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Predominance and high antibiotic resistance of the
emerging Clostridium difficile genotypes NAPCR1 and
NAP9 in a Costa Rican hospital over a 2-year period
without outbreaks

Diana López-Ureña, Carlos Quesada-Gómez, Mónica Montoya-Ramírez, María del Mar Gamboa-Coronado,
Teresita Somogyi, César Rodríguez and Evelyn Rodríguez-Cavallini

Clostridium difficile is the major causative agent of nosocomial antibiotic-associated diarrhea. In a 2009 outbreak of C. difficile-
associated diarrhea that was recorded in a major Costa Rican hospital, the hypervirulent NAP1 strain (45%) predominated

together with a local genotype variant (NAPCR1, 31%). Both strains were fluoroquinolone-resistant and the NAPCR1 genotype,

in addition, was resistant to clindamycin and rifampicin. We now report on the genotypes and antibiotic susceptibilities of 68

C. difficile isolates from a major Costa Rican hospital over a 2-year period without outbreaks. In contrast to our previous

findings, no NAP1 strains were detected, and for the first time in a Costa Rican hospital, a significant fraction of the isolates

were NAP9 strains (n=14, 21%). The local NAPCR1 genotype remained prevalent (n=18, 26%) and coexisted with 14 strains

(21%) of classic hospital NAP types (NAP2, NAP4, and NAP6), eight new genotypes (12%), four environmental strains classified

as NAP10 or NAP11 (6%), three strains without NAP designation (4%) and seven non-toxigenic strains (10%). All 68 strains

were resistant to ciprofloxacin, 88% were resistant to clindamycin and 50% were resistant to moxifloxacin and rifampicin.

Metronidazole and vancomycin susceptibilities were universal. The NAPCR1 and NAP9 strains, which have been associated with

more severe clinical infections, were more resistant to antibiotics than the other strains. Altogether, our results confirm that the

epidemiology of C. difficile infection is dynamic and that A−B+ strains from the NAP9 type are on the rise not only in the

developed world. Moreover, our results reveal that the local NAPCR1 strains still circulate in the country without causing

outbreaks but with equally high antibiotic-resistance rates and levels.
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INTRODUCTION

Clostridium difficile has become the leading cause of nosocomial
diarrhea in adults.1 Clinical manifestations of C. difficile infections
(CDI) vary from asymptomatic to fulminant colitis, including
pseudomembranous colitis (PMC) or antibiotic-associated diarrhea.
There may be complications, such as toxic megacolon, colonic
perforation and a few extraintestinal manifestations.2

Most disease-causing isolates of C. difficile produce one or two
toxins, i.e., TcdA and TcdB. These toxins enter intestinal epithelial
cells and glycosylate various families of cytoplasmic GTPases,3 which
leads to actin depolymerization with the loss of internal cell
architecture, apoptosis, villus destruction and a mucosal inflammatory
response.4,5 The genes encoding toxins A and B (tcdA and tcdB) are
part of a so-called pathogenicity locus (PaLoc), which also includes
tcdR (a sigma factor that promotes the transcription of both of the
toxin genes), tcdE (a potential holin) and tcdC (a potential negative
regulator of tcdA and tcdB).6 Although deletions in tcdC have been
claimed to favor TcdA and TcdB hypersecretion,7 this conjecture

remains controversial because, as Cartman et al.8 demonstrated, these
deletions have little effect in significantly increasing toxin production.
Furthermore, variations in the combined repetitive oligopeptide
domain of TcdB have been associated with increases in the virulence
of epidemic strains.9 A minority of toxigenic C. difficile strains also
produce a third toxin, known as binary toxin Clostridium difficile toxin
(CDT), that is encoded by cdtA and cdtB at the CdtLoc locus and
is separated from the PaLoc.10 CDT is composed of an ADP-
ribosyltransferase that blocks actin polymerization and a binding
component that is involved in toxin delivery.11 Although it is believed
that CDT affects the cytoskeleton and enhances the adhesion and
colonization of C. difficile,10 its role in CDI remains controversial.12

Various methods have been used to type C. difficile strains.
While pulsed-field gel electrophoresis (PFGE) is predominantly used
in North America, ribotyping by PCR is most often used in Europe.
PFGE NAP1 strains correspond to ribotype 027 and harbor toxin A,
toxin B, CDT, a 18-bp mutation in tcdC and a point mutation
in this gene at position 117. In contrast, most TcdA-negative and
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TcdB-positive isolates belong to NAP9 and correspond to PCR
ribotype 017.13

The effects, severity, complications, recurrence and even death rate
of CDI have increased since 2003 in accordance with the increased
isolation rates of hypervirulent strains, such as NAP1 and NAP9.14,15

The NAP1 strains have been associated with higher sporulation
rates and greater resistance to antimicrobials, especially fluoro-
quinolones,14,16 whereas the NAP9 strains possess a TcdB that is
capable of exerting a variant cytopathic effect.17

During a C. difficile outbreak in a major Costa Rican hospital in
2009, the hypervirulent NAP1 strain (45%) and the NAPCR1 strains
(31%) were the predominant genotypes. Both types of strains were
resistant to ciprofloxacin, moxifloxacin and levofloxacin, and the
NAPCR1 strains were also resistant to clindamycin and rifampicin.
NAP9 and the other seven classical nosocomial strains were present
but in minor proportions.18,19 Since this outbreak, the distribution of
C. difficile genotypes in other Costa Rican hospitals has not been
reported. To determine whether the NAP1 and NAPCR1 genotypes
were dominant in a non-pediatric hospital over a two-year period
without C. difficile outbreaks, 68 isolates from diarrheic patients were
genotyped using PFGE and the antimicrobial susceptibilities of the
isolates were tested. This information contributes to an understanding
of CDI epidemiology worldwide and has the potential to guide local
prevention efforts and treatment strategies.

MATERIALS AND METHODS

Isolates and bacteriological procedures
This study included 68 C. difficile isolates that were obtained from the
diarrheal stools of non-pediatric patients who were admitted to a
major hospital in Costa Rica with 633 beds between October 2010 and
August 2012. All patients had been identified as having hospital-
acquired CDI according to the criteria from the Infectious Diseases
Society of America.20 Toxins A and B were detected in the stool
samples by the hospital's clinical laboratory, and the samples with
positive results were inoculated onto cefoxitin–cycloserine fructose
agar plates (CCFA, Oxoid, Hampshire, UK). Yellow colonies on CCFA
were cryopreserved at − 80 °C in brain–heart infusion broth with 20%
glycerol and sent to the Laboratory of Research in Anaerobic
Bacteriology at the University of Costa Rica for further analysis and
identification. There, the strains were subcultured in selective
C. difficile moxalactam norfloxacin medium (Oxoid) and later on
Brucella agar plates (BD Diagnostics, Franklin Lakes, NJ, USA)
supplemented with 5% lysed horse blood (Oxoid) and 1 μg/mL
vitamin K (Sigma-Aldrich, St. Louis, MO, USA) and (blood agar
vitamin K) under an atmosphere composed of 90% N2, 5% H2 and
5% CO2 in an anaerobic chamber (Bactron II; ShellLab, Cornelius,
OR, USA) at 37 °C for 48 h. The identities of the isolates were
phenotypically confirmed using selective media, the rapID 32A system
(bioMériuex, Marcy-l'Étoile, France) and chartreuse fluorescence on
blood agar vitamin K under long-wave ultraviolet light and genoty-
pically confirmed through PCR-based detection of the C. difficile
marker tpi and molecular typing by PFGE.21

Molecular typing
Genomic DNA from each strain was obtained from overnight cultures
in brain–heart infusion broth (Oxoid) using the InstaGene reagent
(Bio-Rad, Hercules, CA, USA). Fragments of tcdA, tcdB, cdtB and tcdC
were amplified by PCR using known primers and conditions.21

A NAP1/027 strain (tcdA+, tcdB+, 18 bp-deletion in tcdC, cdtB+), a
NAP7 strain (tcdA+, tcdB+, tcdC deletion418 pb, cdtB+), an A−B+

strain (tcdA−, tcdB+, wild-type tcdC, cdtB−) and the non-toxigenic

C. difficile strain ATCC 700057 (tcdA−, tcdB−, tcdC−, cdtB−) were used
as controls.
For the PFGE typing, we obtained chromosomal SmaI macrores-

triction patterns with a published method19 and a CHEF-DRIII
variable angle system. Gel pictures were analyzed with BioNumerics
v4.6 (Applied Maths, Austin, TX, USA) and compared with the
databases of the National Microbiology Laboratory of Public Health
Agency of Canada.

Antibiotic susceptibility testing
The minimum inhibitory concentrations (MIC) for clindamycin,
ciprofloxacin, moxifloxacin, rifampicin, metronidazole and vancomy-
cin were determined using E-test strips (AB bioMérieux, Askim,
Sweden) and Brucella agar plates containing 5% blood, 1 μg/mL
vitamin K and 5 μg/mL hemin according to established guidelines.22

For susceptibility categorization, we used the resistance breakpoints
recommended by the CLSI;23 i.e., 8 μg/mL for clindamycin, cipro-
floxacin and moxifloxacin and 32 μg/mL for metronidazole. For
rifampicin and vancomycin, we adopted the breakpoints recom-
mended in the document M100-S21 for Staphylococcus aureus because
no values have been defined for anaerobic bacteria; these values were
4 μg/mL for rifampicin and 16 μg/mL for vancomycin.

RESULTS

No outbreaks were reported from October 2010 to August 2012 in the
hospital under study (Figure 1). Our genotyping procedure revealed
that 28 isolates were positive for tcdA and tcdB, negative for cdtB and
carried wild-type tcdC; these results were expected for classic hospital
strains. Eighteen isolates exhibited the characteristic NAPCR1 pattern
(i.e., tcdA+, tcdB+, cdtB− and tcdC with a deletion), 14 exhibited the A
−B+ strain pattern (i.e., tcdA−, tcdB+, cdtB− and wild-type tcdC) and 1
isolate exhibited all 3 toxins and a deletion in tcdC. Seven isolates were
non-toxigenic (Table 1).
Although we observed a variety of genotypes (Figure 2 and Table 1),

the local NAPCR1 genotype predominated (n= 18, 26%). The NAP9
genotype was the second-most prevalent genotype (n= 14, 21%),
followed by the 14 isolates (21%) from the other traditional hospital
pulsotypes of NAP2 (n= 2), NAP4 (n= 9), and NAP6 (n= 3).
Environment- or community-associated pulsotypes, such as NAP10
and NAP11, were observed (n= 4, 6%) as were new pulsotypes (n= 8,
12%) and known pulsotypes with no NAP designations (100, 196 and
178; n= 3, 4%). Interestingly, no NAP1 strains were detected.
Antimicrobial susceptibility tests revealed that 88% of the isolates

were resistant to clindamycin with very high MICs (4256 μg/mL,

Figure 1 Epidemic curves for the stool samples that were positive
for C. difficile (CD) toxins and were collected in a major hospital in Costa
Rica from 2010 to 2012. The cases were diagnosed based on clinical
evidence and toxin detection.
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Table 2). Half of the isolates were resistant to moxifloxacin and
rifampicin (MIC 432 μg/mL; Table 2). The MICs for metronidazole
and vancomycin were rather low, and although all isolates were
susceptible to both antibiotics, the MIC90 values were twice the MIC50

values (Table 2).
All isolates from the two most common genotypes (i.e., NAPCR1

and NAP9) were resistant to clindamycin, moxifloxacin and rifampi-
cin (Table 1). Among all of the clindamycin-resistant strains, only
those from the NAPCR1 and NAP9 genotypes exhibited MICs
4256 μg/mL. The remaining hospital, community and non-
toxigenic isolates and the strains from the new genotypes exhibited
low antibiotic-resistance levels (Table 1).

DISCUSSION

We detected a predominance of C. difficile NAPCR1 and NAP9 strains
in the diarrheal stool samples of patients admitted to a hospital in
which no C. difficile outbreaks had occurred during the period under
study. This knowledge is relevant from the clinical perspective because
both genotypes have been associated with more severe cases of
CDI.19,24,25

NAPCR1 strains have circulated in various Costa Rican hospitals
since 2003 (López-Ureña D et al., 2003, unpublished data) and have
had major roles in the 2009 C. difficile outbreak in the San Juan de
Dios Hospital.18 Here, we found NAPCR1 strains quite frequently in a

group of clinical isolates from another hospital and confirmed the
widespread distribution of these strains and their dominance even in
the absence of outbreaks. Moreover, the identification of NAPCR1
PFGE types reveals the ongoing evolution of this lineage and this
species over a short time.
The worldwide prevalence of clinically significant NAP9 strains

seems to be increasing,26 particularly in Asian countries.27 Our results
reinforce this view because this genotype was the second-most
prevalent group. Many studies have found these strains in
humans24,28 and in animals.29 NAP9 strains have been found once
in Costa Rica18 and in Latin America,27 where they seem to be
gradually replacing other circulating genotypes. As observed in many
countries,30,31 our A−B+ strains were homogeneous, did not carry
cdtAB, and harbored intact tcdC alleles. In contrast, in Australia, the
tcdA−, tcdB+ strains are cdtB+.13 Furthermore, because our NAP9
strains were clindamycin-resistant, they may share a clonal origin with
the strains that caused epidemics in Canada, the Netherlands, Ireland
and Poland.13 We now know that these strains belong to the RT017
group (data not shown), but further studies are being performed to
confirm that their sequence type is indeed ST37 or ST86.32

Although NAP1 strains were previously isolated during a C. difficile
outbreak at another Costa Rican hospital, we only found a single tcdA+,
tcdB+ and cdtB+ strain with a tcdC deletion in this study. This strain
did not give rise to the 001 macrorestriction pattern associated with
NAP1 in our previous reports18,19 but rather exhibited a PFGE pattern
without a NAP designation (i.e., a 0196 macrorestriction pattern).
Other NAP strains coexisted including common inhabitants of
hospital environments, such as NAP2, NAP4 and NAP6 strains,33

and NAP10 and NAP11 strains with potential zoonotic or community
origins.34

Despite the marked increase in the recovery of clindamycin-
resistant anaerobic strains in Costa Rica in the last decade,35,36 this
antibiotic is still the first-choice antibiotic for infections by anaerobic
bacteria in Costa Rica and other geographic areas.37 The alarming
clindamycin resistance level of C. difficile observed in this study (88%)
is slightly lower than the level recorded during a 2009 outbreak at
another major hospital (97%)18 but is still much higher than the
values reported from other latitudes.38,39 Almost half of the strains, all
of which belonged to genotypes NAPCR1 and NAP9, had MICs
4256 μg/mL, whereas the remaining strains had MICs= 8 μg/mL.
These findings indicate that only certain lineages acquire highly
efficient mechanisms of resistance to clindamycin.
Fluoroquinolone resistance is increasing in epidemic strains of

C. difficile primarily due to the emergence of chromosomal mutations

Figure 2 Pulse field gel electrophoresis results of representative C. difficile
genotypes that were isolated between October 2010 and August 2012 from
a hospital without a history of outbreaks during the period under study.

Table 1 Antibiotic resistances of various Clostridium difficile genotypes recovered between October 2010 and August 2012 at a hospital

without a history of outbreaks during the period under study

Resistance (% isolates)

Genotype Number of isolates(%) Clindamycin Ciprofloxacin Moxifloxacin Rifampicin Metronidazole Vancomycin

NAPCR1/012 18 (26%) 100 100 100 100 0 0

NAP9/017 14 (21%) 100 100 100 100 0 0

NAP2, NAP4, NAP6 14 (21%) 93 100 7 0 0 0

NAP10, NAP11 4 (6%) 75 100 0 0 0 0

New genotypes 8 (12%) 88 100 12 8 0 0

No NAP designationa 3 (4%) 25 100 25 25 0 0

Non-toxigenic 7 (10%) 71 100 0 0 0 0

aIncludes SmaI patterns 100, 196 and 178.
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in DNA gyrase genes.38–40 As described in 2010, all strains from this
study were resistant to ciprofloxacin with MICs ⩾ 32 μg/mL.18

Moreover, half of the isolates were resistant to moxifloxacin. All of
the NAPCR1 and NAP9 strains were resistant to both quinolones.
Older fluoroquinolones, such as ciprofloxacin, exhibited moderate or
poor activity against C. difficile, and the third- and fourth-generation
fluoroquinolones, such as moxifloxacin, were effective against these
bacteria. However, recent studies indicate that the rates of resistance to
moxifloxacin in C. difficile have increased dramatically in different
countries.41–43

Resistance to rifampicin is not unusual in C. difficile (6%–39%),
especially in multidrug-resistant strains.44,45 The reported MIC values
of ⩽ 0.002 μg/mL for susceptible strains and 432 μg/mL for resistant
strains largely match our findings.44,46 Up to 50% of our strains
were rifampicin-resistant, particularly those from the NAPCR1 and
NAP9 genotypes, which were also resistant to clindamycin, ciproflox-
acin and moxifloxacin. Interestingly, all of the isolates that were
resistant to moxifloxacin were also rifampicin-resistant, and this
association should be explored further.
The antibiotic-resistance levels of the less abundant genotypes were

rather low, but they supported the previously reported increased
resistance to fluoroquinolone of non-epidemic C. difficile strains40

and the ciprofloxacin resistance that is present in virtually all strains of
C. difficile.
All of the isolates were susceptible to metronidazole and vancomy-

cin. In agreement with the known metronidazole MIC of C. difficile,20

our MICs were invariably o2.0 μg/mL. However, a gradual change in
the pattern of sensitivity to this antibiotic might be occurring within
our strains because the MIC90 for metronidazole was twice the MIC50.
A similar situation might be occurring in terms of their vancomycin
susceptibility because 12 strains (18%), six of which were classified as
NAPCR1, exhibited reduced vancomycin susceptibility with MICs
⩾ 2 μg/mL. These data strongly support the presence of continuous
monitoring programs both in clinics and the community.
In this study, a local genotype of C. difficile was the most prevalent

strain in a set of 68 isolates that were recovered in a hospital over a
2-year period without outbreaks. This genotype has previously been
found to be dominant in another hospital during an outbreak. The
second-most prevalent genotype was NAP9, which is in line with its
increased prevalence in the USA,31 Europe,24,31 Asia25 and Australia.13

The NAPCR1 and NAP9 genotypes exhibited high levels of antibiotic
resistance, which reflects the use of antibiotics to which the strains
have developed resistance and the association between CDIs and
increased antibiotic use. The high levels of resistance to several
antibiotics among the predominant genotypes could favor their

persistence in the hospital environments and dominance over other
genotypes. Constant characterization of circulating C. difficile isolates
in terms of their population structures and antibiotic resistances not
only improves our understanding of the epidemiology of CDI but also
guides sanitary authorities and physicians in efforts to reduce the
burden associated with this emerging pathogen.
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