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Abstract

Natriuretic peptides are cardiac-derived hormones with a range of protective functions, including 

natriuresis, diuresis, vasodilation, lusitropy, lipolysis, weight loss, and improved insulin sensitivity. 

The actions are mediated through membrane bound guanylyl cyclases that lead to production of 

the intracellular second-messenger cGMP. A growing body of evidence demonstrates that genetic 

and acquired deficiencies of the natriuretic peptide system can promote hypertension, cardiac 

hypertrophy, obesity, diabetes mellitus, the metabolic syndrome, and heart failure. Clinically, 

natriuretic peptides are robust diagnostic and prognostic markers and augmenting natriuretic 

peptides is a target for therapeutic strategies in cardio-metabolic disease. This review will 

summarize current understanding and highlight novel aspects of natriuretic peptide biology.
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Natriuretic peptides and their receptors

The natriuretic peptides are a family of cardiac-derived hormones that have pleiotropic 

cardiometabolic protective effects.
1
 Three natriuretic peptides, atrial (ANP), B-type (BNP), 

and C-type (CNP) have been described, with ANP being the first, identified by de Bold and 

colleagues and sequenced by Matsuo and Kangawa.
2–7

 In humans, these peptides are 

encoded by the NPPA (natriuretic peptide precursor A) and NPPB genes located in tandem 

on chromosome 1, and NPPC on chromosome 2.
8–10

 Mechanical stretch of cardiomyocytes 

and/or stimulation by endothelin, angiotensin II, the sympathetic nervous system, 

vasopressin, hypoxia, cold, or exercise induces the transcription factor GATA to bind the 

natriuretic peptide promoters.
3, 11

 The natriuretic peptide precursor genes are transcribed 

and translated into preprohormones that undergo post-translational processing and cleavage 

into biologically active carboxy-terminal and inactive amino-terminal fragments by the 

serine proteases corin and/or furin (Figure 1).
12

 ANP is predominantly synthesized, stored in 
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preformed granules, and released from atrial cardiomyocytes; BNP is produced in atrial and 

ventricular cardiomyocytes; and CNP is largely derived from vascular endothelial cells and 

neurons.
13–15

 The bioactive carboxy-terminal natriuretic peptides have relatively short half-

lives in the circulation, while the inactive amino-terminal fragments are more stable with 

longer half-lives.
16

The natriuretic peptides exert their actions by binding guanylyl cyclase receptors A (GC-A 

for ANP and BNP) and B (GC-B for CNP), which are transmembrane proteins that catalyze 

the conversion of intracellular guanosine triphosphate into cyclic guanosine monophosphate 

(cGMP), which then increases intracellular protein kinase G (Figure 2).
17

 Natriuretic peptide 

receptor C (NPR-C) functions predominantly as a clearance receptor for all three natriuretic 

peptides, but also exerts effects on inhibitory G-proteins and adenylyl cyclase with activation 

of phospholipase C.
18

 Receptors for the natriuretic peptides are not only present on 

cardiomyocytes and fibroblasts, but also the kidneys, vascular and gastrointestinal smooth 

muscle, adrenals, brain, pancreas, adipocytes, chondrocytes, platelets, and the liver, 

suggesting that natriuretic peptides have biologic actions beyond natriuresis. In addition to 

clearance through NPR-C, natriuretic peptides are inactivated by neutral endopeptidases 

located within renal tubular cells and the vasculature, as well as insulin degrading enzyme 

and dipeptidyl peptidase-IV, and may also be passively excreted in the urine (Figure 1).
12

Biologic effects of natriuretic peptides: experimental evidence

Genetic models

Experimental evidence supports the broad range of cardiovascular and metabolic actions of 

the natriuretic peptides. Transgenic overexpression or knock-out mouse models for each of 

the natriuretic peptides and their receptors provides consistent evidence of these hormones 

protective cardio-metabolic effects (Table 1).
11

 Overexpression of NPPA, NPPB, and GC-A 
leads to blood pressure lowering and protection against salt-sensitive hypertension.

19–22 

Knockout of NPR-C yields a similar phenotype of lower blood pressure.
23

 Mice 

overexpressing the BNP gene (NPPB) are also resistant to obesity and demonstrate lower 

glucose and insulin concentrations compared with wild-type mice, a finding attributed to 

increased skeletal muscle mitochondrial content and fatty acid oxidation.
24–26

 In contrast, 

NPPA, NPPB, and GC-A knockout mice exhibit hypertension, salt-sensitivity, cardiac 

hypertrophy, cardiac fibrosis, and susceptibility to heart failure, as well as obesity.
27–37 

Alterations in the corin protein (corresponding to known human genetic variants) that lead to 

reduced cleavage of natriuretic peptide prohormone into the active peptide also result in salt-

sensitive hypertension and cardiac hypertrophy.
38, 39

Non-genetic experiments

In vitro experiments and in vivo data highlight the role of the natriuretic peptides in 

cardiovascular and metabolic physiology. Animals exposed to infusion of ANP or BNP have 

lower blood pressure, not only through increased natriuresis and diuresis, but also through 

arterial and veno-dilation, increased vascular permeability (shifting volume from the 

intracellular to extracellular space), and direct suppression of the renin-angiotensin-

aldosterone and sympathetic nervous systems.
3, 40, 41

 CNP administration induces marked 
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venodilation.
3
 The natriuretic and diuretic effects are due to 1) enhanced glomerular 

filtration through simultaneous dilation of afferent arterioles and constriction of efferent 

arterioles and 2) direct effects on renal tubular cells through antagonism of angiotensin II 

and vasopressin.
42–44

 The vasodilatory effects of ANP and BNP are also mediated centrally 

in the brainstem through decrease of sympathetic outflow.
41, 45, 46

ANP inhibits growth of cardiac fibroblasts and can induce cardiomyocyte apoptosis.
47–49 

Similar to ANP, CNP is a potent inhibitor of cardiac fibroblasts and exerts anti-fibrotic 

effects,
50

 which may be in part mediated by PKG dependent phosphorylation of Smad3 

resulting in less nuclear translocation when stimulated by transforming growth factor-β.
51 

Through p38 MAPK, natriuretic peptides also exhibit anti-mitogenic properties with some 

indication of anti-neoplastic potential through reduction of inflammation and cell adhesion 

processes as well.
52, 53

The p38 MAPK pathway may also modulate the effect of natriuretic peptides on the 

induction of brown adipose tissue from white adipocytes.
54

 Further supporting a role for the 

natriuretic peptides in the control of energy homeostasis, exposure of cultured adipocytes to 

physiologic doses of ANP and/or BNP promote cGMP dependent activation of hormone 

sensitive-lipase leading to lipolysis.
55,56

Biologic effects of natriuretic peptides: clinical evidence

Genetic variants

The biologic importance of the natriuretic peptide system is supported by the finding that the 

NPPA gene is highly conserved across species.
57

 Nevertheless, genetic variants in the 

natriuretic peptides, their receptors, and activating proteases have been identified in humans 

and their associations with cardio-metabolic phenotypes described.
57

 The results of these 

genetic variation studies in humans parallel the evidence from animal models regarding the 

role of the natriuretic peptide system.

A number of variants in the promoter, coding, intronic, and 3’ untranslated region of the 

NPPA gene have been characterized (Table 2).
57

 Candidate gene studies in Japanese and 

Italian individuals have associated a C-664G variant with lower circulating ANP, 

hypertension, and left ventricular hypertrophy.
58,59, 60

 There are mixed data regarding 

another missense variant, rs5063, which results in a valine to methionine substitution and 

has been linked to lower blood pressure among Chinese individuals and participants in the 

Women’s Genome Health study, although this was not observed among Japanese 

individuals. 
58, 61,62, 63

 In other populations, the rs5063 variant was associated with an 

increased risk of hypertension or stroke.
64, 65,66

 Interestingly, the rs5065 (2238 T>C) variant 

in exon 3 has been associated with a decreased risk of hypertension,
67

 but higher risk of 

myocardial infarction and stroke, that may be mediated through altered NPR-C activation 

and resultant endothelial dysfunction.
68–72

 Nonetheless, many of the aforementioned 

candidate genes have not been reliably reproduced in large-scale population genetic studies 

nor in meta-analyses of GWAS studies.
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The most statistically robust findings to date have derived from studies of white individuals, 

given the larger sample sizes. For instance, from a meta-analysis of data from the 

Framingham Heart Study, the Malmo Diet and Cancer Study, and the Finrisk study, the 

rs5068 A/G variant in the 3’ untranslated region of the NPPA gene is associated with higher 

circulating ANP levels at a genome-wide level of significance (among carriers of the minor 

allele, G, P = 8 × 10−70). The G allele has been associated with lower blood pressure, less 

hypertension, and less ventricular hypertrophy.
73, 74

 Additional studies demonstrate that the 

rs5068 A/G variant relates to a favorable metabolic profile as evidenced by lower body mass 

index, smaller waist circumference, higher HDL, lower C-reactive protein, as well as less 

susceptibility to heart failure.
75, 76

 Recently, Arora and colleagues elucidated the molecular 

mechanism by which the rs5068 variant influenced ANP production. The variant is in the 

non-coding 3’ UTR of the NPPA gene, a region that is targeted by micro-RNAs. ANP 

expression was modulated through negative regulation by a specific microRNA, miR-425, 

which binds to the site of rs5068. Thus, individuals with the AG allele combination are 

resistant to miR-425, and therefore have higher circulating ANP levels and less hypertension 

compared with AA homozygote individuals.
77

Genetic variants in other natriuretic peptide and related genes have also been described. The 

rs198388 (presence of A allele) and 198389 (presence of the C allele) variants in the NPPB 
gene are associated with lower blood pressure, improved left ventricular diastolic function, 

reduced left ventricular remodeling, and lower risk of diabetes mellitus.
73, 78–81

 A functional 

deletion mutation in the 5’ flanking region of the natriuretic peptide receptor GC-A gene 

reduces transcription and is associated with hypertension and ventricular hypertrophy among 

Japanese individuals.
82

 In genome wide association studies, NPR-C variants are associated 

with hypertension in Caucasian and Asian individuals.
80, 81

 Less is known about variants in 

NPPC and GC-B.
57

 Missense variants in CORIN (555T>I and 568Q>P), which encodes a 

serine protease that cleaves natriuretic prohormones into the active carboxy- and inactive 

amino- terminal peptides, has been found to present in approximately 9% of African-

Americans and is associated with a greater risk for hypertension and cardiac 

hypertrophy.
83, 84

Physiologic studies

The beneficial cardiovascular effects of natriuretic peptides have also been demonstrated 

through infusions of ANP, BNP, and CNP. All three natriuretic peptides induce vasodilation, 

with ANP and BNP also lowering blood pressure.
85, 86

 Infusion of ANP, BNP, or CNP may 

also limit post-acute myocardial infarction adverse cardiac modeling.
87–89

 In the setting of 

heart failure, ANP and BNP infusions decrease pulmonary capillary wedge pressure and 

systemic vascular resistance, leading to increased stroke volume.
90–94

Natriuretic peptides not only influence myocardial structure and function, but also exert 

positive influences on the vasculature. Cultured endothelial cells exposed to ANP or CNP 

demonstrated reduced expression of adhesion molecules (MCP-1 and P-selectin), which are 

needed for leukocyte infiltration into atherosclerotic plaques.
95, 96

 CNP also inhibits 

coronary vascular smooth muscle proliferation in models of atherosclerosis,
97–99

 reduces 

Gupta and Wang Page 4

Circ J. Author manuscript; available in PMC 2016 June 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



platelet leukocyte aggregation, and limits thrombus formation through reduction in PAI-1, 

perhaps through NPR-C.
100–102

The beneficial metabolic effects of natriuretic peptides have also been demonstrated in 

humans. Infusion of ANP at physiologic levels induced lipid mobilization from 

subcutaneous adipose tissue with a concomitant increase in lipid oxidation by skeletal 

muscle.
25, 26, 103

 BNP has been demonstrated to lower glucose levels,
104

 while both ANP 

and BNP converted white to brown fat through mitochondrial uncoupling protein-1 and p38 

MAPK.
54

 It has also been suggested that exercise induced lipolysis may be mediated 

through ANP.
105

Epidemiologic associations

The cross-sectional associations between circulating natriuretic peptide levels and 

cardiovascular and metabolic disease have been examined in epidemiologic studies. An 

inverse relationship has been demonstrated between plasma natriuretic peptide levels and 

body mass index.
106, 107

 Similarly, low levels of NT-proBNP and NT-proANP have been 

found in individuals with the metabolic syndrome and/or left ventricular hypertrophy.
108–111 

The beneficial effects of natriuretic peptides on endothelial function has also been 

demonstrated in the Framingham Heart Study.
112

 Congruent with the animal studies, low 

natriuretic peptide levels have been associated with the development of diabetes 

mellitus.
113, 114

Natriuretic peptides as biomarkers

While experimental, population genetic, and natriuretic peptide infusion studies demonstrate 

inverse associations between natriuretic peptide levels and cardio-metabolic disease, clinical 

studies of natriuretic peptides as prognostic biomarkers typically yield positive associations 

between circulating natriuretic peptide levels and adverse cardiovascular outcomes.
16

 This 

apparent paradox is attributable to the fact that natriuretic peptides are counter-regulatory 

hormones that are released in response to cardiac stress. In population studies, higher 

natriuretic peptide levels, even within what might be considered a “normal” range, are 

commonly seen in the setting of subclinical cardiovascular disease. Thus, the elevated 

natriuretic peptide levels observed in clinical biomarker studies reflect normal physiologic 

responses to elevated cardiac wall stress.

For example, among individuals without prevalent cardiovascular disease in the Framingham 

Offspring Study and in Copenhagen, higher natriuretic peptide levels were positively and 

significantly associated with cardiovascular mortality
115

 or major adverse cardiovascular 

events,
116

 respectively. Among persons with stable coronary artery disease or acute coronary 

syndromes, higher natriuretic peptides were significantly and positively associated with 

greater risk for recurrent cardiovascular events and/or death.
117–121

 Similarly, higher 

natriuretic peptide levels are associated with worse outcomes among individuals with heart 

failure.
122–125

 However, further evidence for the beneficial effects of natriuretic peptides, 

even in the setting of subclinical or over cardiovascular disease, comes from therapeutic 

trials in which augmentation of natriuretic peptides led to favorable cardiovascular effects.
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Natriuretic peptides as a therapeutic target

Most strategies for the prevention and treatment of cardiovascular disease have been directed 

at blocking the deleterious effects of the renin-angiotensin-aldosterone axis and sympathetic 

nervous system.
12

 Given that hypertension, obesity, and insulin-resistance are major risk 

factors for the development of cardiovascular disease and natriuretic peptides guard against 

the development and progression of these disorders, natriuretic peptides are attractive 

therapeutic targets (Figure 3).

Therapeutic approaches have included intravenous infusions of recombinant ANP or BNP, 

oral inhibitors of neutral endopeptidases, and synthetic or “designer” natriuretic peptide 

analogues.
3
 Intravenous infusions of ANP and BNP have been tested in clinical trials for 

hypertension
126

 and heart failure with favorable hemodynamic effects, but no clear benefit 

on long-term clinical outcomes.
94, 127

 Furthermore, oral formulations of ANP and BNP are 

not stable, currently limiting their therapeutic application in chronic disease.

An alternative strategy to direct supplementation of natriuretic peptides is to limit the 

breakdown of endogenous natriuretic peptides. Inhibitors of neutral endopeptidases are 

stable when given orally and the first to be tested in hypertension was candoxatril; however, 

this agent was not of substantial benefit because of simultaneous vasoconstriction due to 

increases in endothelin-1 and angiotensin II.
128, 129

 Subsequently, combined inhibition of 

neutral endopeptidases and angiotensin converting enzyme with omapatrilat was evaluated 

in hypertensive and heart failure patients in the OCTAVE, OVERTURE, and IMPRESS 

trials. Blood pressure was lower in omapatrilat treated patients compared to those treated 

with enalapril alone; however, omapatrilat was associated with a higher frequency of 

angioedema and symptomatic hypotension, without demonstration of superior efficacy, 

thereby preventing approval for clinical use.
130–132

 More recently, neutral endopeptidase 

inhibition has been combined with angiotensin receptor blockade to avoid the angioedema 

seen with ACE inhibition. The angiotensin receptor and neprilysin inhibitor (ARNI) 

LCZ696 is efficacious for lowering blood pressure among patients with essential 

hypertension, without increased angioedema compared with valsartan alone.
133

 In a phase II 

study of heart failure with preserved ejection fraction patients (PARAMOUNT), LCZ696 

was superior to valsartan alone in reducing NT-proBNP levels over 12 weeks of follow 

up.
134

 Recently, LCZ696 was demonstrated to be superior to enalapril for reducing 

cardiovascular death and heart failure hospitalizations in patients with heart failure and 

reduced ejection fraction (PARADIGM-HF),
135

 lending further support for the therapeutic 

benefit of natriuretic peptides.

“Designer” or synthetic natriuretic peptides that are more stable than native natriuretic 

peptides have been developed. For example, the ANP analog carperitide promotes 

vasodilation, natriuresis, and inhibition of the renin-angiotensin-aldosterone axis and is 

approved in Japan for treatment of acute decompensated heart failure.
136

 Another analog, 

M-ANP, which is more resistant to neutral endopeptidase degradation than native ANP, has 

been designed and has favorable anti-hypertensive effects.
137

 A novel chimeric molecule, 

CD-NP, has been engineered by combining the 15 amino acid carboxy-terminus of 

dendrapsis natriuretic peptide with CNP, resulting in a protein that is able to activate both 
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GC-A and GC-B. This chimeric peptide demonstrates potent natriuresis and diuresis, as well 

as anti-fibrotic and anti-proliferative properties.
138

Summary

Natriuretic peptides are cardiac-derived hormones and the principal counter-regulatory 

system guarding against salt-retention, volume expansion, cardiac stress, and remodeling. 

They also modulate energy metabolism, lipolysis, weight loss, and insulin sensitivity. Low 

natriuretic peptide activity can be associated with increased risk for hypertension, obesity, 

and diabetes mellitus, conditions that are increasing in prevalence and are major risk factors 

for cardiovascular disease. Consequently, natriuretic peptides are attractive targets for 

therapeutic approaches to cardio-metabolic disease.
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Figure 1. 
The post-translational processing of natriuretic peptides. From Volpe M, Rubattu S, Burnett 

J, Jr. Natriuretic peptides in cardiovascular diseases: Current use and perspectives. Eur Heart 
J. 2014;35:419–425. (Permission pending)

Caption: Natriuretic peptide protein sequences and post-translational processing cleavage 

and degradation sites. NEP = neprilysin, DPPIV = dipeptidyl peptidase IV, IDE = insulin 

degrading enzyme.
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Figure 2. 
The natriuretic peptide system responds to hemodynamic and metabolic stimuli through 

activation of guanylyl cyclase receptors resulting in cardiometabolic protect effects. From 

Volpe M, Rubattu S, Burnett J, Jr. Natriuretic peptides in cardiovascular diseases: Current 

use and perspectives. Eur Heart J. 2014;35:419–425. (Permission pending)

Caption: Cardiomyocytes and endothelial cells are stimulated to release natriuretic peptides, 

which bind receptors with guanylyl cyclase activity. This activation leads to increased 

intracellular cyclic GMP with beneficial downstream effects mediated through protein 

kinase G and phosphodiesterase. CNP also inhibits adenylate cyclase to reduce cAMP levels 

through the natriuretic peptide receptor-C.
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Figure 3. 
Natriuretic peptides as novel therapeutic targets in cardiometabolic disease. Adapted from 

Volpe M, Rubattu S, Burnett J, Jr. Natriuretic peptides in cardiovascular diseases: Current 

use and perspectives. Eur Heart J. 2014;35:419–425. (Permission pending)

Caption: Natriuretic peptides exert beneficial effects on cardiac and vascular function 

directly and through inhibition of the renin-angiotensin-aldosterone axis and sympathetic 

nervous systems, making them ideal and novel targets for cardiovascular protection.
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Table 1

Summary of the phenotypes associated with genetic manipulation of the natriuretic peptide system in animals. 

From Gardner DG, Chen S, Glenn DJ, Grigsby CL. Molecular biology of the natriuretic peptide system: 

Implications for physiology and hypertension. Hypertension. 2007;49:419–426. (Permission pending)

Gene Disruption Phenotype/Physiology

ANP overexpression Hypotension, decrease in hypoxic hypertension, normal salt excretion, increased H2O intake
and excretion

ANP knockout (Nppa−/−) Hypertension, BP-independent right and left ventricular hypertrophy, impaired Na and
Cl excretion

BNP overexpression Hypotension, skeletal overgrowth, resistance to immune-mediated renal injury

BNP knockout (Nppb−/−) Load dependent ventricular tibrortic lesions, no hypertrophy, no hypertension

CNP knockout (Nppc−/−) Dwarfism, early death

CNP overexpression (chondrocyte targeted) Rescue of dwarfism phenotype

NPR-A (GC-A) overexpression Hypotension, protection against salt-sensitive hypertension

NPR-A (GC-A) Knockout (Npr1−/−) Salt-resistant hypertension, BP-independent ventricular hypertrophy, increase in sudden
death, enhanced NHE-1 activity, increased susceptibility to heart failure

NPR-A targeted knockout

   Cardiomyocyte Hypertrophy, increase in hypertrophy markers, hypotension

   Smooth muscle Loss of ANP response, volume dependent hypertension

   Vascular endothelium Arterial hypertension and cardiac hypertrophy, increased plasma volume

NPR-B (GC-B) knockout (Npr2−/−) Dwarfism, neuronal disorders, female Infertility

NPR-B (GC-B) dominant-negative
overexpression (rat)

BP-independent cardiac hypertrophy, increased congestive heart failure, elevated heart rate

NPR-C knockout (Npr3−/−) Hypotension, bone overgrowth, reduced blood volume
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