Skip to main content
. 2016 Jan 28;25:1613–1623. doi: 10.1007/s11136-015-1206-1

Table 4.

Overview of the approaches to handling missing data within the identified RCTs by PROM category

Questionnaires EQ-5D-3L index HUI OHS OKS PDQ QLQ-C30 SF-12 SF-36 Overall
Number of studies 72 13 4 9 17 21 25 76 237
Methods to limit missing data described (%) 25.0 15.4 50.0 22.2 11.8 14.3 36.0 21.1 22.8
Differential missingness assessed (%)a 25.0 15.4 0 11.1 11.8 14.3 28.0 18.4 19.8
Assumed missing data mechanism
 Not described (%) 91.7 100 100 100 82.4 100 88.0 96.0 93.7
 Missing at random (%) 6.9 17.6 12.0 4.0 6.3
 Missing completely at random (%) 1.4 0.42
Missing data mentioned in methods/analysis section (%) 62.5 53.9 25.0 11.1 75.0 42.9 52.0 52.6 54.2
Analysis population
 Intention to treat (%) 27.8 7.7 11.1 29.4 9.5 24.0 19.7 21.1
 Modified intention to treat (%) 54.2 46.2 50.0 66.7 47.1 59.1 48.0 46.1 50.6
 Per protocol (%) 1.4 5.9 1.3 1.3
 Unclear (%) 16.7 46.2 50.0 22.2 17.7 33.3 28.0 32.9 27.0
Primary method of handling with missing data
 Complete cases (%) 38.9 30.8 50.0 22.2 5.9 14.3 32.0 39.5 32.9
 Last observation carried forward (%) 11.1 7.7 11.1 41.2 9.5 4.0 10.5 11.8
 Mean imputation (%) 5.6 4.0 2.7 3.0
 Regression imputation (%) 4.0 0.4
 Direct likelihood analysis (%) 5.9 0.4
 Repeated measures model (%) 8.3 15.4 11.1 17.7 14.3 20.0 25.0 16.9
 Multiple imputation (%) 15.3 15.4 16.0 5.3 8.9
 Unclear (%) 20.8 30.8 50.0 55.6 29.4 61.9 20.0 17.1 26.2
Justification provided for primary method of dealing with missing data (%) 13.9 15.4 25.0 0 11.8 0 8.0 5.3 8.9
Sensitivity analysis was performed (%) 25.0 23.1 25.0 0 17.7 19.1 32.0 19.7 21.9
Potential influence of missing data on results mentioned in discussion (%) 18.1 15.4 25.0 0 17.7 14.3 16.0 14.5 15.6

aThe studies considered differences between those with complete and missing data in terms of participant (baseline) characteristics