, 1.5 mM CaCl2, 4 mM MgCl2, osmolarity 275 mOsm,



pH7.3).MCHandOCTwere presented twice for 2 s,with 20 s inter-trial interval.

For light stimulation, a custom-made Labview-triggered LED (Multicomp

OSW-6338, 630 nm, 0.85 mW/mm2 at specimen) was used at a distance to

the brain of 10–15 cm. Light pulses were delivered at 40 Hz, with 10 ms dura-

tion, for a total of 1 s per stimulation. The LED was turned on after 1 s of odor

onset, during the second round of MCH and OCT presentation. Two-photon

fluorescence images were taken from the initial axon segments. A 500/10

filter was used to minimize LED artifacts during imaging. F0 was defined as

the mean F of the first second of imaging. Time points chosen for comparison

were (a) onset of LED, (b) end of LED stimulation, and (c) 1 s after end of LED

stimulation.

Statistical Analysis

Data were analyzed usingMatlab and Prism 6 (GraphPad Software). All behav-

ioral data was tested for normality using the D’Agostino and Pearson omnibus

test. Normally distributed data were analyzed with one-way ANOVA followed

by Tukey’s honest significant difference (HSD) post hoc test. For non-

Gaussian distributed data, Kruskall-Wallis test was performed followed by

Dunn’s multiple comparison test. Behavioral data from wild-type flies was

not included in the statistical analysis. Imaging data were analyzed using

Mann-Whitney U-test or two-way repeated-measures ANOVA followed by

Sidak’s multiple comparisons test. Definition of statistical significance was

set at p < 0.05. Graphs were created in Prism 6.
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