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ABSTRACT
Computer modeling is a popular tool to identify the most-probable conformers of

a molecule. Although the solvent can have a large effect on the stability of a

conformation, many popular conformational search methods are only capable of

describing molecules in the gas phase or with an implicit solvent model. We have

developed a work-flow for performing a conformation search on explicitly-solvated

molecules using open source software. This method uses replica exchange molecular

dynamics (REMD) to sample the conformational states of the molecule efficiently.

Cluster analysis is used to identify themost probable conformations from the simulated

trajectory. This work-flowwas tested on drugmoleculesa-amanitin and cabergoline to

illustrate its capabilities and effectiveness. The preferred conformations of these

molecules in gas phase, implicit solvent, and explicit solvent are significantly different.

Subjects Biophysics, Pharmacology, Computational Science
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INTRODUCTION
Many molecules can exist in multiple conformational isomers. Conformational isomers

have the same chemical bonds, but differ in their 3D geometry because they hold different

torsional angles (Crippen & Havel, 1988). The conformation of a molecule can affect

chemical reactivity, molecular binding, and biological activity (Struthers, Rivier &

Hagler, 1985; Copeland, 2011). Conformations differ in stability because they experience

different steric, electrostatic, and solute-solvent interactions. The probability, p, of a

molecule existing in a conformation with index i, is related to its relative Gibbs energies

through the Boltzmann distribution,

pi ¼ exp ��Gi=kBTð ÞP
j exp ��Gj

�
kBT

� � (1)

where kB is the Boltzmann constant, T is the temperature, and �G is the relative Gibbs

energy of the conformation. The denominator enumerates over all conformations.

Alternatively, the probability of a conformation can be expressed in classical statistical

thermodynamics in terms of integrals over phase space,

pi ¼
R
i
exp �V rð Þ=kBTð ÞdrR
exp �V rð Þ=kBTð Þdr (2)
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The integral over configurational space in the numerator is restricted to coordinates

corresponding to conformation i. The denominator is an integral over all configurational

space. VðrÞ is the potential of the system at when the atoms hold coordinates r.

Computational chemistry has enabled conformational analysis to be performed

systematically and quantitatively with algorithms to generate different conformations

and calculate their relative stability. Automated conformational search algorithms can

generate possible conformations, and molecular mechanical or quantum methods can

determine their relative energies.

Conformational search methods can be classified as either exhaustive/systematic or

heuristic. Exhaustive methods scan all, or a significant portion of the configuration

space. Subspaces corresponding to high energy structures can be eliminated without a

loss in quality using a priori knowledge regarding the structure of the configuration

space to be searched (Christen & van Gunsteren, 2008). These methods are usually

limited to small molecules due to the computational cost of searching so much of the

configuration space. Heuristic methods generate a representative set of conformations

by only visiting a small fraction of configuration space (van Gunsteren et al., 2006).

These methods can be divided into non-step and step methods. Non-step methods

generate a series of system configurations that are independent of each other. Step

methods generate a complete system configuration in a stepwise manner by a) using

configurations of molecular fragments, or b) using the previous configuration

(Christen & van Gunsteren, 2008).

Solvent effects
A solvent can also affect the conformation of a molecule by effects like solvent-solute

hydrogen bonding, dipole-dipole interactions, etc. (Christen & van Gunsteren, 2008).

Incorporating the effect of solvation can complicate conformation searches. It is common to

perform a conformation search in the gas phase, neglecting solvent effects altogether.

Alternatively, the solvent can be included in the simulation either implicitly or explicitly.

Implicit models approximate the solvent as a dielectric continuum interacting with

the molecular surface (Anandakrishnan et al., 2015). Depending on the model used, the

computational cost of calculating the solvation can be modest, allowing solvation effects

to be included in the conformation search. A common and efficient implicit solvent

method used with molecular mechanical models is the Generalized Born Implicit

Solvent (GBIS) method (Bhandarkar et al., 2015). A limitation of this type of model is

that features like solute-solvent hydrogen bonding and solute-induced changes in the

solvent structure are difficult to describe accurately when the solvent is described as

a continuum.

Explicit solvation methods surround the solute with a number of solvent molecules

that are represented as discrete particles. Provided that this model accurately describes

solvent molecules and their interactions with the solute, some of the limitations in

accuracy associated with implicit solvent models can be overcome. Although the accuracy

of these models is potentially an improvement over continuum models, the inclusion

of explicit solvent molecules presents challenges in conformation searches.
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Some conformational search algorithms that arbitrarily change dihedral angles cannot be

used in an explicit solvent because an abrupt change in a solute dihedral angle can cause

an overlap with solvent molecules.

A significant drawback of explicit solvent representations is that the computational

cost of these simulations is increased considerably due to the additional computations

needed to describe the interactions involving solvent molecules. Longer simulations are

also needed to thoroughly sample the configurations of the solvent; the stability of

each conformation is the result of a time average over an ensemble of possible solvent

configurations (i.e., its Gibbs/Helmholtz energy), rather than the potential energy of one

minimum-energy structure.

Previous work
Many conformational search methods have been developed. Sakae et al. (2015) used a

combination of genetic algorithms and replica exchange. They employed a two point

crossover, where consecutive amino acid residues were selected at random from each

pair, and then the dihedral angles were exchanged between them. Superior

conformations were selected using the Metropolis criterion, and these were

then subjected to replica-exchange. Supady, Blum & Baldauf (2015) also used a genetic

algorithm where the parents were chosen using a combination of three energy-based

probability metrics.

One example of a systematic method is the tree searching method of Izgorodina,

Lin & Coote (2007). The method optimizes all individual rotations, and then ranks

their energies. It then eliminates those with relative energies greater than the second

lowest energy conformer from the previous round, and performs optimizations on

only the remaining subset. After a set number of rotations, the lowest ranked

conformer is selected. Brunette & Brock (2008) developed what they called a

model-based search, and compared it to traditional Monte Carlo. The model-based

search characterizes regions of space as funnels by creation an energy-based tree

where the root of the tree corresponds to the bottom of the funnel. The funnel

structure illustrates the properties of the energy landscape and the sample

relationships. Cappel et al. (2014) tested the effects of conformational search protocols

on 3D quantitative structure activity relationship (QSAR) and ligand based virtual

screening.

Perez-Riverol et al. (2012) developed a parallel hybrid method that follows a systematic

search approach combined with Monte Carlo-based simulations. The method was

intended to generate libraries of rigid conformers for use with virtual screening

experiments.

Some methods have been extended to incorporate physical data. MacCallum, Perez &

Dill (2015) developed a physics-based Bayesian computational method to find

preferred structures of proteins. Their Modeling Employing Limited Data (MELD)

method identifies low energy conformations from replica-exchange molecular

dynamics simulations that are subject to biases that are based on experimental

observations.
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Conformation searches using molecular dynamics
Molecular dynamics (MD) simulations are a popular method for sampling the

conformational space of a molecule. Equations of motion are propagated in a series of

short time steps that generates a trajectory describing the motion of the system. These

simulations are usually coupled to a thermostat to sample a canonical or isothermal–

isobaric ensemble for the appropriate thermodynamic state. This approach is inherently

compatible with explicit solvent models because the dynamics will naturally sample

the solvent configurations. For a sufficiently long MD simulation, the conformational

states of the molecule will be sampled with a probability that reflects their relative Gibbs/

Helmholtz energies. This is in contrast to many conformational search methods that

search for low potential energy conformations.

One of the limitations of MD is that very long simulations may be needed to sample

the conformational states of a molecule with the correct weighting. This occurs because

MD simulations will only rarely cross high barriers between minima, so a simulation at

standard or physiological temperatures may be trapped in its initial conformation and

will not sample the full set of available conformations.

Replica Exchange Molecular Dynamics (REMD) enhances the sampling efficiency of

conventional MD by simulating multiple copies of the system at a range of temperatures.

Each replica samples an ensemble of configurations occupied at its corresponding

temperature. Periodically, attempts are made to exchange the configurations of

neighboring systems (see Fig. 2). The acceptance or rejection of these exchanges is

determined by an algorithm analogous to the Metropolis Monte Carlo algorithm, which

ensures that each replica samples its correct thermodynamic distribution. This type of

simulation is well suited for parallel computing because replicas can be divided between

many computing nodes. Exchanges between the replicas are only attempted after

hundreds or thousands of MD steps, so communication overhead between replicas is low

compared to a single parallel MD simulation.

REMD simulations can sample the conformational space of a molecule more completely

because the higher temperature replicas can cross barriers more readily. Analysis of the

statistical convergence of REMD simulations has shown that when there are significant

barriers to conformational isomerization, an REMD simulation of m replicas is more

efficient than a single-temperature simulation running m times longer (Sugita & Okamoto,

1999). The lowest temperature replica is typically the temperature of interest. Exchanges

allow each replica to be simulated at each temperature in the set. Barriers that prevent

complete sampling at low temperatures can be overcome readily at high temperatures.

After a sufficiently long REMD simulation, the trajectory for this replica will

contain a correctly-weighted distribution of the conformations available at this

temperature. This trajectory must be analyzed to group the structures sampled into

distinct conformations.

Cluster analysis
The product of an REMD simulation is a trajectory for each temperature. For a

sufficiently long simulation where the simulations were able to cross barriers freely,
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the configurations will be sampled according to their equilibrium probability. A

discrete set of conformations must be identified from this trajectory. Cluster analysis

can be used to identify discrete conformations in this ensemble by identifying

groups of conformers that have similar geometries according to a chosen metric.

Clustering works by assigning a metric to each configuration, measuring the distance

Figure 1 The work-flow for the conformation search method presented in this paper. A parent script

executes OpenBabel, VMD, and NAMD to generate the set of lowest energy conformations.
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between pairs of these configurations, and then grouping similar configurations into

conformations based on this distance metric. Cluster analysis allow common

conformations to be identified from the configurations of a trajectory using little to no

a priori knowledge.

Work undertaken
In this paper, we present the implementation of a work flow for conformation searches

using REMD and cluster analysis (see Fig. 1). This method supports conformation

searches for molecules in the gas phase, implicit solvents, and explicit solvents. The

method is implemented by integrating open source software using Python scripting.

Examples of the conformation search results for two drug molecules are presented.

THEORY
Replica exchange molecular dynamics
In REMD, m non-interacting replicas of the system are run, each at its own temperature,

Tm. Periodically, replicas i and j exchange coordinates and velocities according to a

criterion derived from the Boltzmann distribution (Earl & Deem, 2005; Mitsutake &

Okamoto, 2000). In the implementation used here, exchanges are only attempted between

replicas with neighboring temperatures in the series. Exchange attempts for replica i

alternate between attempts to exchange with the i - 1 replica and the i + 1 replica. The

exchanges are accepted or rejected based on an algorithm that ensures detailed balance,

similar to the Metropolis criterion (Frenkel & Smit, 2002). By this criterion, the

probability of accepting an exchange is,

Pacc ¼ min 1; exp
1

kB

1

Ti

� 1

Tj

� �
V rið Þ �V rj

� �� �� �� �
(3)

whereV is the potential energy, and ri specifies the positions of theN particles in system i.

A conformation is accepted/rejected if this probability is less than a random number

exchange
attempt

reject

accept

m steps of MD

exchange
attempt

accept

accept

m steps of MD

accept

m steps of MD m steps of MD

exchange
attempt

T1

T2

T3

T4

Figure 2 Schematic of exchange attempts between four replicas simulated at temperatures T1, T2, T3,

and T4. After a large number of exchanges, each replica will have been simulated at the full range of

temperatures. The lowest temperature replica will have contributions from each simulation.
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between 0 and 1, which is taken from a uniform distribution. In a successful exchange,

the coordinates of the particles of the two replicas are swapped. When the momenta of

the particles are swapped, they are also scaled by a factor of
ffiffiffiffiffiffi
Ti

Tiþ1

q
to generate a correctMaxwell

distribution of velocities. The process of REMD is illustrated in the following pseudocode.

Algorithm 1: Algorithm for Replica-Exchange Molecular Dynamics

Function REMD (cycles c, replicas n, steps m)
for c cycles do

for a ← 0 to n do
perform m steps of NVT MD;

for neighboring pairs of replicas {i, i+1} do
choose random z ∈ (0,1) ;

Pacc = min
[
1,exp

(
1

kB

(
1
Ti

− 1
Ti+1

)
( (ri)− (ri+1)

)]
;

if z < Pacc then
ri↔ri+1 ;
pi↔pi+1 ;

Cluster analysis
Configurations in the REMD trajectory are grouped into clusters that correspond to

distinct conformations. The lowest energy conformation will correspond to the cluster

with the greatest number of configurations. The process of clustering conformers involves

using some proximity function to measure the similarity between pairs of conformations.

This clustering algorithm groups these configurations according to the pattern proximity

of this function (Jain, Murty & Flynn, 1999).

In this work, the solute root mean square deviation (RMSD) metric is used to identify

the highly-probability conformations from the REMD trajectory. The RMSD provides a

metric for the quality threshold of the similarity of two solute configurations. It is

calculated from the Cartesian coordinates of the two configurations r
ðiÞ
k and r

ðjÞ
k each

having N atoms using Becker et al. (2001),

dij ¼ 1

N

XN
k¼1

r
ið Þ
k � r

jð Þ
k




 


2
" #1=2

(4)

The quality threshold clustering algorithm groups objects such that the diameter of

a cluster does not exceed a set threshold diameter. The number of clusters (N) and

the maximum diameter must be specified by the user prior to the clustering analysis.

A candidate cluster is formed by selecting a frame from the trajectory (a conformer) as the

centroid. The algorithm iterates through the rest of the configurations in the trajectory,

and the conformer with the smallest RMSD with respect to the centroid is added to

the cluster. Configurations are added to this cluster until there is no remaining

configuration with an RMSD less than the threshold. The clustered configurations are

removed from consideration for further clusters and a new cluster is initiated. This

process is repeated until N clusters have been generated.
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COMPUTATIONAL WORK FLOW
The first section describes a work flow that was developed to perform an explicitly-

solvated conformational search of small drug molecules. In the second section,

applications of the work flow are described, and the results are compared to gas phase and

GBIS implementations.

Our method automatically performs conformational searches in the gas phase, implicit

aqueous solvent, and explicit aqueous solvent for each solute structure. The work flow

makes use of several open source programs, as illustrated in Fig. 2. The conformation

search work flow can be divided into 5 steps.

1. Generation of initial 3D molecular structure.

2. Solvation of solute (for explicit solvent method only).

3. Equilibration MD simulation.

4. REMD simulation.

5. Cluster analysis.

Structure generation
The initial 3D structure is generated using the OBBuilder class of OpenBabel version 2.3.2.

OpenBabel is a chemistry file translation program that is capable of converting

between various file formats, but can also automatically generate 2D and 3D chemical

structures and perform simple conformation searches (O’Boyle et al., 2011). Our work-

flow uses OpenBabel to converts the SMILES string input, which is an ASCII string

representation of a molecular structure, into an initial 3D structure that is saved in Protein

Data Bank (pdb) format. OpenBabel supports many other chemical file formats, so

alternative input formats can also be used. To generate a reasonable initial conformation,

a conformer search is performed using the OBConformerSearch class of OpenBabel.

This algorithm uses rotor keys, which are arrays of values specifying the possible rotations

around all rotatable bonds (O’Boyle et al., 2012). Structures for each combination of rotor

keys are generated and the potential energies for these conformations are calculated.

The lowest energy structure for a rotor key is identified (Vandermeersch, 2006). Once all

possible conformers have been generated, the algorithm selects the one with the lowest

energy. The Generalized Amber Force Field (GAFF) is used for all OpenBabel MM

calculations (Wang et al., 2004). Solvation effects are not included in this model.

One drawback of OpenBabel is that the current version can generate wrong

stereoisomers for chiral centers in fused rings for some molecules. In these cases, the user

should check the initial structure to ensure that the correct stereoisomers is modeled.

Solvation of solute
The Antechamber utility of the Ambertools suite is used to generate the necessary

topology (.rtf) and parameter (.prm) files of the solute (Wang et al., 2006). This utility

automatically detects the connectivity, atom types, and bond multiplicity of organic

molecules and generates the parameter file and topology files based on the GAFF.
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The psfgen plugin VMD is used to generate a Protein Structure File (PSF) for the molecule

from the RTF file. For simulations with an explicit solvent, the Solvate plugin of VMD

is used to add a 10 Å layer of water in each direction from the furthest atom from the

origin in that direction. This creates a periodic unit cell that is sufficiently large so that

solute-solute interactions and finite-size effects are small. For ionic molecules, the

autoionize VMD plugin is used to add Na+ or Cl- ions such that the net charge of the

simulation cell is zero.

Equilibration
For simulations with an explicit solvent, MD simulations are performed with NAMD to

equilibrate the system prior to the conformational search. For the gas phase and GBIS

models, a 1 ns MD simulation using a Langevin thermostat is performed. For the explicit

solvent simulations, a 1 ns isothermal-isochoric (NVT) simulation is followed by a 1 ns

isothermal-isobaric ensemble (NpT) simulation A Langevin thermostat and a Langevin

piston barostat are used to regulate the temperature and pressure of the system,

respectively.

To simplify visualization and analysis, the center of mass of the solute is restrained

to remain at the center of the simulation cell using a weak harmonic restraining force.

This restraint is imposed with the Colvar (Collective Variables) module of NAMD using

a force constant of 5.0 kcal Å-2.

Replica exchange MD
Using the equilibrated system, a replica exchange MD simulation is performed to sample

the configurational space of the system. A total of 24 replicas are simulated, with a range

of temperatures between 298 and 500 K. The temperatures of the replicas are spaced

according to a geometric series (Kofke, 2004; Earl & Deem, 2005). A 1 ns equilibration

followed by a 10 ns sampling simulation is performed for each replica. Configurations

are saved and exchanges are attempted every 1,000 time steps. The REMD simulations

were were performed at constant volume, which was the final volume of the NpT

equilibration simulation.

Cluster analysis
The trajectory of the lowest temperature replica is analyzed by clustering analysis to

identify the most probable conformations. The positions of the solute atoms in each frame

of the trajectory are rotated and translated to minimize the RMSD. The cluster routine of

the measure module of VMD is used to identify highly-weighted conformations. This

routine uses the quality threshold clustering algorithm, with the RMSD as the metric.

An RMSD cutoff of 1.0 Å was used. In this work flow, five clusters are generated. The

clusters are sorted in order of the largest to smallest numbers of configurations included,

the first of which is the most important as it represents the most probable conformer for

the lowest temperature replica. The configurations that are part of each cluster are saved

to separate trajectory files. The conformation is defined by the set of configurations

grouped into this trajectory file.
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IMPLEMENTATION AND USAGE
The work flow is implemented in a Python script that calls external programs and

processes the data from these programs. This script is responsible for handling user input

and integrating the work flow into the a PBS-type queuing system. PBS is a distributed

workload management system, which is responsible for queuing, scheduling, and

monitoring the computational workload on a system (Urban, 2010). The program is

executed by the command,

python fluxionalize.py -p [number of processors, default is 2]

-n [name, default is "test"]

-l [location/directory, default is current working directory]

-c [number of clusters to save in [name]_out per instance, default is 1]

-i [input]

When the calculation has completed, the following files/directories will have been

generated in the specified/default location:

[name]_out contains the conformer pdb files for each instance

[name].out the logfile from the queue containing all the runtime command line

outputs

[name].tar.gz contains all the files used and generated by the work flow, compressed for

space

OpenBabel is used to parse the molecular structure provided by the user and convert it

to an initial 3D conformation, so any of the input formats supported by OpenBabel can

be used. The examples presented here use SMILES (Simplified Molecular Input Line

Entry System) strings as the input. SMILES denotes chemical structure as ASCII-type

strings. If using a SMILES string, the input for the fluxionalize.py script is in the form of

-i ‘[SMILES string].’ For other files types, the input is in the form of: -i [file]. In this case,

if no name is specified with the -n option, then the file name is used in its place.

Availability
The code and required source files are available freely from GitHub at https://github.com/

RowleyGroup/fluxionalize.

TECHNICAL DETAILS
The current version of this code uses OpenBabel 2.3.2 (O’Boyle et al., 2011) and VMD

1.9.1 (Humphrey, Dalke & Schulten, 1996). All MD and REMD simulations were

performed using NAMD 2.10 (Phillips et al., 2005). Bonds containing hydrogen were

constrained using the SHAKE algorithm (Ryckaert, Ciccotti & Berendsen, 1977). Lennard-

Jones interactions were truncated using a smoothed cutoff potential between 9 and 10 Å.

A Langevin thermostat with a damping coefficient of 1 ps-1 was used. The simulation

time step was 1 fs. Generalized born model simulations used a dielectric constant of

78.5 and an ion concentration of 0.2 M. For the simulations with an explicit solvent, water

molecules were described using the TIP3P model (Jorgensen, 1981). The molecule
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and solvent were simulated under orthorhombic periodic boundary conditions. The

electrostatic interactions were calculated using the Particle Mesh Ewald (PME) method

with a 1 Å grid spacing (Phillips et al., 2005). Isothermal–isobaric MD simulations used a

Nosé–Hoover Langevin piston barostat with a pressure of 101.325 kPa, a decay period

of 100 fs, and a oscillation period of 2,000 fs. The potential energy terms for the solute

were described using GAFF. The total potential energy function for this force field is

Wang et al. (2004),

VðrÞ ¼ P
bonds

kbðr � reqÞ2 þ
P
angles

k�ð�� �eqÞ2 þ
P

dihedrals

#n

2
½1þ cosðn’� �Þ�þ

P
i

P
i<j

4"ij
�ij
rij

� �12

� �ij
rij

� �6
� �

þ qiqj
4�"o

1
rij

(5)

where req is the equilibrium bond length, �eq is the equilibrium angle, kb, k�, and Vn are

the force constants, n is the multiplicity, and g is the phase angle for torsional angle

parameters. The last summation represents the non-bonded interactions, including

London dispersion forces, Pauli repulsion, and electrostatic interactions. ɛij and �ij are the
Lennard-Jones well depths and radii for a given pair of atoms, and qi is the partial charge

of atom i. Atomic charges are assigned using the restrained electrostatic potential fit

(RESP) charge fitting method (Wang, Cieplak & Kollman, 2000), where the atomic charges

were fit to the AM1-BCC model (Jakalian et al., 2000).

EXAMPLES
To demonstrate the capabilities and performance of our method, conformation searches

were performed on two drug molecules: a-amanitin and the neutral state of cabergoline

(Fig. 3) (Bushnell, Cramer & Kornberg, 2002; Sharif et al., 2009). a-Amanitin serves as a

good example of the effectiveness of the work-flow. There are significant differences

between the primary conformers in the gas phase, implicit solvent, and explicit solvent

models. The most probable conformations derived from these models are overlaid in

Fig. 4. The gas phase structure is more compact than the explicit solvent structure, which

is consistent with the tendency of gas phase molecules to form intramolecular

interactions, while solution structures can extend to interact with the solvent. The implicit

solvent model structure is more similar to the explicit solvent structure, but is still distinct

from the explicit solvent structure. Figure 5 shows the four most probable conformations

from the explicit solvent simulations. The clustering algorithm successfully categorized

conformations with different configurations of the fused rings and orientations of the

pendant chains.

Cabergoline has a simpler chemical structure, containing no long chains and a more

rigid ring structure. The most probable conformers with the explicit solvent (see

Fig. 6B) are all quite similar; the RMSD values are under 0.98. Significant differences are

apparent in the primary conformers of the explicit, GBIS, and gas phase simulations

(see Fig. 6A). In particular, the configuration of the alkyl chains are sensitive to the effect

of solvation. Generally, more rigid molecules will likely be less sensitive to solvation

effects.
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Cabergoline contains two nitrogen centers that are formally chiral. Some conformation

search algorithms have difficulty with type of moiety because the chirality of these centers

can be switched by inversion of the nitrogen center. These inversion moves must be

explicitly implemented into the structure generation algorithm of the method.

Figure 3 Chemical structures of molecules used to demonstrate conformation search work-flow. (A)

cabergoline and (B) a-Amanitin are mid-sized pharmaceuticals with significant conformational flex-

ibility. The intramolecular and solute-solvent interactions result in complex conformer distributions.

Figure 4 Most probable explicitly solvated a-amantin conformers. (A) is the most probable, (B) is the second most probable, and so forth.

Figure 5 Most probable a-amanitin conformers. The explicitly solvated (A) and GBIS (C) conformers

show the effect of the solvent, as compared to the more compact conformer in the gas phase (B).
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Because the method presented here uses REMD, these inversions occur thermally, so

conformations corresponding to these inverted configurations are identified

automatically.

The computational cost of these simulations is moderate. The most computationally-

intensive step is the REMD simulations in the explicit solvent. These simulations

completed after approximately 80 h when run on 72 2100 MHz AMD Opteron 6172

processors. Although the computational resources needed for REMD conformational

searches are considerably greater than for the high-throughput heuristic methods that are

currently used in high-throughput screening, these calculations are currently tractable. As

the cost of these simulations scales well, this type of simulation could become routine

when computational resources are widely available.

The average acceptance rates for the exchanges in the REMD simulations are collected

in Table 1. The acceptance probabilities of the gas phase and implicit solvent models were

high (> 80%). REMD in an explicit solvent was found to be an efficient means to

sample the configuration space, with acceptance probabilities of 27 and 31% for the

simulations of a-amanitin and cabergoline, respectively. REMD can be inefficient for

Figure 6 The lowest energy conformations of cabergoline calculated using the implicit and explicit

solvent models. (A) Most probable conformers, where is the explicit solvent is blue, gas phase is red, and

GBIS is grey. (B) Most probable conformations calculated using explicit solvent models. In order of most

to least probable: blue, red, grey, orange.

Table 1 Acceptance rates of exchanges for replica exchange simulations, averaged over all replicas.

The gas phase and GBIS simulations have very high acceptance rates, but the explicit solvent simulations

have much lower acceptance.

Molecule Simulation Average acceptance rate

a-amanitin Explicit 0.27

Gas phase 0.83

GBIS 0.84

Cabergoline Explicit 0.31

Gas phase 0.88

GBIS 0.88
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simulations in explicit solvents because the acceptance probability decreases with the heat

capacity of the system, which is proportional to the number of atoms in the system

(Lingenheil et al., 2009). For large molecules that must be enclosed in a large solvent box, a

prohibitively high number of replicas would be needed to ensure a sufficiently exchange

probability. For small and medium sized molecules, like the ones used here, the simulation

cell is small enough so that the exchange acceptance probability is > 0.25.

The initial coordinate (.pdb) files for the explicitly solvated structures, and for the gas

phase and implicitly solvated structures can be found on the Github. Also available are

the coordinate (.pdb) files for the four most probable explicitly solvated conformers

(see Figs. 4 and 6B), the coordinate files for the most probable conformers in gas phase and

implicit solvent (see Figs. 5 and 6A), and the SMILES strings for a-amanitin and

cabergoline.

CONCLUSIONS
In this paper, we described a workflow for performing conformational searches using

REMD and clustering analysis for molecules in the gas phase, implicit solvents, and

explicit solvents. The workflow consists of five primary steps: generation of a 3D structure,

solvation of the solute (for the explicit solvent method), an equilibration MD simulation,

a REMD simulation, and cluster analysis. This method is implemented in Python

scripting by integrating several open source packages (i.e., OpenBabel, VMD, and

NAMD). The workflow makes use of the greater conformation sampling achieved by

REMD, and then performs cluster analysis to find the most probable conformers sampled

in the trajectory. Two drug molecules were used as examples of the work-flow, which show

significant differences between conformers in the gas phase, implicit solvent, and explicit

solvent. This work-flow has the potential to be applicable to many fields such as drug

design, cheminformatics, and molecular structure studies.
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