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 Objective—The neuropathogenesis of HIV-associated neurocognitive disorders (HAND) 

remains puzzling. We interrogated several levels of data (host genetic, histopathology, brain viral 

load, and neurocognitive) to identify histopathological changes most relevant to HAND.

 Design—Clinico-pathological study employing genetic association analyses.

 Methods—Data and brain tissue from 80 HIV-infected adults were used. Markers in MCP-1, 

IL1-α, MIP1α, DRD3, DRD2, and ApoE were genotyped. MAP2, SYP, HLA-DR, GFAP, A-Beta, 

and Iba-1 immunoreactivity was quantified in frontal cortex, putamen, and hippocampus. A 

composite score for each marker (mean of the three brain regions) was used. Neurocognitive 

functioning and other clinical variables were determined within one year of death. Brain HIV 

RNA viral load was available for a subset of cases.

 Results—MAP2 and SYP proved most relevant to neurocognitive functioning. 

Immunoreactivity of these markers, as well as A-Beta and Iba-1, was correlated with brain HIV 

RNA viral load. Several genetic markers in combination with other factors predicted 

histopathology: HIV blood viral load and MIP1α genotype, and DRD3 genotype predicted Iba-1 

immunoreactivity; duration of infection and IL-1α genotype predicted GFAP immunoreactivity; 

ApoE genotype and age at death predicted A-Beta immunoreactivity.

 Conclusions—These data indicate that HIV replication in the brain is the primary driving 

force leading to neuroinflammation and dysfunctional protein clearance, as reflected by A-Beta 

and Iba-1. Downstream to these changes are synaptodendritic degeneration, which is the 

immediate histopathological substrate of the neurocognitive impairment characteristic of HAND. 

These intermediate histopathological phenotypes are influenced by host genetic polymorphisms in 

genes encoding cytokines/chemokines, neuronal protein clearance pathways, and dopaminergic 

factors.
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 INTRODUCTION

Pharmaceutical advances built upon immunologic and genetic research have greatly 

improved the lives of HIV-infected (HIV+) individuals. Despite this, the prevalence of HIV-

associated neurocognitive disorders (HAND) remains largely unchanged, although it is 

generally less severe(Heaton et al., 2011). Prior to the development of cART, the most severe 

form of HAND, HIV-associated dementia (HAD), was more common. Then, as now, HIV 

encephalitis (HIVE) was considered to be a major neuropathological basis of 

HAD(McArthur et al., 1993, Moore et al., 2006b, Glass et al., 1995, Bell et al., 1998, 

Persidsky and Gendelman, 2003, Everall et al., 2005, Letendre et al., 2011, Boven et al., 

2000, Conant et al., 1998, Eugenin et al., 2006, Kraft-Terry et al., 2009). However, in the 

current era of widespread cART use the vast majority of HAND cases present with milder 

symptoms(McArthur et al., 2005, Heaton et al.) and do not have neuropathological findings 

consistent with HIVE(Everall et al., 2009). Accumulating evidence suggests that for the vast 

majority of cART-era HAND cases, which are mild-to-moderate in severity, the 
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neuropathogenesis of HAND is due largely to neurodegeneration driven by chronic 

neuroinflammation(Glass et al., 1995, Kraft-Terry et al., 2009, Persidsky and Gendelman, 

2003, Everall et al., 2009), but the specific neuropathological markers involved are unclear. 

Putative markers include synaptophysin and microtubule-associated protein-2(Moore et al., 

2006a), abnormal protein aggregation such as β-amyloid(Achim et al., 2009, Rempel and 

Pulliam, 2005, Green et al., 2005, Esiri et al., 1998, Soontornniyomkij et al., 2012), and a 

variety of histolopathological markers reflecting macrophage proliferation, microglial 

activation, astroglial activation, and dysregulated cytokine expression and production (Bell 

et al., 1998, Glass et al., 1995, Persidsky and Gendelman, 2003, Everall et al., 2005, 

Letendre et al., 2011, Boven et al., 2000, Conant et al., 1998, Eugenin et al., 2006, Kraft-

Terry et al., 2009). Determining the relative importance of these various neuropathological 

indicators would advance our understanding of HAND pathogenesis.

Candidate gene studies have identified variants within immune-related genes that modify 

risk for HAND (as reviewed in (Levine et al., 2014a, Kallianpur and Levine, 2014)). As one 

would suspect based on neuropathological studies, these largely involve immune factors 

involved in neuroinflammatory(Letendre et al., 2011), including cytokines, chemokines, and 

their receptors. It is well-established that chemokines can serve to block HIV-1 co-receptors 

thereby modifying HIV replication (Lane et al., 2003) and disease progression (Gonzalez et 

al., 2001, Gonzalez et al., 2005), as well as influence macrophage activation and chemotaxis 

of monocytes and other cells across the blood-brain barrier (Kaul and Lipton, 2005, Weiss et 

al., 1999), thus leading to increased inflammation and viral seeding of the CNS. Chemokines 

also affect neuronal signaling with subsequent disturbance of glial and neuronal 

functions(Zheng et al., 2001). Immunologic factors germane to HAND include monocyte 

chemoattractant protein-1 (MCP-1)(Conant et al., 1998, Kelder et al., 1998, Letendre et al., 

2011, Lehmann et al., 2006), macrophage inflammatory protein 1-alpha (MIP-1α)

(Schmidtmayerova et al., 1996), apolipoprotein E (ApoE)(Vitek et al., 2009), and interleukin 

1-alpha (IL-1α)(Nolting et al., 2009). In addition to immune factors, candidate gene studies 

have also implicated dopaminergic dysregulation in HAND neuropathogenesis(Kumar et al., 

2009, Kumar et al., 2011, Levine et al., 2012, Levine et al., 2014b, Levine et al., 2014a). 

However, all candidate gene studies thus far have utilized behavioral phenotypes (e.g., 

HAND diagnosis or neurocognitive functioning), perhaps explaining the variable results in 

validation studies.

If host genetic variants do modify risk for HAND, it logically follows that they must also 

modify the cellular and pathophysiological pathways that underlie HAND. While this 

approach has recently been applied in the study of Alzheimer’s disease(Mortimer et al., 

2009, Bennett et al., 2005, Shulman et al., Bennett et al., 2009), it remains unexplored in the 

context of HAND. Bridging the informational gap between genotype and behavioral 

phenotype in the context of HAND may provide important insights about pathogenesis. In 

this study, we have quantified several histopathological markers deemed relevant to HAND 

and have genotyped genes variably shown to be associated with risk of HAND or 

neurocognitive impairment in the context of HIV. In addition, we have obtained brain HIV 

RNA viral load from the brains of a subset of individuals. Using these data, this multilevel 

analysis determined the relationship between genetic susceptibility loci, histopathological 

markers, and brain HIV viral load in leading to neurocognitive impairment.
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 METHODS

 Tissue Source

This study was conducted in accordance with the University of California, Los Angeles 

Medical Institutional Review Board. Data and biological samples came from 80 individuals 

enrolled in either the National Neurological AIDS Bank (NNAB) or California NeuroAIDS 

Tissue Network (CNTN) who died between August 1999 and January of 2012. For 

inclusion, all cases were required to ne HIV+, over age 18, and have been diagnosed as 

either neurocognitively normal or with HAND within one year prior to death, per established 

research criteria(Antinori et al., 2007, 1996). All cases died well into the cART era 

(post-1996). Exclusion criteria were 1) pre- or post-mortem evidence of non-HIV related 

neurological diseases (e.g., stroke, neoplasm, multiple sclerosis, traumatic brain injury, and 

neurodegenerative illness), 2) history or evidence of toxoplasmosis or progressive multifocal 

leukoencephalopathy, and 3) diagnosis of substance dependence within one year before 

death. Comorbid medical conditions, largely self-reported by participants and not recorded 

in a standardized way when these cases were alive, were available for up to 75% of the 

sample, depending on the condition. Sample characteristics are shown in Tables 1 and 2.

 Clinical Variables

 HAND Severity—Diagnosis of HAND and determination of severity were accomplished 

via multidisciplinary consensus based on either the previous 1996 American Academy of 

Neurology (AAN) criteria if their last pre-mortem evaluation occurred prior to the 

publication of the newer HAND research criteria “Frascati” in 2007, or according to the 

Frascati criteria if after 2007. The NNAB and CNTN diagnostic criteria prior to 2007 

included a “subsyndromic” impairment classification that is essentially identical to 

Asymptomatic Neurocognitive Impairment according to the Frascati criteria. Because the 

criteria for Mild Cognitive/Motor Disorder and HAD (per AAN criteria) remained 

essentially identical to Mild Neurocognitive Disorder and HAD (per Frascati: Antinori et al 

2007 criteria), respectively, we were able to group participants from both diagnostic eras. 

For this study, levels of severity were: neurocognitively normal, Asymptomatic 

Neurocognitive Impairment, Mild Neurocognitive Disorder, and HAD.

 Neurocognitive Functioning—Neuropsychological clinical ratings were determined 

for each case based on neurocognitive test scores obtained within one year of death. The 

clinical ratings approach uses demographically-corrected T-scores from a comprehensive 

neuropsychological battery that are categorized by domain of cognitive functioning, as 

previously described(Woods et al., 2004). Clinical ratings for each domain were assigned on 

a scale that ranged from 1 (above average) to 9 (severely impaired), with scores of 5 or more 

indicative of impairment. These were summarized as a Global Clinical Rating (GCR). 

Among individuals living with HIV, GCR is associated with daily functioning 

abilities(Heaton et al., 2004), HIV disease variables(Heaton et al., 2011), and 

synaptodendritic changes(Moore et al., 2006a).

 HIV Disease Measures—Peripheral blood was collected from living participants by 

venipuncture into EDTA and heparinized tubes prior to death and was assayed for HIV RNA 
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viral load using the Roche Amplicor Assay and by flow cytometry for CD4+ T-lymphocyte 

subsets. HIV plasma viral load was measured at the last pre-mortem visit within one year of 

death. Duration of HIV infection (based on self-report) and nadir CD4+ cell count (often 

self-reported) were also recorded. For a subset of cases, HIV RNA levels measured in mid-

frontal cortex was available, described below. Plasma measures of viral load and CD4+ cell 

counts were not available at the time of death because venipuncture cannot be collected after 

the heart has ceased beating due to blood coagulation.

 Antiretroviral CNS Penetration or Effectiveness (CPE)—We employed the CPE, 

a score that is based on the pharmacologic characteristics of antiretroviral 

medications(Letendre, 2011). The CPE of individual antiretroviral drugs is ranked from 1 

(poorest) to 4 (best) based on the 2010 ranking system(Letendre et al., 2010). The CPE score 

for each case was derived by adding ranks of all antiretroviral drugs within their regimen, 

which was reported at the time of neurocognitive testing. Higher scores indicate a regimen 

with increased penetration of the blood brain barrier.

 Brain HIV RNA Viral Load

For a subset of 39 cases, HIV RNA quantified from the dorsolateral frontal cortex as part of 

a separate study and made available for analysis here(Gelman et al., 2013). Details are 

provided in the Supplemental Materials.

 Tissue Processing, DNA extraction, and Genotyping

Frozen occipital cortex samples were shipped to the University of California Los Angeles - 

Biological Samples Processing Core from the NNAB and CNTN for DNA extraction. The 

Autopure LS nucleic acid purification instrument was used for extracting DNA. DNA 

extraction and genotyping methods are provided in the Supplemental Materials. The 

following genetic markers were examined in this study: MCP-1 (rs1024611), MIP1α 

(rs1719134), DRD3 (rs6280), DRD2 (rs6277), ApoE (rs429358), and IL1-alpha (rs17561).

 Histopathological Characterization

Histopathological characterization was accomplished using previously described 

methods(Masliah et al., 1997, Moore et al., 2006b) based on immunohistochemistry and 

conducted on fixed/frozen vibratome sections or formalin-fixed paraffin-embedded sections. 

Right dorsolateral mid-frontal cortex, hippocampus, and putamen were obtained from 

deceased HIV+ patients as soon as possible after death and either frozen or fixed in 

formalin. For the statistical analyses, we generally used a composite score, which was the 

mean value from the three regions, for each of the following markers: synaptophysin (SYP), 

microtubule associated protein-2 (MAP-2), human leukocyte antigen-DR (HLA-DR), 

ionized calcium-binding adaptor molecule-1 (Iba-1), glial fibrillary acidic protein (GFAP), 

and amyloid beta (A-Beta). MAP2 and SYP were available only for the 35 from the CNTN. 

Additional details of histopathological analysis are in the Supplemental Materials.
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 Statistical Analysis

As a preliminary step, we examined the role of comorbid medical conditions (present or not 

present) on neurocognitive functioning and histopathology using ANOVA. Any comorbid 

medical conditions found to influence these outcomes was included in later analyses. 

Comorbid conditions in which fewer than 5 individuals reported the illness were not 

considered.

We then sought to examine the relevance of histopathological markers to HAND. This was 

accomplished by correlating the various markers with GCR and by comparing the 

immunoreactivity for each marker between those diagnosed with HAND and those 

considered neurocognitively normal at their final evaluation within one year of death. 

Because we had quantified these markers across several brain regions, we were able to 

examine both global neurocognitive functioning and domain-specific associations (e.g., 

memory and histopathology in hippocampus). Non-parametric statistical tests were used 

(Spearman’s Rho and Kruskal-Wallis).

Having quantified several histopathological markers across several brain regions, we then 

examined the relationship among these markers. A composite score (mean value across the 

frontal cortex, putamen, and hippocampus) was calculated for each marker, and that value 

was correlated across brain regions via Spearman’s Rho.

For 39 cases, HIV RNA and mRNA of ISG15, IRF1, and DRD2L were quantified. We 

examined the relationship between these RNA levels, histopathological markers, and host 

genotype using Pearson and Spearman’s Rho correlation tests.

Finally, we then sought to determine the effect of genotype on extent of histopathology. This 

was accomplished with Kruskal Wallis for MAP2 and SYP (due to small number of 

available samples), and linear regression for GFAP, Iba1, HLA-DR, and A-Beta. A separate 

regression was run for a composite measure of each marker (averaged across the three brain 

regions), with the marker as the dependent variable and several predictor variables entered as 

follows: Block 1) age at death, race, gender, education, relevant comorbid medical 

conditions; Block 2) duration of HIV infection, nadir CD4+ cell count, log10 blood HIV 

RNA viral load; Block 3) genotypes (as described above, entered in a forward stepwise 

manner). Note that CPE scores were not available for several cases. Therefore, the 

regression analyses were completed without this variable. When significant results were 

found, we repeated the regression with CPE. For MAP2 and SYP, due to the small number 

of cases with those markers characterized, genotype group differences in median values 

were determined for each gene using the Kruskal-Wallis test. Multiple comparisons for most 

analyses were corrected with the False Discovery Rate(Benjamini et al., 2001) (FDR) 

method.
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 RESULTS

 Relationship of comorbid medical conditions with histopathological markers and 
neurocognitive functioning

No group differences were observed after correcting for multiple testing. Results are 

available in the Supplemental Material.

 Relationship between histopathological markers and neurocognitive functioning or 
HAND

Both MAP2 and SYP were significantly correlated with global neurocognitive functioning 

and HAND severity. Secondary analyses showed this to be true across virtually all brain 

regions and cognitive domains (Table 3), although this latter analysis was not corrected for 

multiple comparisons. No clear pattern was observed relating the regional immunoreactivity 

of MAP2 or SYP to particular neurocognitive domains.

Marginal correlations were observed between A-Beta in putamen and attention/working 

memory (r = 0.25, p = .037), GFAP in putamen with motor, (r = 0.24, p = .034), and HLA-

DR in frontal cortex with learning (r = 0.27, p = .017). These correlations were not 

significant after correction using the FDR(Benjamini et al., 2001).

 Relationship between histopathological markers and HIV RNA

We next examined the relationship between histopathological markers in frontal cortex with 

HIV RNA. Again, the most robust correlations were observed between HIV RNA and both 

MAP2 (r = −0.60, p = .006) and SYP (r = −0.58, p = .01). In addition, both Iba1 and A-Beta 

were significantly correlated with HIV RNA in the frontal cortex (Table 4).

 Relationship among histopathological markers

Correlations among the various histopathological markers were examined separately within 

frontal cortex, putamen, and hippocampus. Results are shown in the Supplemental Material. 

MAP2 and SYP were moderately-to-strongly correlated across all three regions (Frontal: r = 

0.61, p < .0001; Putamen: r = 0.85, p < .0001; Hippocampus: r = 0.68, p < .0001). 

Interestingly, we also observed moderate correlations between GFAP and Iba1 across all 

three regions (Frontal: r = 0.40, p = .0002; Putamen: r = 0.46, p < .0001; Hippocampus: r = 

0.55, p < .0001). SYP and A-Beta were negatively correlated in frontal cortex (r = −0.55, p 

= .001) and putamen (r = −0.39, p = .029). Note that this second correlation did not survive 

FDR correction.

 Relationship between genotypes and histopathological markers

As described above, the number of samples with MAP2 and SYP was too small to conduct 

regression analyses. Therefore, potential differences in MAP2 and SYP immunoreactivity 

between genotype groups were examined with the Kruskal-Wallis test. No significant 

differences in MAP2 or SYP immunoreactivity were observed between genotype groups for 

any of the markers examined.
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Linear regression was used to examine the remaining histopathological markers. Only the 

models without CPE are shown in Table 5. For HLA-DR, the regression model was not 

significant (F = .564, p = .757, Adjusted R2 = −.045). The Iba-1 model was significant (F = 

2.813, p = .01, Adjusted R2 = .192), with significant predictors being log10 blood HIV RNA 

viral load (p = .03), MIP1α genotype (p = .005) and DRD3 genotype (p = .036). The 

regression for GFAP was also significant (F = 4.787, p = .0003, Adjusted R2 = .303), with 

duration of infection (p = .007) and IL-1α genotype (p = .0002) as significant predictors. 

Finally, the model for A-Beta was significant (F = 2.474, p = .028, Adjusted R2 = .145), with 

ApoE genotype as a significant predictor (p = .048) and trend for age at death (p = .052).

All significant models were rerun with CPE, which reduced the sample size to 48. While 

underpowered, the results were similar to the models that did not include CPE, with the 

exception that age at death, which became a significant predictor in the A-Beta model.

 DISCUSSION

HAND is a multifactorial syndrome because, while it is attributed to HIV infection, it is also 

influenced by a wide range of other factors(Martin-Thormeyer and Paul, 2009, Cohen and 

Gongvatana, 2010, Gonzalez and Cherner, 2008, Brown et al., 2014). As with susceptibility 

for HIV infection and rate of disease progression, there appear to be several genes that 

modify the risk for HAND and its course. It has been difficult to validate these genetic 

association studies, likely due largely to the use of different diagnostic schema or 

endophenotypes across studies(Woods et al., 2004, Levine et al., 2014a). Furthermore, 

because the pathogenesis of HAND is likely multifactorial, and HAND itself varies in 

presentation and course(Lojek and Bornstein, 2005, Dawes et al., 2008, Fazeli et al., 2014), 

it is possible that several genes serving various underlying processes are involved. Therefore, 

to understand HAND pathogenesis, a strategy that encompasses several levels of inquiry is 

required. In this study, we have interrogated quantitative measures of six histopathological 

markers, several relevant host genotypes, neurocognitive functioning, and brain HIV RNA 

viral load in an effort to understand the inter-relationship among these layers of information 

and create a causative model of HAND pathogenesis.

Our findings indicate that the histopathological markers most strongly related to HAND are 

MAP2 and SYP. These markers reflect synaptodendritic integrity, and demonstrated robust 

correlations with global pre-mortem neurocognitive functioning, as demonstrated in 

previous studies(Moore et al., 2006b, Masliah et al., 1997). Other histopathological markers, 

including those reflecting microglial and macrophage proliferation, astrogliosis, and 

impaired protein clearance (A-Beta), were not correlated with neurocognitive functioning or 

HAND severity in this sample. It is also notable that of the 20 cases diagnosed as HAD 

within one year prior to death, only one had HIVE.

Based on a subset of cases, it appears that brain HIV RNA viral load is the catalyst of 

HAND-related histopathological changes. This was most clear with MAP2 and SYP; as HIV 

RNA viral load increased, synaptodendritic integrity within the same region decreased. 

While this is based on correlation analysis, it is most logical to conclude a unidirectional 

effect (viral load → histopathology), save for the possibility of another unmeasured factor. 
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Synaptodendritic degeneration associated with HIV RNA viral abundance has long been 

suspected as a basis of HAND, even prior to cART use(Masliah et al., 1992). It is also 

notable that as HIV RNA increased, there was a concomitant increase in A-Beta and Iba1, 

suggesting dysfunctional protein clearance and neuroinflammation. Furthermore, the 

associations among the histopathological markers indicated a strong correlation between 

MAP2 and SYP across all regions, and an inverse relationship between SYP and A-Beta 

particularly in frontal cortex. This raises the question of whether HIV replication in the brain 

was driving all of the aforementioned histopathological changes, or if it initiated a causal 

chain of events involving multiple histopathological changes.

Our final analyses considered how demographic factors, HIV disease variables, and host 

genotype predicted histopathology in the brain. Due to the lower number of cases with 

MAP2 and SYP, it was not possible to examine these markers via linear regression, but 

genotype group comparisons did not reveal differences in MAP2 or SYP immunoreactivity. 

However, three of the remaining four histopathological markers were influenced by 

genotype, and the findings are biologically coherent. First, immunoreactivity of Iba1, a 

marker of microglial and macrophage proliferation, increased as a function of pre-mortem 

blood HIV RNA viral load, DRD3 genotype, and MIP-1α genotype. In this model, elevated 

blood viral load may reflect more active replication in the CNS, leading to increased 

neuroinflammation (brain viral load was not included in the regression analyses due to 

limited availability of those data). The contribution of genotype is less straightforward. The 

DRD3 C (rs6280) allele has been previously associated with poorer neurocognitive 

functioning(Bombin et al., 2008, Gupta et al., 2011). The A allele of MIP-1α (rs1719134) 

has been linked to faster HIV disease progression(Gonzalez et al., 2001) and is in high 

linkage disequilibrium with a single nucleotide (rs11370771)(Modi et al., 2006) previously 

associated with HAD(Levine, 2009). It is unclear what the functional consequences of these 

polymorphisms are, but MIP-1α is a potent macrophage chemoattractant and natural ligand 

for the HIV co-receptor CCR5. Our findings suggest that this polymorphism is associated 

with immunologic response to increasing viral replication, leading to increased migration of 

monocytes into the CNS and subsequent neuroinflammation. Secondly, we found increasing 

GFAP immunoreactivity as a function of HIV infection duration and possession of one or 

two IL-1α T alleles. IL-1α is a pro-inflammatory factor produced primarily by macrophages, 

and this polymorphism has been linked to the onset of multiple sclerosis and other 

diseases(Charbonneau et al., 2014, Mirowska-Guzel et al., 2011), and was previously 

associated with poor control of plasma HIV viremia(Price et al., 2004); however, previous 

association studies have not linked this polymorphism to HAND(Pemberton et al., 2008, 

Levine et al., 2009, Levine et al., 2014a). GFAP was not correlated with MAP2 or SYP 

(Supplemental Material). Together, these findings suggest that while astrogliosis increases 

with duration of infection and inflammatory response, it may not be the relevant 

neuropathological process underlying HAND. Finally, A-Beta levels increased as a function 

of age at death and possession of one or two ApoE-Ɛ4 alleles. Additionally, the strong 

correlation between A-Beta and MAP2/SYP (Supplemental Material) suggests that this 

histopathological change may be relevant to HAND. As a whole, these findings indicate that 

active HIV replication in the brain is the primary driving force leading to neuroinflammation 

(Iba1) and dysfunctional protein clearance (A-Beta), and that downstream to these changes 
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is synaptodendritic degeneration which is the immediate histopathological substrate of 

HAND, although several factors modify this cascade (Lu et al., 2011, Hinkin et al., 2008, 

Lamers et al., 2011).

The conclusions should be considered with the following caveats. Firstly, while our sample 

size was generally adequate for most analyses, we were unable to include some relevant 

variables (e.g., CPE). The small sample also precluded us from conducting stratified 

analyses based on ethnicity, as phenomena such as population stratification can confound 

genetic association studies; however, we included ethnicity in the regression models. 

Secondly, several variables were collected up to 12 months prior to death, leaving open the 

possibility that they were no longer applicable. This is unavoidable in clinicopathological 

studies such as this. Thirdly, our sample was derived from cohorts that historically recruited 

individuals with advanced illness (i.e., AIDS). This is reflected in the relatively high rate of 

HAND, in particularly HAD, as well as the young average age at death. Thus the 

generalizability of our findings in the current HAND era may be somewhat dampened. 

Finally, cause of death, which may have an effect on histopathology, was largely 

indeterminable in the majority of cases, and this information is not available through the 

NNTC. However, we did exclude cases with clear neuropathological indicators of 

neurological-related causes of death (e.g., stroke).

Understanding the neuropathogenesis of complex syndromes such as HAND requires a 

multilevel approach anchored in genotype and utilizing reliable phenotypes across layers. In 

the present study we have presented a preliminary, data-supported model that indicates the 

influence of HIV replication on various histopathological and their subsequent influence on 

neurocognitive functioning, and how this relationship is modified by host genotype. As we 

further develop this ambitious model to bridge genetic, neuropathology, and clinical 

outcomes, a comprehensive understanding of HAND pathogenesis will emerge.

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 1

Demographic and other group characteristics

Variable N� Mean Std. Deviation

Duration of HIV infection (years) 77 20.7 7.8

Age at death (years) 80 46.6 9

Education (years) 80 12.7 2.8

Nadir CD4+ cell count (cells/μl) 79 85 110.7

CPE[48] 65 9 4.9

Global Clinical Rating 80 5.6 1.9

Log10 blood HIV RNA viral load* 78 3.9 1.4

N� Percent

Male gender 66 82%

Caucasian 54 67.5%

African American 18 22.5%

Native Alaskan 5 6.3%

Other 3 3.8%

Neurocognitively normal* 20 25%

HAND* (total cases) 60 75%

 Asymptomatic Neurocognitive

 Impairment 15 19%

 Mild Neurocognitive Disorder 25 31%

HIV-Associated Dementia 20 25%

ᶧ
Number of cases for which information was available

*
Collected within 12 months of death
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Table 2

Co-morbid illness and post-mortem neuropathological findings

Co-morbid illness Total N� Yes

 Hypertension 56 25%

 Hyperlipidemia 51 18%

 Chronic renal disease 52 14%

 Cardiac disease 53 8%

 Diabetes 55 13%

 Viral hepatitis 54 39%

 Hepatitis C infection 60 27%

 End stage liver disease 55 6%

 Chronic obstructive pulmonary disease 52 4%

 Non-AIDS defining cancer 51 20%

 Lipodystrophy 47 13%

 Tobacco smoking 48 35%

Neuropathological findings Total N� Yes

 Cryptococcosis 80 4%

 Cytomegalovirus infection 80 2.5%

 HIV encephalitis 80 4%

 White matter forebrain lesion 80 10%

 Perivascular siderophages 80 65%

 Microglial nodule encephalitis 80 4%

 Perivascular mononuclear cells 80 30%

ᶧ
Number of cases for which information was available
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Table 3

Correlations between MAP2/SYP density and neurocognitive functioning or HAND severity

Neurocognitive Domain� MAP2-
Frontal*

SYP-
Frontal

MAP2-
Putamen

SYP-
Putamen

MAP2-
Hippo

SYP-
Hippo

Executive −.337 −.316 −.359 −.351 −.403

.048 .073 .040 .045 .020

35 33 33 33 33

Correlation −.427

p-value .011

N 35

Processing Speed Correlation −0.55 −0.47 −0.5 −0.53 −0.49 −0.35

p-value .001 .004 .003 .002 .004 .048

N 35 35 33 33 33 33

Attention/Working
Memory

Correlation −0.50 −0.41 −0.47 −0.52 −.30 −.28

p-value .002 .014 .006 .002 .087 .118

N 35 35 33 33 33 33

Learning Correlation −.677 −.392 −.655 −.557 −.516 −.457

p-value <.001 .020 <.001 .001 .002 .008

N 35 35 33 33 33 33

Memory Correlation −.618 −.302 −.554 −.503 −.449 −.324

p-value <.001 .078 .001 .003 .009 .066

N 35 35 33 33 33 33

Verbal Fluency Correlation −.472 −.391 −.475 −.411 −.412 −.417

p-value .004 .020 .005 .017 .017 .016

N 35 35 33 33 33 33

Motor Correlation −.704 −.568 −.763 −.688 −.518 −.486

p-value <.001 <.001 <.001 <.001 .002 .004

N 35 35 33 33 33 33

Global
Neurocognitive
Functioning

Correlation −.735 −.610 −.706 −.702 −.601 −.516

p-value <.001 <.001 <.001 <.001 <.001 .002

N 35 35 33 33 33 33

HAND Severity Correlation −.734 −.643 −.764 −.774 −.600 −.597

p-value <.001 <.001 <.001 <.001 <.001 <.001

N 35 35 33 33 33 33

*
Higher MAP2 and SYP values are indicative of better synaptodendritic integrity.

ᶧ
Higher scores in neurocognitive domains are indicative or greater impairment.
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Table 4

Correlations between HIV RNA and histopathological markers in frontal cortex

MAP2  Correlation −.601

  p-value .006

N 19

SYP Correlation −.575

p-value .010

N 19

HLA-DR Correlation .199

p-value .224

N 39

Iba1 Correlation .342

p-value .038

N 37

GFAP Correlation .115

p-value .499

N 37

A-Beta Correlation .423

p-value .013

N 34
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Table 5

Regression results for histopathological markers and genotype (N = 62)

Histopathological
marker

Covariate Standardized
beta value

p-value (for
covariate)

HLA-DR Age at death −.198 .168

Education −.172 .243

Race −.136 .351

Nadir CD4 cell count .074 .614

Log10 blood HIV viral load .018 .905

Duration of HIV infection −.054 .709

F value overall fit (p-value) .564 (.757)

Adjusted R squared −.045

Iba1 Age at death −.152 .245

Education .044 .741

Race −.086 .514

Nadir CD4 cell count −.145 .296

Log10 blood HIV RNA viral load .292 .030

Duration of HIV infection −.042 .750

MIP-1α genotype −.379 .005

DRD3 genotype .271 .036

F value overall fit (p-value) 2.813 (.01)

Adjusted R squared .192

GFAP Age at death .065 .577

Education .211 .083

Race .106 .385

Nadir CD4 cell count .002 .985

Log10 blood HIV RNA viral load −.005 .967

Duration of HIV infection .333 .007

IL1α genotype .444 .0002

F value overall fit (p-value) 4.787 (.0003)

Adjusted R squared .303

A-Beta Age at death .260 .052

Education .076 .575

Race .148 .267

Nadir CD4 cell count .112 .401

Log10 blood HIV RNA viral load −.143 .296

Duration of HIV infection −.012 .927

ApoE genotype .245 .048

F value overall fit (p-value) 2.474 (.028)

Adjusted R squared .145
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