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Abstract

Normative samples drawn from older populations may unintentionally include individuals with 

preclinical Alzheimer’s disease (AD) pathology, resulting in reduced means, increased variability, 

and overestimation of age-effects on cognitive performance. 264 cognitively normal (CDR=0) 

older adults were classified as biomarker-negative (“Robust Normal,” n=177) or biomarker-

positive (“Preclinical Alzheimer’s Disease” (PCAD), n=87) based on amyloid imaging, 

cerebrospinal fluid biomarkers, and hippocampal volumes. PCAD participants performed worse 

than Robust Normals on nearly all cognitive measures. Removing PCAD participants from the 

normative sample yielded higher means and less variability on episodic memory, visuospatial 
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ability, and executive functioning measures. These results were more pronounced in participants 

aged 75 and older. Notably, removing PCAD participants from the sample significantly reduced 

age effects across all cognitive domains. Applying norms from the Robust Normal sample to a 

separate cohort did not improve CDR classification when using standard deviation cutoff scores. 

Overall, removing individuals with biomarker evidence of preclinical AD improves normative 

sample quality and substantially reduces age-effects on cognitive performance, but provides no 

substantive benefit for diagnostic classifications.
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1. INTRODUCTION

As the era of Alzheimer’s disease (AD) secondary prevention trials begins, there is increased 

interest in detecting the earliest cognitive changes in the course of the disease. A decline in 

cognitive functioning is unquestionably the most face valid indicator of AD progression, but 

accurately capturing the earliest declines is dependent upon several factors, including the 

psychometric characteristics of the cognitive tests used and the quality of the normative 

sample used as a reference group. Cognitive measures must have adequate reliability and 

validity and should be sensitive and specific to healthy versus diseased states. At an 

individual level, capturing changes in cognitive performance is best accomplished by 

comparing current test performance with prior assessments. When this data is not available, 

a useful approach is to compare test performance to that of healthy persons of a similar 

demographic profile. Detecting cognitive decline in this situation is highly dependent upon 

the normative sample used as a basis for comparison. Thus, reference groups used to provide 

normative values should be composed of individuals who are comparable to the individuals 

being tested in terms of ages, education levels, and premorbid functioning. Participants in 

normative samples should also be carefully screened for health conditions that may impact 

cognitive performance. Yet, despite efforts to produce healthy normative samples, a 

substantial portion of included individuals may have subtle declines in cognitive 

performance due to undetected underlying disease (Sliwinski et al., 1996; Storandt and 

Morris, 2010). Most neurodegenerative diseases have a “preclinical” phase in which the 

disease process is underway in the brain, but the degree of pathology is not sufficient to 

produce overt clinical symptoms (Foltynie, 2003; Price and Morris, 1999). In older 

populations, as much as 30–40% of individuals over the age of 65 may be in a preclinical 

stage of AD (Price et al., 2009).

The pathological hallmarks of AD can be quantified in vivo using cerebrospinal fluid (CSF) 

assays and neuroimaging methods such as positron emission tomography (PET) and 

structural and functional magnetic resonance imaging (MRI). CSF biomarkers including 

amyloid-β1–42 (Aβ1–42), total tau (t-tau) and phosphorylated tau181 (p-tau181), and 

neuroimaging markers including [11C] Pittsburgh compound B (PIB) PET and hippocampal 

volume, have been used to describe the course of the preclinical stages of AD (Bateman et 

al., 2012; Knopman et al., 2012; Vos et al., 2013). Results from these studies have 
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consistently shown that AD pathology may begin well before overt symptoms of dementia 

are present. β-amyloidosis begins at least 10–20 years prior to clinical diagnosis, followed 

by tau aggregation into neurofibrillary tangles resulting in neuronal injury (Bateman et al., 

2012; Jack et al., 2013; Sperling et al., 2011; Villemagne et al., 2013). The final proposed 

preclinical stage of AD is characterized by “subtle cognitive decline”, however, this has yet 

to be fully operationalized (Sperling et al., 2011). Studies that have modeled cognitive 

trajectories in the preclinical stage of AD have shown cognitive declines beginning within 

approximately 7–10 years of clinical diagnosis (Grober et al., 2008; Roe et al., 2013; Saxton 

et al., 2004), with a pronounced acceleration 3–5 years prior to diagnosis (Howieson et al., 

2008; Johnson et al., 2009). Because the preclinical stage of AD is defined by the absence of 

clinically significant cognitive and functional impairment, conventional normative samples 

do not exclude individuals with preclinical AD, and therefore may be less sensitive to 

detecting subtle impairments in cognitive functioning (Sliwinski et al., 1996; Storandt and 

Morris, 2010).

Sliwinski and colleagues (Sliwinski et al., 1996) demonstrated that failing to screen for 

preclinical AD cases has three primary influences on normative data. First, individuals with 

preclinical disease tend to have slightly worse performance, resulting in normative data with 

reduced mean scores. Second, variability in cognitive performance is more pronounced in 

preclinical AD, resulting in normative data with larger standard deviations and skewed 

distributions. Finally, since there is a strong correlation between dementia risk and age, the 

influence of age on cognitive performance would be magnified, especially in older age 

ranges where the prevalence of preclinical AD is much higher. Several investigators have 

since attempted to improve upon conventional normative data by using methods to identify 

individuals in the preclinical stage of AD and exclude them from normative samples. The 

majority of existing studies have applied a “longitudinal” exclusion criterion wherein 

individuals that have been followed for several years and progressed to dementia are 

selectively removed from normative samples, ostensibly resulting in a more robust 

normative dataset. The longitudinal method has consistently produced normative datasets 

with higher mean scores, reduced variability, and less influence of age on cognitive test 

performance (De Santi et al., 2008; Pedraza et al., 2010; Ritchie et al., 2007; Sliwinski et al., 

1996; Storandt and Morris, 2010). However, the clinical utility of the longitudinal method 

has been unclear. Some studies have reported improved diagnostic classification accuracy 

using robust normative data (De Santi et al., 2008; Holtzer et al., 2008), whereas others have 

not (Ritchie et al., 2007; Storandt and Morris, 2010). One possible reason why these studies 

have demonstrated mixed results could be that the longitudinal method relies solely on 

clinical diagnosis of dementia, and therefore excludes only persons in the later preclinical 

stages or those with more a more rapid course of progression. Thus, there is a risk that a 

large percentage of individuals who did not progress to a clinically symptomatic stage of 

dementia during the study follow-up period may indeed have AD pathology that is affecting 

their cognitive performance.

The purpose of this study was to determine if the identification and subsequent removal of 

individuals who are cognitively normal, but exhibit biomarker evidence of preclinical AD 

pathology, would improve normative cognitive data and show better correspondence with the 

Clinical Dementia Rating (CDR) (Morris, 1993). To this end, we selected cognitively normal 
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participants from ongoing studies of normal aging and dementia who had completed 

biomarker studies. Participants were classified according to our previously published cutoff 

values for AD biomarkers as belonging to a biomarker-positive group with Preclinical 

Alzheimer’s Disease pathology (PCAD) or a biomarker-negative group of “Robust 

Normals”. We hypothesized that removing participants with PCAD would increase mean 

scores, decrease variability, normalize distributions, and reduce age effects compared to a 

conventional normative sample that included participants with PCAD. We also hypothesized 

that application of the Robust Norms to a separate cohort of longitudinally followed 

participants would improve correspondence with CDR classification accuracy when standard 

deviation cutoff scores were used.

2. METHODS

2.1 Participants

Participants were older adult volunteers enrolled in ongoing studies of aging and dementia at 

the Knight Alzheimer’s Disease Research Center (KADRC) at the Washington University 

School of Medicine. Inclusion/Exclusion criteria and assessment methodology have been 

detailed in previous publications (Berg et al., 1998; Coats and Morris, 2005). KADRC 

participants were living independently in the community at study entry and underwent 

annual clinical assessment unless prevented by death, illness, refusal, or relocation from the 

greater St. Louis area. Each participant and their collateral source, a close friend or family 

member, were interviewed with standard instruments with respect to cognitive and 

functional abilities (Morris et al., 2006), and that information was used by experienced 

physicians and nurse-clinicians to determine the Clinical Dementia Rating (CDR (Morris, 

1993). The Human Research Protection Office at Washington University School of Medicine 

approved the KADRC studies, including the Healthy Aging and Senile Dementia Study 

(P01AG003991), the Alzheimer’s Disease Research Center study (P50AG05681), and the 

Antecedent Biomarkers for AD: the Adult Children Study (P01AG026276). Written 

informed consent was obtained from all participants at enrollment.

2.1.1 Normative Samples—Participants for the normative samples (Figure 1) were 

selected from the larger KADRC cohort based on the following criteria: Completion of 

baseline cognitive assessment; Clinical Dementia Rating (CDR) score of 0 at all available 

visits; at least one annual follow-up assessment; at least 65 years of age at baseline; 

completion of lumbar puncture (for CSF biomarkers) within 18 months of baseline or 

completion of PIB-PET within 18 months of baseline; and structural MRI within 18 months 

of baseline.

2.1.2 Longitudinal Sample—Participants for the Longitudinal sample (Figure 1) were 

selected from the larger KADRC cohort based on the following criteria: CDR 0 at study 

entry and completed at least two follow-up clinical and cognitive assessments; at least 65 

years of age at baseline. Participants in the longitudinal sample were further classified as 

“Stable” if they never progressed to a CDR >0 during the study follow-up period or as a 

“Progressor” if they converted to a CDR >0 with a diagnosis of symptomatic AD and 
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remained at that level for at least two consecutive annual assessments and through their last 

available follow-up visit.

2.2 Procedures

All participants underwent annual clinical evaluation and cognitive assessment, which 

included CDR and a comprehensive neuropsychological battery. The CDR is a global 

dementia staging tool that assesses the presence or absence of dementia and, when present, 

its severity. The global CDR stages are 0, indicating cognitive normality, and 0.5, 1, 2, and 3, 

indicating very mild dementia, and mild, moderate, and severe dementia, respectively (Berg 

et al., 1992). CDR score and diagnosis were assigned at each visit by trained clinicians. In 

addition, participants complete blood tests to determine apolipoprotein (APOE) genotyping, 

as described in earlier reports (Pizzie et al., 2013). Participants were classified as 

ε4+ (44,34,24) or ε4− (33,23,22).

2.2.1 Cerebrospinal Fluid (CSF) Biomarkers—CSF sample collection has been 

described in detail (Fagan et al., 2007; Vos et al., 2013). Briefly, CSF samples (20–25 mL) 

were collected at study entry by experienced neurologists after an overnight fast. Samples 

were analyzed for total tau (t-tau), phosphorylated tau (p-tau181), and amyloid-β1–42 

(Aβ1–42) by ELISA (INNOTEST; Fujirebio (formerly Innogenetics), Ghent, Belgium). CSF 

biomarkers were dichotomized (normal or abnormal) using cutoffs derived in our previous 

studies (Vos et al., 2013). Cutoffs for each biomarker were determined by a receiver 

operating characteristic curve that differentiated participants who were CDR 0 at baseline 

from those who were CDR 0.5 with a diagnosis of symptomatic AD. Cutoffs for abnormal 

values were less than 459 pg/mL for Aβ1–42, greater than 339 pg/mL for t-tau, and greater 

than 67 pg/mL for p-tau181.

2.2.2 Neuroimaging Biomarkers—Detailed information on the PET PIB imaging and 

analysis procedures have been reported (Mintun et al., 2006). In brief, approximately 12mCi 

of [11C] PIB was administered intravenously during a 60-minute dynamic PET scan in 3-

dimensional mode (septa retracted; 24 × 5-second frames; 9 × 20-second frames; 10 × 1-

minute frame). PIB image analysis was performed for specific regions of interest (ROIs) as 

detailed previously (Mintun et al., 2006). The ROIs were applied to the PET data, yielding 

high-resolution regional time-activity curves. Time-activity curves were analyzed for PIB-

specific binding by Logan graphical analysis using the cerebellum ROI data as a reference 

region. The Logan analysis yields a tracer distribution volume ratio (DVratio), which was 

then converted to an estimate of the binding potential (BP) for each ROI: BP X DVratio X 

1.61 The BP expresses the regional PIB binding values in a manner directly proportional to 

the number of binding sites. The BP values from the prefrontal cortex, gyrus rectus, lateral 

temporal, and precuneus ROIs were averaged in each subject to calculate a mean cortical 

binding potential (MCBP), as these regions have been shown to have high PIB uptake 

among participants with AD. PIB-PET MCBP values above 0.18 were considered indicative 

of significant amyloid deposition consistent with underlying AD pathology. This cutoff was 

chosen based on prior work in this population (Mintun et al., 2006), where we found that 

nearly all individuals with a clinical diagnosis of AD had MCBP values greater than 0.18, 

and all young cognitively normal individuals had MCBP values less than 0.18.
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In addition to PET imaging, all participants underwent anatomic MRI. Data were acquired 

on a Siemens TIM Trio 3T scanner. T1-weighted images were acquired using a MPRAGE 

sequence with: repetition time (TR)=2400 ms, echo time (TE) = 3.16 ms, flip angle (FA) = 

8°, field of view (FOV) = 256 mm, in plane resolution 176 × 256, slice thickness = 1mm 

acquired in sagittal orientation. Images had a 1 mm isotropic resolution. Regional volumes 

were obtained using the FreeSurfer imaging analysis suite, version 5.1 (Desikan et al., 2006; 
Fischl et al., 2002). During processing, each voxel is assigned a neuroanatomical label based 

on probabilistic information derived from a manually labeled training set, which included 

healthy young and older adults. Previous work indicates that this technique generates 

volumes with a high correspondence to manually generated volumes (Desikan et al., 2006; 
Fischl et al., 2002). We had no a priori hypotheses about laterality of hippocampal volumes, 

so volumes of left and right hippocampus were summed. An analysis of covariance approach 

(Buckner et al., 2004; Jack et al., 1989) was used to adjust hippocampal volumes for total 

intracranial volume (ICV): Adjusted hippocampal volume = raw volume − (b* [ICV − mean 

ICV]), where b is the slope of the regression of the hippocampal volume on ICV. 

Participants with an adjusted hippocampal volume >/= 1.5 SDs below the group mean were 

considered to have significant neurodegeneration consistent with preclinical AD.

2.2.3 Neuropsychological Assessment—All participants completed a battery of 

standard neuropsychological measures within approximately 2 weeks of their clinical 

evaluation. KADRC’s cognitive batteries have been described in detail in prior publications 

(Johnson et al., 2008; Pizzie et al., 2014). The core of the battery consists of measures drawn 

from the Uniform Data Set (UDS), which are collected at all Alzheimer’s Disease Centers 

across the United States (Johnson et al., 2008; Morris et al., 2006; Weintraub et al., 2009). 

Tests included in the current study consisted of UDS measures as well as other well-known 

measures of neuropsychological function. We list the individual measures here by theoretical 

domain with the understanding that certain measures may be represented by more than one 

domain. Episodic memory measures included the Logical Memory Immediate and Delayed 

recall from the Wechsler Memory Scale-Revised (WMS-R; (Wechsler, 1987)), WMS 

Associate Learning, Free and Cued Selective Reminding Test (FCSRT; (Grober et al., 

1988)), and the Benton Visual Retention Test (Benton, 1963). Executive functions and 

visuospatial measures include the Trailmaking Test Parts A & B (Armitage, 1946), Digit 

Span forwards and backwards from WMS-R, the Digit Symbol Coding subtest from the 

Wechsler Adult Intelligence Scale-Revised (WAIS-R; (Wechsler, 1981)), Mental Control 

from the WMS, and the Block Design subtest from WAIS. Language and semantic 

knowledge measures included Category Fluency for Animals and Vegetables (Goodglass 

and Kaplan, 1983), Word Fluency for letters /s/ and /p/ (T. G. Thurstone and L. L. 

Thurstone, 1948)), the 30 odd items from the Boston Naming Test (Goodglass and Kaplan, 

1983; Weintraub et al., 2009), and the Information subtest from the WAIS.

2.2.4 Normative Sample Classification—Participants were stratified into two groups 

based on fluid and neuroimaging biomarker evidence of AD pathology. Participants with 

biomarker levels inconsistent with AD pathology were classified as Robust Normals, while 

participants with biomarkers levels exceeding empirically defined thresholds were classified 

as having Preclinical Alzheimer’s Disease pathology (PCAD). These groups were further 
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stratified by age into 65–74 years and 75 years and older based on the distribution of ages in 

the sample. The PCAD classification was based on proposed criteria used to stage 

preclinical AD (Sperling et al., 2011) that have subsequently been empirically validated in 

autosomal dominant AD and in sporadic AD (Bateman et al., 2012; Knopman et al., 2012; 
Vos et al., 2013). Cutoffs for CSF biomarkers (Vos et al., 2013), PIB PET (Mintun et al., 

2006), and hippocampal volume were used in the following classification algorithm (also see 

Table 1): For a PCAD classification, participants must have evidence of either β-amyloidosis 

alone, or β-amyloidosis and neurodegeneration. Evidence of β-amyloidosis was defined as 

CSF Aβ1–42 values <459 pg/mL and/or PIB PET MCBP > 0.18. Evidence of neuronal injury 

was defined as CSF t-tau > 339 pg/mL, and/or p-tau181 >67 pg/mL, and/or adjusted 

hippocampal volume >−1.5 SDs below the group mean. As the focus of this manuscript was 

on the impact of preclinical Alzheimer’s disease on normative cognitive data, individuals 

with evidence of neurodegeneration alone, often referred to as suspected non-AD pathology 

(SNAP; (Jack et al., 2012; Vos et al., 2013), were not included in the PCAD group.

2.2.5 Statistical Analyses—All analyses and graphics were completed using the R 

statistical computing environment (www.r-project.org). Group differences in continuous 

demographic variables were examined with Student’s t-tests. Categorical demographic 

variables were compared using the Chi-squared statistic. Comparison of individual test 

scores between the combined, PCAD, and robust normal groups were conducted in each age 

group (65–74 and 75 and older) using linear regression models with terms for gender and 

education. Levene’s test for homogeneity of variance was used to compare variances for 

each measure. Age effects were examined in all participants in the normative samples with 

linear regression models. Diagnostic sensitivity and specificity in the longitudinal test 

sample were calculated with the area under the curve (AUC) from Receiver Operating 

Characteristic (ROC) analyses. Classification accuracy (true positives + true negatives) of 

cutoff points based on z-scores of −1.0 and −1.5 was examined for each measure 

individually. Comparisons of classification accuracy between data standardized with Robust 

normal and Combined samples used the McNemar test for paired binomial proportions 

(McNemar, 1947). The McNemar test criterion uses the following equation (De Santi et al., 

2008):

Where C = number of cases classified as positive by Combined norms but negatively by 

Robust Norms and R = number of cases classified as positive using Robust norms but 

negative using Combined norms. Significance levels are obtained by comparing the square 

of Z0 to a Chi-squared distribution with df = 1 (Agresti, 2002; De Santi et al., 2008).

3. Results

3.1 Demographics

3.1.1 Normative Groups—Participants in the normative groups were mostly female, 

Caucasian, ranged in age from 65–86 years of age, and most had completed a college degree 
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(see Table 2). As expected, the PCAD group was slightly older than the Robust Normals 

group (t = 1.94, p = 0.054) and had a higher prevalence of APOE ε4+ (χ2 = 22.15, p < .001). 

No group differences were observed for years of education, MMSE, or distribution of gender 

and race. By definition, biomarkers were significantly different between Robust Normals 

and PCAD groups.

3.1.2 Longitudinal Sample—Participants in the Longitudinal sample were 65–87 years 

old at baseline, most had completed a college degree, and were mostly Caucasian and 

female. Participants completed at an average of 9.5 ± 5.5 visits over an average of 13.6 ± 7.1 

follow-up years. The Stable and Progressor groups were similar in age at baseline, 

education, MMSE score at baseline, and the distribution of gender. There were 

nonsignificant trends for higher prevalence of APOE ε4+ (χ2 = 2.76, p = 0.099) and a higher 

percentage of Caucasians in the Progressors (χ2 = 3.63, p = 0.057).

3.2 Cognitive Performance in the Normative Samples

Means and standard deviations of the Robust Normal, PCAD, and Combined groups are 

provided in Tables 3–4. Mean scores for Robust Normal and Combined groups are similar to 

previous reports describing the UDS neuropsychological measures (Hayden et al., 2011; 
Weintraub et al., 2009). According to Sliwinski and colleagues (1996), removing individuals 

with preclinical AD from normative samples should 1) increase mean cognitive scores; 2) 

decrease variability; and 3) reduce the effects of age on cognitive performance. Below, we 

present comparisons of mean scores and variability estimates separately for each age group. 

We then present the effects of age on cognitive performance across all participants in the 

normative samples.

3.2.1 Ages 65–74—Out of a total of 180 participants between the ages of 65.0 and 74.9 

years, 127 (70.5%) were classified as Robust Normal and 53 (29.5%) met criteria for PCAD 

(Table 3). Regression models, including terms for gender and education, revealed similar 

performance across all groups in this age range. No significant differences emerged on 

episodic memory or language/semantic measures. Performance was also similar on most 

tests of executive/visuospatial functioning, with the exception of WAIS Block Design, where 

the PCAD group performed significantly worse than Robust Normals. Variability estimates 

were compared with Levene’s test for homogeneity of variances. There were no significant 

differences in variability between PCAD and Robust Normals on any cognitive measure. 

However, compared to Robust Normals, there were trends for increased variability in the 

PCAD group on Logical Memory Delayed (F(1,130) = 3.13, p = 0.079) and FCSRT free 

recall (F(1,155) = 3.74, p = 0.055). There were no significant differences in variability 

between Robust Normals and the Combined Sample.

3.2.2 Ages 75 and older—Out of a total of 84 participants aged 75.0 years or older, 50 

(59.5%) were classified as Robust Normal and 34 (40.5%) met criteria for PCAD (Table 4). 

Participants in the PCAD group performed worse than Robust Normals on nearly all 

measures of episodic memory including the immediate and delayed recall conditions of the 

WMS-R Logical Memory, the total recall condition of the FCSRT, and the delayed recall 

condition of the BVRT. In addition, worse performance was seen on several measures of 
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executive/visuospatial functions including the Trailmaking Test Parts A & B, WMS-R Digit 

Symbol Coding, and WAIS Block Design. PCAD participants also had worse performance 

than Robust Normals on category fluency and the Boston Naming Test. Compared to the 

Combined sample, the Robust Normals performed significantly better on only the BVRT 

Delayed, and had non-significant trends for better performance on Logical Memory 

Immediate and Delayed. Results from Levene’s test revealed higher variability estimates in 

the PCAD group than the Robust Normals on the FCSRT total recall (F(1,111) = 8.47, p = 

0.004) and BVRT delayed recall (F(1,82) = 4.22, p = 0.043). Removing PCAD from the 

sample resulted in a trend towards reduced variability in the Robust Normals compared to 

the Combined sample (F(1,102) = 3.16, p = 0.078) on WAIS Block Design.

3.2.3—Age effects were examined by regressing age on cognitive performance (Table 5 and 

Figure 2). Almost all measures of cognitive function exhibited profound age effects in the 

PCAD group, with the most consistent effects observed on episodic memory measures. 

Variance attributable to age ranged from 12.5% on FCSRT total recall to 29.8% on the 

Benton Visual Retention Test delayed recall. Age effects in the PCAD group on Executive/

Visuospatial measures and Language/Semantic measures were less consistent, but a pattern 

emerged where age effects were most pronounced on speeded tests. Variance estimates 

ranged from 5.2% on Trails A up to 25.6% on the WMS-R Digit Symbol Coding test. As 

expected, removing the PCAD individuals from the Combined sample attenuated age effects 

on nearly all individual tests.

3.2.4 Progression Rates in the Normative Sample—We examined the progression 

rates to CDR >0 in the normative sample using follow-up data when available. Over an 

average of 5.3 years of follow-up, 16/177 (9%) of the Robust Normal group progressed to a 

CDR >0 and 23/87 (26.4%) of the PCAD group progressed to a CDR >0, suggesting that the 

biomarker classification of PCAD is strongly related to clinical progression. Similar results 

were found in our prior publications in this cohort (Roe et al., 2013; Vos et al., 2013).

3.3 Application of Robust Normative Data to a Longitudinal Sample

Normative data from the Robust Normals and Combined groups were applied to the 

Longitudinal sample to determine if removing PCAD individuals would result in improved 

CDR diagnostic sensitivity and specificity. Norms were applied at the time of clinical 

diagnosis (as indicated by a CDR > 0 with a diagnosis of AD) for Progressors and at most 

recent assessment for Stable participants. Z-score cutoffs were set at −1.0 and −1.5, in 

keeping with common neuropsychological methods for defining cognitive impairment 

(Holtzer et al., 2008; Jak et al., 2009; Petersen et al., 1999; Storandt and Morris, 2010; 
Winblad et al., 2004). At the time of CDR diagnosis (for Progressors) and most recent 

assessment (for Stable participants), there were no significant differences in age or other 

demographic characteristics (Table 2). The areas under the curve (AUCs; Table 6) from the 

receiver operating characteristic analyses ranged from poor (BVRT Delayed AUC = 0.63) to 

good (FCSRT Total Recall AUC = 0.89–0.90) for episodic memory measures, regardless of 

whether combined or robust norms were used. AUCs for other measures were poor overall 

and were not substantially improved using Robust Normal data. Cutoff scores of −1.0 and 

−1.5 standard deviations below the mean produced unacceptable detection (sensitivity) rates 
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on all measures (Table 7). On tests of episodic memory, where cutoff scores are commonly 

used to aid clinical decision-making, detection rates were also poor, ranging from 0.26 to 

0.71, although specificity was substantially higher, ranging from 0.58 to 0.97. Using norms 

from Robust Normals did not significantly improve sensitivity or specificity compared to the 

Combined sample according to the McNemar test statistic.

The FCSRT author has published a cut-score of 24 for the free recall condition and 46 for 

the total recall score for classification of normal versus those with very mild dementia, based 

on a receiver operating characteristic (ROC) curve analysis (Grober et al., 2010). Use of this 

cut-score in our sample resulted in a sensitivity of 0.87 and a specificity of 0.79. Using our 

convention of −1 and −1.5 standard deviations, cut scores on FCSRT free recall for the 

Robust Normal group would fall at scores of 27 and 25 for ages 65–74.9 and at scores of 22 

and 19 for ages 75 and older. Sensitivity and specificity using robust norms cut scores (Table 

7) were lower than those observed in Grober et al., again suggesting that standard deviation 

cut scores are inferior to other methods.

4. Discussion

The goal of the study was to determine how inclusion of cognitively normal individuals with 

biomarker and neuroimaging evidence of preclinical AD pathology influences normative 

cognitive data in terms of mean scores, variability estimates, age effects, and diagnostic 

classifications. We hypothesized that removing participants that exceeded empirically 

validated thresholds for amyloid neuroimaging, cerebrospinal fluid AD biomarkers, and 

hippocampal volume would improve the psychometric characteristics of normative data and 

enhance sensitivity and specificity of clinical diagnosis. Overall, we found that failing to 

remove participants with preclinical AD pathology (PCAD) had multiple deleterious impacts 

on normative data and that the most pronounced effects were seen in individuals aged 75 

years and older, when AD risk is substantially increased. Perhaps the most notable finding 

was that inclusion of participants with PCAD greatly exaggerated age-related declines in 

cognitive functioning across multiple domains. Contrary to expectations, diagnostic 

accuracy using z-score cutoffs remained unacceptably poor, and was not improved by using 

normative data from the Robust Normals, thus reinforcing that reliance on divergence from 

group normative values, regardless of the quality of the normative data, too often fails to 

detect clinically symptomatic individuals.

This study is among the first to use biomarker and imaging data for normative sample 

inclusion criteria. Most studies have used longitudinal follow-up to exclude individuals that 

develop dementia during follow-up periods with the goal of removing the influence of 

preclinical AD or other pathology from normative samples. While this “longitudinal” 

method has several strengths, it suffers from its reliance on a clinical diagnosis of dementia 

that must occur during the follow-up period in order to justify removing a participant from 

the normative sample. It is likely that several individuals in these samples may already have 

AD pathology, but are not manifesting symptoms sufficient to warrant a clinical diagnosis 

during the follow-up period, or the follow-up was too short to provide an opportunity to 

progress to symptomatic AD. As mentioned previously, several recent studies have shown 

that the preclinical phase of AD can last decades and that an accelerating course of subtle 
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cognitive decline appears 7–10 years prior to clinical diagnosis (Bateman et al., 2012; 
Grober et al., 2008; Howieson et al., 2008; Johnson et al., 2009; Roe et al., 2013). In 

addition, clinical diagnosis, even from National Institute on Aging funded Alzheimer’s 

Disease Centers, is inaccurate in 15% or more of cases, when compared to the gold standard 

of neuropathologic diagnosis (Beach et al., 2012).

Despite the clear limitations in the use of longitudinal samples to generate robust normative 

data, our approach of using biomarker and imaging evidence of preclinical AD did not 

substantially improve mean scores or variability estimates in the 65–74.9 year old group. 

Among the 75 and older participants, however, there were some modest improvements on 

measures of episodic memory and decreased variability on visuospatial performance, 

suggesting that there may be a stronger influence of AD pathology in participants above the 

age of 75 years. It is well understood that the likelihood of dementia increases with 

increasing age (Alzheimer’s Association, 2014) and indeed the percentage of the sample 

classified as having AD pathology was slightly higher in the 75 and older normative group 

than the group aged 65–74.9 (40.5% vs 29.5%, respectively). However, the prevalence rates 

were based on the presence of any biomarker of AD pathology or hippocampal volume 

reduction, and did not attempt to classify individuals according to preclinical stages or 

severity of AD pathology. Considering base rates of AD across the lifespan, it is likely that 

the older PCAD individuals had more disease burden and were more likely to have more 

pronounced cognitive declines.

The influence of age on test performance in cognitively normal older adults appears to be 

strongly related to the presence of AD pathology. Age-related decline in cognitive abilities 

has been described as a generalized process that impacts all cognitive domains, but is most 

pronounced on measures that emphasize speed of performance (Salthouse, 2000) and on 

measures of episodic memory (Deary et al., 2009; Luo and Craik, 2008; Small, 2001). In 

simple regression models that used age to predict cognitive performance, we of course 

replicated what multiple prior studies have shown: across nearly all tests of cognitive 

function, performance worsens with increasing age and a substantial amount of variance in 

performance can be explained by age. Identification and removal of participants with 

preclinical AD pathology had profound effects on these estimates, and this was particularly 

evident on tests of episodic memory and tests with a speed component. For example, age 

accounted for 12.4% of variance on the Benton Visual Retention Test delayed recall in the 

combined sample, a highly significant effect (p < 0.0001). After removing the PCAD 

participants, this effect was substantially attenuated, explaining just 3.2% of the variance (p 

= 0.045). Variance due to age on episodic measures was reduced by an average of 5.05%, 

and was no longer significant on WMS-R Logical Memory Immediate and Delayed recall. 

Similarly, on speeded tests, including Trails A & B, WMS-R Digit Symbol, WAIS Block 

Design, Animal and Vegetable Fluency, and Word Fluency, variance due to age was reduced 

by an average of 3.6% and age effects were no longer significant on WAIS Block Design. 

The influence of age on cognitive performance in older adults appears to be highly related to 

the degree and stage of AD pathology (Price et al., 2009; Rodrigue et al., 2012; Sliwinski et 

al., 2003; Vos et al., 2013). In some studies, common neuropathologies including β-

amyloidosis and neurofibrillary tangle pathology can account for nearly all cognitive 

declines attributable to age (Wilson et al., 2010; Yu et al., 2014a), however, our data and 
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evidence from other cohorts suggest that residual age-related cognitive decline still occurs 

after controlling for AD pathology (Oh et al., 2012; Yu et al., 2014b), albeit at a much 

slower rate.

Diagnostic accuracy using commonly used cutoff points at 1.0 and 1.5 standard deviations 

below the mean produced notably poor detection rates regardless of the normative dataset 

used. However, some measures of episodic memory did approach acceptable detection rates 

and were slightly enhanced with normative data from the Robust Normals. Using a −1.5 

standard deviation cutoff score on FCSRT Free Recall, sensitivity was increased from 0.39 

using Combined norms to 0.71 using Robust norms, but specificity dropped from 0.88 with 

Combined norms to 0.82 with Robust norms. Similarly, a −1.5 standard deviation cutoff 

score on WMS-R Logical Memory Delayed recall improved from a sensitivity of 0.35 using 

Combined norms to a sensitivity of 0.58 using Robust norms, and specificity remained 

unchanged at 0.96. The best performing individual measure was the FCSRT Total Recall 

Score, which had a sensitivity of 0.71 and a specificity of 0.90 at a −1.0 standard deviation 

cutoff. However, using Robust norms did not improve classification accuracy on this 

measure. It is important to note that the FCSRT Total Recall represents the sum of the free 

recall (more difficult) and cued (less difficult) conditions and had a large ceiling effect in our 

data. This ceiling effect has been reported previously by the test’s authors in older 

cognitively normal populations (Grober et al., 1998), which calls into question the utility of 

the total recall score in detecting early stage declines. Overall, use of cutoff scores to detect 

very mild symptomatic AD (including individuals who may be characterized as having mild 

cognitive impairment) was only minimally enhanced by use of Robust norms. In some cases, 

use of Robust norms actually made clinical detection slightly worse. Even with the most 

optimal combinations of sensitivity and specificity, as seen on the FCSRT total recall using 

Robust norms, a clinical diagnosis based on cutoff scores on cognitive tests was incorrect in 

nearly 30 percent of cases (Table 7). This finding is also consistent with our prior report 

using a much smaller autopsy-confirmed cohort (Storandt and Morris, 2010).

While our study has several strengths, including the large sample of individuals with 

amyloid neuroimaging, CSF biomarkers, structural neuroimaging, and cognitive 

assessments, our results must be understood in the context of several relevant limitations. 

First, our sample is composed mainly of highly educated and Caucasian participants who 

volunteer for clinical, cognitive, neuroimaging, and fluid biomarker studies. Thus, the results 

may not generalize to those from more diverse racial and ethnic backgrounds or those with 

lower levels of educational attainment. Second, our cognitive measures are widely used in 

aging and dementia studies but due to the historical legacy of our dataset are somewhat 

limited in their sensitivity and in coverage of cognitive domains. Third, the number older 

participants with complete imaging and biomarker evaluation was limited, leaving a 

relatively smaller sample size in the 75 years and older PCAD group for analyses. Fourth, 

our methods for clinical diagnosis rely on clinical assessment and the CDR, and are not 

influenced by results of our cognitive battery. We believe this is a strength in that we avoid 

circularity when comparing cognitive function across groups, but this contrasts with 

methods used by many clinicians, who would diagnose dementia or mild cognitive 

impairment with objective evidence of decline on at least one domain of cognition. However, 

we have shown that the CDR corresponds highly with clinical diagnoses, including mild 
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cognitive impairment (Morris et al., 2001). Finally, our use of categorical distinctions for 

biomarkers and hippocampal volumes may be suboptimal for defining preclinical AD. The 

classifications are based on cross-sectional data that does not account for intra-individual 

changes or individual differences. Confirmation of our results will require additional studies 

that focus on serially collected neuroimaging and fluid biomarkers.
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Highlights

• Normative samples may include individuals with preclinical AD.

• Preclinical AD has deleterious impacts on normative cognitive data.

• Age-related cognitive decline is reduced or attenuated when excluding 

preclinical AD.

• Use of standard deviation cutoff scores produces poor diagnostic accuracy.
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Figure 1. 
Participant selection flowchart. KADRC = Knight Alzheimer’s Disease Research Center, 

PCAD = Preclinical Alzheimer’s Disease Pathology.
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Figure 2. 
Age-effects on cognitive performance. X axis represents age in years. Y axis represents z-

score transformed cognitive score (for ease of interpretation). Dashed lines represent 95% 

confidence intervals. Statistics provided for all measures in Table 5. Abbreviations: PCAD = 

Preclinical Alzheimer’s Disease pathology. WMS-R = Wechsler Memory Scale-Revised.
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Table 1

Criteria for Suspected Alzheimer’s Disease Pathology (SADP)

Must have CSF or Neuroimaging evidence of β-amyloidosis alone or β-amyloidosis and Neurodegeneration

Pathology CSF Biomarker Neuroimaging Biomarker

β-amyloidosis Aβ1–42 < 459 pg/mL -or- PIB PET MCBP > 0.18

Neurodegeneration t-tau > 339 pg/mL
-or-

p-tau181 >67 pg/mL

-or- Hippocampal volume > −1.5 SDs
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Table 2

Demographic and Biomarker variables for A) Normative sample and B) Longitudinal test sample.

A. Normative Sample Robust Normals SADP Combined Sample

n 177 87 264

Age (years, SD)a 71.62 (5.0) 73.10 (6.2) 72.11 (5.4)

Education (years, SD) 15.32 (2.6) 15.85 (3.0) 15.5 (2.8)

Gender (%Female) 58.19% 40.23% 58.71%

APOE Status (%e4+)*** 21.60% 50.60% 31.25%

Caucasian (%) 94% 93% 93.70%

MMSE (raw score, SD) 28.89 (1.3) 29.11 (1.1) 29.02 (1.2)

CSF Amyloid-β1–42 (pg/mL)*** 750.93 (215.5) 393.35 (172.0) 631.20 (263.1)

CSF Total Tau (pg/mL)*** 288.35 (138.5) 401.31 (241.8) 326.17 (187.0)

CSF P-Tau181 (pg/mL)*** 54.63 (24.0) 70.49 (35.9) 59.94 (29.5)

PIB-PET (MCBP, SD)*** 0.04 (0.1) 0.42 (0.3) 0.18 (0.3)

Hippocampal Volume (mL, SD)* 7240.32 (845.4) 6942.90 (904.7) 7136.38 (876.2)

B. Longitudinal Sample Stable Progressor

n 105 46

Age at baseline (years, SD) 74.79 (7.26) 76.22 (7.14)

Age at diagnosis (years, SD) -- 81.51 (6.82)

Education (years, SD) 15.43 (2.96) 14.9 (3.5)

Gender (%Female) 54.29% 56.50%

APOE Status (%e4+)a 28.30% 43.48%

Caucasian (%)a 87.76% 97.72%

MMSE at baseline (raw score, SD) 28.37 (1.7) 28.88 (1.24)

MMSE at diagnosis (raw score, SD) -- 26.77 (2.19)

***
p < 0.001

**
p < 0.01

a
p < 0.10 for comparisons of Robust Normals vs. SADP and Stable vs. Progressor
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Table 5

Variance in cognitive performance attributable to age.

Cognitive Tests Robust Normals SADP Combined Sample

Episodic Memory R2 R2 R2

WMS-R Logical Memory Immediate 0.004 0.181*** 0.064***

WMS-R Logical Memory Delayed 0.007 0.214*** 0.072***

WMS Associate Learning 0.024* 0.185*** 0.067***

FCSRT Total Recall 0.029* 0.125** 0.078***

FCSRT Free Recall 0.039* 0.193*** 0.082***

BVRT Delayed 0.032* 0.298*** 0.124***

Executive/Visuospatial

Trails A (seconds) 0.033* 0.052* 0.045***

Trails B (seconds) 0.065*** 0.240*** 0.132***

WMS-R Digit Span Forward 0.008 0.022 0.014

WMS-R Digit Span Backward 0.016 0.017 0.014

WMS-R Digit Symbol Coding 0.078*** 0.256*** 0.142***

WMS Mental Control 0.036* 0.001 0.010

WAIS Block Design 0.015 0.195*** 0.06***

Language/Semantic

Animal Fluency 0.068*** 0.170*** 0.101***

Vegetable Fluency 0.017 0.072* 0.041**

Word Fluency Letters S&P total 0.016 0.061* 0.026**

Boston Naming Test 0.029* 0.088** 0.053***

WAIS Information 0.005 0.001 0.003

***
p < 0.001

**
p < 0.01

*
p < 0.05
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Table 6

Results of ROC analyses in the Longitudinal Sample (n=151) using either Combined Norms or Robust Norms

Cognitive Tests

AUC (95% CI)

Combined Norms Robust Norms

Episodic Memory

WMS-R Logical Memory Immediate 0.83 (0.74–0.92) 0.87 (0.79–0.95)

WMS-R Logical Memory Delayed 0.85 (0.77–0.93) 0.88 (0.80–0.95)

WMS Associate Learning 0.75 (0.66–0.83) 0.76 (0.66–0.85)

FCSRT Total Recall 0.90 (0.84–0.96) 0.89 (0.83–0.95)

FCSRT Free Recall 0.72 (0.56–0.87) 0.72 (0.57–0.88)

BVRT Delayed 0.63 (0.47–0.79) 0.63 (0.47–0.79)

Executive/Visuospatial

Trails A (seconds) 0.40 (0.30–0.50) 0.39 (0.29–0.49)

Trails B (seconds) 0.40 (0.30–0.51) 0.39 (0.28–0.49)

WMS-R Digit Span Forward 0.52 (0.41–0.63) 0.52 (0.41–0.63)

WMS-R Digit Span Backward 0.51 (0.40–0.62) 0.51 (0.40–0.62)

WMS-R Digit Symbol Coding 0.66 (0.55–0.76) 0.66 (0.56–0.76)

WMS Mental Control 0.52 (0.41–0.64) 0.52 (0.41–0.64)

WAIS Block Design 0.55 (0.45–0.66) 0.53 (0.43–0.63)

Language/Semantic

Animal Fluency 0.76 (0.67–0.85) 0.78 (0.69–0.86)

Vegetable Fluency 0.82 (0.73–0.90) 0.84 (0.76–0.92)

Word Fluency Letters S&P total 0.57 (0.46–0.69) 0.58 (0.46–0.69)

Boston Naming Test 0.68 (0.57–0.79) 0.32 (0.21–0.42)

WAIS Information 0.68 (0.58–0.78) 0.68 (0.58–0.78)

Abbreviations: ROC = receiver operating characteristic; AUC = area under the curve

CI: confidence interval
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