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Abstract

The transport capacity of a contractile segment of lymphatic vessel is defined by its pump function 

curve relating mean flow-rate and adverse pressure difference. Numerous system characteristics 

affect curve shape and the magnitude of the generated flow-rates and pressures. Some cannot be 

varied experimentally, but their separate and interacting effects can be systematically revealed 

numerically. This paper explores variations in the rate of change of active tension and the form of 

the relation between active tension and muscle length, factors not known from experiment to 

functional precision. Whether the pump function curve bends toward or away from the origin 

depends partly on the curvature of the passive pressure-diameter relation near zero transmural 

pressure, but rather more on the form of the relation between active tension and muscle length. A 

pump function curve bending away from the origin defines a well-performing pump by maximum 

steady output power. This behaviour is favoured by a length/active-tension relationship which 

sustains tension at smaller lengths. Such a relationship also favours high peak mechanical 

efficiency, defined as output power divided by the input power obtained from the lymphangion 

diameter changes and active-tension time-course. The results highlight the need to pin down 

experimentally the form of the active tension/length relationship.
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1 Introduction

The lymphatic system scavenges water and protein from the body‘s interstitial spaces, 

returning them to the circulation at the subclavian veins. In the process it also collects 

foreign matter (particles, bacteria, viruses) which is brought into intimate contact with 
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immune cells in lymph nodes. The lymphatic vessels of the gut have a specialised role in 

nutrient uptake.

The lymphatic vascular system consists of nonmuscular initial lymphatics where lymph is 

admitted via endothelial primary valves, and muscular collecting lymphatics. Collecting 

vessels consist of a series of lymphangions, contractile segments of vessel bounded by one-

way valves. Thus each lymphangion is a pump. Analysis of intrinsic1 lymphatic pumping 

begins by examining individual lymphangions, proceeding from there to networked 

structures. The clinical importance of achieving better understanding of lymphatic pumping 

rests primarily with the role of impaired pumping in lymphoedema. Impairment can arise 

from surgical interruption of the lymphatic conduit network or from radiation-induced 

lymphatic muscle dysfunction, but measurements of maximal pumping pressure show that 

there is also a wide range of pumping ability in normal volunteers [1].

The steady-state performance of any type of pump can be characterised by a single curve 

relating the mean flow-rate Ǭ through the pump to the adverse pressure difference ΔP which 

the pump is overcoming. Generally, Ǭ depends inversely on ΔP; thus, considering only 

positive flow-rates and outlet pressures higher than inlet, the pump function is expressed by 

a curve of negative slope intersecting the Ǭ and ΔP axes. One intersection describes the 

adverse pressure difference which is just sufficient to stop the mean flow; the other describes 

the maximum possible flow-rate which would be achieved in the absence of all load on the 

pump, i.e. equal inlet and outlet pressures. Possible shapes corresponding to qualitatively 

different pumping abilities are shown in Figure 1.

Drake et al. [2] attributed a curve which bent inward toward the origin of Ǭ−ΔP coordinates 

to the onset at high vessel distension of active pumping, in a bed which had previously 

yielded lymph by extrinsic mechanisms alone (intermittent passive compression of 

lymphatic vessels from lung inflation and deflation). They attributed one which bent 

outward, away from the origin, to a Starling-resistor effect, i.e. the collapse of lymphatic 

vessels at low transmural pressure (Δptm = internal pressure pm minus external pressure pe). 

They also showed theoretically [3] that the parallel combination of two systems of lymph 

vessels would yield a curve bending inward toward the origin.

However there are many other possible influences. Given biological variability and the 

difficulty of the experiments, the subject of what and how many factors affect the shape of 

pump function curves is not readily explored empirically, but additional light can be shed 

through analysis of theoretical models [4–5]. The numerical model of two lymphangions in 

series by Venugopal et al. [4] displayed a perfectly linear relation between Ǭ and ΔP. 

Bertram et al. [5] introduced an asymmetrically sigmoidal dependence of lymphangion 

diameter D on transmural pressure Δptm, which led to pump function curves which almost 

everywhere bent away from the origin, i.e. were concave as viewed from the origin. The Ǭ
−ΔP relation was shown to depend on the lymphangion transmural pressure, the offset from 

zero of the trans-valvular pressure difference at which valves changed state, the sharpness of 

the valve resistance-change function, and the two scale parameters of the passive pressure-

1There is also extrinsic pumping, whereby lymph transport occurs through the passive squeezing of lymphangions by adjacent tissue.
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diameter relation. The Ǭ−ΔP relation rose to higher values of ΔP when the number of 

lymphangions (and valves) increased, and higher values of both ΔP and Ǭ when the 

magnitude of the peak active tension increased.

Our model has since been developed to include (1) valves with switching hysteresis and 

Δptm-dependent bias to the open state [6], (2) a refractory period between contractions, (3) 

non-sinusoidal waveforms of activation, (4) the length-dependence2 of active tension 

developed during contractions, and (5) parameter values tailored more closely to those 

measured in experiments on isolated lymphatic vessels of 100–250 μm diameter from rat 

mesentery. We therefore revisit the concept of the pump function curve and report on how 

some of these changes affect the curves, with particular reference to the question of whether 

the curves bend toward or away from the origin. As shown in Fig. 1, this has consequences 

for the maximum power which can be developed by a pump working within limits on 

maximum Ǭ and ΔP which are likely to be set by fixed physiological properties. In 

pathological situations, these properties may change so as to diminish maximum Ǭ and ΔP, 

or may combine with other facets of pumping so as to depress maximum power while 

preserving maximum Ǭ and ΔP. Maximum power relates directly to the lymphatic intrinsic 

pumping reserve which is the mechanism of last resort to prevent interstitial swelling [7].

2 Methods

2.1 Description of the model

The equations of the single-lymphangion model are unchanged from Bertram et al. [8]; in 

brief,

(1)

(2)

(3)

where i is valve number, D(t) is diameter, t is time, Q(t) is flow-rate (through a valve), L is 

lymphangion length, p1(t) / pm(t) / p2(t) is the pressure at the upstream end/midpoint/

2Length here means circumference. With lymphangions assumed to remain circular, circumference is proportional to diameter. If 
collapse occurs, ‘diameter’ then has the sense of hydraulic diameter and retains the same relation to circumference. Thus a single 
relation between active tension and instantaneous diameter is added.
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downstream end of the lymphangion, μ is lymph viscosity, RV(ΔpV) is the function 

describing valve resistance, ΔpV is the trans-valvular pressure drop, RVn is minimum valve 

resistance, RVn + RVx is maximum valve resistance, Δpo(Δptmv) is the pressure drop 

threshold for switching, Δptmv is valve transmural pressure3, so is a constant determining the 

slope of RV(ΔpV) at ΔpV = Δpo, pe is external pressure, pa (= p02) is inlet reservoir pressure, 

pb (= p21) is outlet reservoir pressure, fp(D) is the curvilinear passive relation between pm − 

pe and D, and fa(D, t) is the time-varying curve describing the contribution of active tension 

to the relation between pm − pe and D. See Table 1 for the default values of constants in eqs. 

1–3.

The passive and active Δptm−D relationships, and the valve-switching arrangements, are 

described in sections 2.2 to 2.4.

2.2 Passive Δptm−D relation

Our model has evolved through three forms of passive Δptm−D relation, fp(D). The first was 

used by Bertram et al. [5] and in most results presented by Jamalian et al. [10]. A second, 

improved form (changing from negative to positive curvature at exactly Δptm = 0 and D/Dd = 

1) was used for fig. 6 of Jamalian et al. [10]4. A third form subsequently adopted [8] and 

used here was fitted to measured data of Δptm vs. D from Davis et al. [6]. All three are 

normalised by the pressure and diameter scaling parameters Pd and Dd respectively (Pd sets 

the local passive stiffness; Dd sets the size of the unpressurized and relaxed lymphangion). 

In practice the third form has always been used with quite different values of Pd and Dd from 

the other two, as part of a revision of parameter values to correspond with physiological 

data. It is shown in Fig. 2 (see section 2.4).

2.3 Valve properties

Bertram et al. [5] and Jamalian et al. [10] modelled normal lymphatic valve function with a 

fixed logistic curve2 relating valve resistance nonlinearly to the trans-valvular pressure 

difference ΔpV. All results presented here use a more complex model [8–9], which 

incorporates the experimental findings of Davis et al. [6]5 as regards lymphatic valve 

hysteresis and transmural-pressure-dependent bias to the open state, to control the 

instantaneous value of the switching threshold Δpo between open and closed states.

2.4 Length-tension relation

Maximum active muscular tension is a function of muscle length. This dependence was 

omitted in our original model [5]. There are relatively few data on the length-tension relation 

of lymphatic muscle [11–15]. Muscle length here relates to lymphatic diameter, and the 

available data for rat lymph vessels other than thoracic duct only span a range near the 

maximum diameter set by the passive elasticity. The mesenteric data [13] suggest that the 

contribution of active tension as a Δptm-term in the Δptm−D relation is maximal near where 

3Δptm has a specialised definition in the valvular context; see [9].
4Further results using the 2011 model, augmented with a refractory period between contractions and definition of a mid-lymphangion 
pressure, are archived on-line at http://arxiv.org/abs/1512.01269.
5Bertram et al. [8] showed that the closing data were almost certainly affected by an artefact relating to neglect of micropipette 
resistance, and applied a correction. This correction is also adopted here, giving rise to the parameter cfact.
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the passive vessel stiffness becomes very large; it must decline to zero at some lower 

diameter, but the data do not indicate how. We here investigate three continuously 

differentiable forms for the length/active-tension relation for contraction, as defined 

mathematically below. Form fM0 was used previously [8]. Form fM1 [16] employs extra 

constants to produce a quasi-linear increase of active tension with diameter, and form fM2 

maintains constant the active-tension contribution to pressure over most of the diameter 

range between D = Dd (the diameter where Δptm = 0) and the maximum possible diameter 

enforced by passive stiffness. A piece-wise linear (i.e. not continuously differentiable) 

active-stress/strain relation somewhat resembling form fM1 was employed by Reddy et al. 

[17].

The length-tension relation is a nonlinear function Md(D) relating circumferential active 

tension to diameter D, where, for fM0 as used in Bertram et al. [8],

(4)

and sd = cMs/Dd, Da = cMac9, Db = cMbc9, and c9 = 0.02598 cm is the passive-vessel 

diameter at 5 cmH2O; cMs = 3.25, cMa = 0.85, and cMb = 2. This double logistic function 

describes active tension rising smoothly from zero at small D to a peak plateau value M0, 

then falling smoothly back to zero at large D. Multiplied by a prescribed time-course 0 ≤ 

Mt(t) ≤ 1 and divided by D/2, the time-varying active tension forms the component fa (D,t) = 

2Mt (t)Md (D)/D with dimensions of pressure of the constitutive relation (eq. 3) for the 

lymphangion6.

The fM1 relation modifies Md(D) such that the part describing active tension increasing with 

diameter is closer to linear, while remaining continuously differentiable. The modified curve 

was achieved by inserting a straight line having the gradient of the logistic function midpoint 

and passing through that point, then shrinking the two halves of the logistic function to fit in 

the remaining space between the ends of the line and the function asymptotes. Two new 

parameters are needed, namely the offsets from the midpoint of each half of the logistic 

function. The total curve thus employs six parameters: the position and slope of the rising 

(Da = cMac9 and sda = cMsa/Dd) and falling (Db = cMbc9 and sdb = cMsb/Dd) logistic 

functions (as before—see Bertram et al. [8] for definition of c9 and Dd), plus the relative 

offsets yua and yda for the rising logistic function. These parameters take the values cMa = 

0.77, cMsa = 1.81, yda = 0.8, yua = 0.5, cMb = 2, cMsb = 3.25.

The fM2 relation multiplies the double logistic relation forming the outer parenthesis of eq. 4 

by D, then renormalizes the result to a maximum of 1 before multiplication by M0. Only the 

parameters of eq. 4 are needed, with new values cMa = 0.325; cMb = 1.25; cMs = 7.5. Figure 

2 compares the fM0, fM1 and fM2 forms of the length/active-tension relation.

6The fM0 relation was defined by Bertram et al. [8], but its illustration in fig. 9(b) of that paper contained an error: for proper 
comparison with the passive pressure-diameter relation, the legend should have read “2Md(D)/D, M0 = 250 dyn cm−1”.
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2.5 Rate of change of active tension

With the length-tension relation incorporated, active tension varies as M(D,t) = Md(D)

×Mt(t), where Mt(t) is a waveform of tension development and decay vs. time t; a somewhat 

similar product formulation was used in the model of Reddy et al. [17]. In our original 

model [5], Mt(t) was a continuous sinusoid, but contractions having the form [1 − 

cos(2πft)]/2 for 0 ≤ t ≤ 1/f are now separated by a refractory period tr. We examine herein 

the effects of varying the rate of change of active tension within a contraction of given 

duration. The rate of change is governed by an extra parameter m. The effects of tr and m on 

the Mt(t) waveform are shown in Figure 3.

2.6 Other parameters

The parameter values are summarised in Table 1, which also indicates the typical ranges of 

ΔP and Ǭ achieved in the resulting pump function curves. Each curve is the result of setting 

a number of values of ΔP = pb − pa (by varying pb) and computing for each the cycle-

average flow-rate Ǭ which results. In general parameter values based more closely on 

observed rat mesenteric lymphatic vessels [8] lead to higher pressures but (as a result of the 

smaller diameter) lower flow-rates than in our original model [5]. We here focus on a model 

of one lymphangion; the behaviour of multi-lymphangion models is dominated by effects 

relating to the presence of multiple valves [16].

It is helpful to compute the work done on the fluid by the lymphangion, as

(5)

The useful output work per cycle is Wout = ΔP Ǭ tcyc, where tcyc = 1/f + tr, and a mechanical 

efficiency of contraction can be defined as η = Wout/Win.

3 Results

As described above, the evolution of the model has led to a situation where a single 

lymphangion can overcome much more adverse pressure than eight in series in our earlier 

model. On the other hand, the incorporation of measured degrees of valve bias to the open 

state leads under some circumstances to much regurgitation loss before valve closure. Such 

losses affect Ǭ adversely, and thus overall pump function.

Increasing the diameter range over which significant contractile force could be sustained 

(forms fM1 and fM2) led to higher mean flow-rates over a wider range of ΔP (compare 

curves in Figure 4 sharing m-value). The rate-setting parameter m also increased pump 

performance importantly, in part due to the effects that sustained contraction had on valve 

operation. Consider initially the (blue) curve for fM2 and m = 1, i.e. a continuously 

sinusoidal time-course of contraction onset and decay. At the extremes of a pump curve, 

pump function can be abnormal for reasons associated with the valves. When ΔP = 0, there 

is no inlet/outlet adverse pressure difference to keep the valves closed, and they default to 

the open position except when a developing lymphangion contraction briefly causes 
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sufficient back-flow (and associated ΔpV) to close the inlet valve. There is regurgitation 

before closure, so the overall Ǭ in this case is less than when there is moderate ΔP. At ΔP = 

10 cmH2O, contraction is ineffective. The pressure in the lymphangion rises above then 

sinks below pb as D decreases then returns to its resting level, but never gets down to pa, so 

the inlet valve stays shut, no fluid is taken in during diastole, and there is simply sloshing 

flow through the open outlet valve in systole.

The pump function curves of Fig. 4 indicate that increased contractility leads to increases in 

output work. In the process, more input work is done by contraction per cycle (Figure 5), 

and the mechanical efficiency of contraction accordingly varies differently from either 

(Figure 6). Again, consider initially the blue curve in each of these figures. Significant input 

work is done even when the mechanical efficiency of contraction is zero at ΔP = 0, because 

there is intermittent flow through open valves offering a small but non-zero resistance. 

While Ǭ is maintained at or near its peak value, input work rises approximately linearly with 

ΔP. The efficiency continues to climb even when input work begins to fall at ΔP = 8 cmH2O. 

At ΔP = 10 cmH2O, there is minuscule input work; since Ǭ is finite and negative, the 

efficiency is numerically large and negative (not shown).

Consider now the full set of curves in Fig. 4. In the absence of a length/active-tension 

relation (see Supplement), the passive Δptm−D relation was found to exert great influence on 

the shape of the pump function curve. When there is a length/active-tension relation, its form 

(Fig. 2) plays a vital role. The extent to which active tension maintains a maximal 

contribution to transmural pressure as contraction reduces the diameter determines both 

pump curve shape and the maximum values of ΔP that can be overcome and Ǭ that can be 

attained (Fig. 4). Pump function can also be very significantly degraded by regurgitation 

prior to valve closure, because of the measured valve bias to the open state. This degradation 

can be limited by increasing the rate of contraction onset and decay, i.e. setting m = 2. With 

the fM0 relation, forward flow is prevented altogether by regurgitation unless the rate of 

contraction onset is thus increased. With the fM1 relation, the attainable values of both ΔP 
and Ǭ are doubled by such a rate increase.

Relative to the Md(D) relation fM2, the other two length/active-tension relations involve the 

muscle developing less active tension at most diameters. Consequently the input work is 

very much less with fM0 or fM1 (Fig. 5), but the mechanical efficiency of contraction is not 

greatly affected (Fig. 6). Conversely, the faster rate of onset and decay of active tension (m = 

2) acts to cut down the extent of regurgitation, and therefore improves the efficiency of 

conversion of input work into output work in the form of time-averaged flow-rate in the face 

of adverse pressure. However this is evident only with fM0 (where the ‘efficiency’ with m = 

1 is negative) and fM1. With fM2, the efficiency when m = 2 exceeds that when m = 1 only at 

ΔP = 9 cmH2O; at all other data-points where the efficiency is greater than zero, the Ǭ gain 

is less than the increase in input work.

The reasons why η is higher when m = 1 with fM2 for all ΔP < 9 cmH2O are quite complex, 

and illustrate well the interconnection of all the variables in the lymphangion model. The 

more leisurely onset of contraction allows regurgitation through the inlet valve (biased to 

remain open) to go on for longer before a sufficient rate of lymphangion volume reduction is 
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achieved to reach the valve closure threshold. With significantly more of the previous 

diastolic fill having been thus wasted, the subsequent isovolumic phase of contraction, 

before the outlet valve opens, occurs at a slightly lower diameter, and the next phase of 

contraction, when the outlet valve opens, also starts at a lower diameter. With everything 

happening on a slower time-scale, the instantaneous flow-rate out of the lymphangion at the 

time of reaching peak M(D,t) is approximately half that when m = 2, and so the excess of 

pressure over pb in the lymphangion at this time is correspondingly less. With less volume 

leaving the lymphangion per unit time, D(t) is now descending slower than at m = 2, and at 

the time of peak M(D,t) arrives at a value only very slightly less than at m = 2. However, the 

difference is sufficient, given the strong slope of the Md(D) relation, to cause the peak of 

M(D,t) to be significantly lower.

The apex of the contraction having passed, its decay begins, and with the outlet valve still 

open, regurgitation occurs back into the lymphangion, increasing its diameter. Eventually the 

outlet valve closes, but, with a longer period of regurgitation having occurred at m = 1, the 

subsequent isovolumic relaxation period occurs at a significantly higher diameter than at m 
= 2. Recall that the input work is set by the area of the loop of M(D,t) vs. D. The loop is now 

defined by lower D(t) during isovolumic contraction, lower peak M(D,t), and higher D(t) 
during isovolumic relaxation; all three factors reduce the loop area, and the input work is 

21% less than at m = 2. Owing to the increased regurgitation, Ǭ is also less, but only 15% 

less, with peak Q1(t) and peak Q2(t) both somewhat more than half of what was achieved at 

m = 2. With ΔP the same, output work is proportional to Ǭ, so the efficiency is higher at m = 

1.

4 Discussion

The unique and interesting biological pumping property of lymphatic vessel networks is not 

easily characterised experimentally, even at the level of a single lymphangion or vessel. 

Summarizing the main finding here, the shape of the pump function curve depends largely 

on the contribution of active tension to the constitutive relation between Δptm and D. In the 

absence of a length/active-tension relation, the constitutive relation linking time-varying 

transmural pressure and time-varying active tension is simply the passive Δptm−D curve. 

When a length/active-tension relation is added to the model, its effects on the overall relation 

between Δptm and D predominate.

In particular, whether the pump function curve bends inward toward the origin or outward 

depends on the curvature of the Δptm−D relation at D = Dd and at low Δptm > 0. A pump for 

which the function curve bends away from the origin develops much more power at mid-

level values of Ǭ and ΔP than one for which it bends toward the origin (Fig. 1). Put another 

way, the pump for which the function curve bends toward the origin develops only a modest 

maximum power, given the values of Ǭ and ΔP that it can attain at the extremes. Muscular 

lymphatic vessels are not necessarily set up to maximise power, but these considerations are 

appropriate to analysis of the lymphatic system‘s pumping capacity, which in turn bears on 

its ability to deliver physiological goals such as homeostasis in the face of unusually large 

fluid loading or (e.g.) pathologically increased capillary leakage. Similarly, the question of 
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mechanical efficiency of pumping bears on the metabolic energy usage of the system when 

transporting lymph by intrinsic pumping.

When an active-tension/length relation is included in the model, its effects dominate over 

those of the passive Δptm−D relation. Relative to small arteries and veins, the active-tension 

contribution to pressure scarcely declines before the passive curve reaches the point where 

further diameter increase becomes virtually impossible [13]. How active tension declines to 

zero at small length has not been defined experimentally for rat mesenteric lymphatics. The 

form fM2 (Fig. 2) provides a constant contribution to transmural pressure from active tension 

over much of the diameter range between D = Dd and where high vessel stiffness prevents 

further D-increase. With the overwhelming effect of length-dependent active tension thus 

removed, the influence of the passive Δptm−D relation is again seen. The form of the passive 

Δptm−D relation fitted to measured data of a lymphatic vessel [8] also displays negative 

curvature at D = Dd and at low Δptm > 0. Consequently, the combination of this form with 

fM2 again gives rise to pump function curves bending prominently away from the origin 

(Fig. 4). The rapid increase in stiffness (dΔptm/dD) at the right-hand side of the passive 

Δptm−D relation is shown by these results not to be necessary for obtaining Ǭ−ΔP curves 

which bend away from the origin.

Conversely, the pump curve no longer bends away from the origin when the length/active-

tension relation is fM0 or fM1; cf. Figs. 2 and 4. Under these circumstances, most of the 

pump function curve is fairly linear; only at ΔP = 0 where valves tend to remain open do the 

curves depart notably from linearity.

As noted previously [8], the measured bias of the valves to staying open gives great 

importance in the model to the value of the open-valve resistance, which sets how much 

back-flow is needed to overcome the bias and close the valve. It also means that the efficacy 

of pumping acquires a strong dependence on the rate of change of active tension, as 

controlled by the parameter m (Figs. 4–6), because higher rates cause this back-flow to be 

achieved sooner. Were it not for the valve bias, m would be expected to have minimal 

importance, given the negligible fluid inertia in these tiny vessels. The lack of inertia means 

that there is no significant advantage in maintaining a contraction; in other model runs not 

shown here, we find only insignificant differences in output per cycle between runs with m = 

2 and f = 0.5 Hz and those with m = 1 and f = 1 Hz (i.e. the same rate of change of active 

tension but without the pause at maximal contraction). This finding of course presupposes a 

refractory period long enough that contractions are effectively isolated from each other; 

otherwise, considerations of incomplete diastolic filling may intervene.

Most experimental data from (e.g.) Davis et al. [6] concentrate on how the amplitude, etc., of 

contractions vary in response to (e.g.) slow variations in the controlled parameters such as 

inlet and outlet pressure. However, lymphangion diameter or pressure for a single 

contraction typically exhibits a short-lived systolic plateau, suggesting the possibility that 

peak activation is maintained for a short while before it decays. Based on these observations 

we have varied m between 1 and 2, spanning the likely range, and in the process usefully 

focusing on a variable that has not been accessed experimentally thus far.
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There are significant limitations involved in any experimental or modelling evaluation of 

lymphatic pumping function. The small dimensions involved (diameters, pressures, flow-

rates) present considerable experimental challenges. Consequently there are gaps in what is 

known, which can be filled in a model by means of analytical approximations. The lack of 

experimental characterisation of some parameters represents a continuing limitation on the 

applicability of our results. Furthermore, lymphatic contractions are myogenic in the sense 

that contraction is triggered by diastolic vessel distension [18], causing the frequency of 

contraction to depend on the distending pressure; this regulatory influence is absent from our 

model as reported herein.

The range of length/tension relations examined here numerically leads to wide variations in 

the predicted shape of the pump function curve (Fig. 4). Experimentally (see Figure 7), 

curves show a similarly wide range of shapes, from convex to concave toward the origin as 

in Fig. 1. Evidence from the experiments of Eisenhoffer et al. [20–21] offers support for 

simulated pump function curves that bend away from the origin (panels b and c). This may 

indicate that the fM2 form for the length/active-tension relation indeed emulates the real 

extent to which active tension is maintained down to D = Dd. Of all the factors involved in 

lymphangion pumping, the behaviour of active tension is the least well understood and 

characterised. The technique usually used to investigate it so far, namely, subtracting a 

passive Δptm−D relation from a contracted Δptm−D relation at corresponding diameters [13–
14], leaves much of the length/active-tension relation unexplored, since the contracted 

relation typically extends to much smaller diameters. Further experimental investigation is 

clearly needed, of this and of the extent to which the passive Δptm−D relation and the active 

contribution can vary between individual vessels.
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Highlights

• Contractile lymphatic vessels can be characterised by their pump function curve.

• Pump curve shape depends sensitively on the muscle length/tension relation.

• Active tension cannot be measured at all lengths as contracted/passive 

difference.
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Figure 1. 
Three theoretically possible shapes for a pump-function curve, each describing a different 

pump. Also shown are curves of constant power (the product of Ǭ and ΔP) which are tangent 

to the three pump-function curves at their respective points of maximum power. The 

maximum power increases from blue to red to green, although all three pumps work within 

the same limits of maximum Ǭ and ΔP.
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Figure 2. 
The three proposed forms for the variation of active tension with lymphangion diameter. (a) 

Normalised active tension, Md(D)/M0. (b) Active tension converted to its equivalent in 

transmural pressure contribution as 2Md(D)/D, for peak active tension M0 = 150 dyn/cm. It 

can thereby be directly compared with the passive Δptm−D relation (thin black curve) fitted 

to the data of Davis et al. [6]. The fM0 relation (shown in blue) was previously used [8] with 

M0 = 250 dyn/cm. The red curve has a higher maximum because the underlying normalised 

active tension peaks at a lower diameter.
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Figure 3. 
Waveforms of Mt(t) with a 1s refractory period and either a simple sinusoidal contraction (m 
= 1) or twice the rate of rise and fall (m = 2).
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Figure 4. 
Pump function curves for each of the three Md(D) relations of Fig. 3, combined with either 

of the two Mt(t) waveforms of Fig. 3.
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Figure 5. 
Work done by active tension on the fluid contents of the lymphangion per cycle of 

contraction, for each of the data points shown in the pump function curves of Fig. 4.
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Figure 6. 
The mechanical efficiency of contraction, for each of the data points shown in the pump 

function curves of Fig. 4 that yielded positive Ǭ.
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Figure 7. 
(a) Pump function for bovine mesenteric lymphatics in vitro [19]. (b) Pump function, one 

bovine mesenteric vessel [20]. Transmural pressure as indicated in the legend. (c) Pump 

function, three ovine prenodal popliteal vessels [21]. Inflow pressure as indicated in the 

legend.
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Table 1

Default parameter values, and the typical ranges of ΔP and Ǭ which result. The middle column gives values in 

the units which are commonly used in lymphatic vascular research; for those quantities which have units, the 

right-hand column gives their SI equivalents.

number of valves 2

lymphangion length, L (cm) 0.3 3×10−3

normalising diameter, c9 (cm) 0.02598 2.60×10−4

diameter at Δptm = 0, Dd (cm) 0.0084534 8.45×10−5

p-scale in Δptm−D relation, Pd (dyn cm−2) 732 73.2

peak active tension, M0 (dyn cm−1) 150 0.15

contraction waveform frequency, f (Hz) 0.5 0.5

Mt(t) rise/fall-rate multiplier, m 1 or 2

refractory period, tr (s) 1 1

valve state-change offset from ΔpV = 0 = f(valve state, Δptm)

valve-closure slope const., so (cm2 dyn−1) 0.4 4

min. valve resistance, RVn (dyn cm−5 s) 6×105 6×1010

Δ(valve resistance), RVx (dyn cm−5 s)7 1010 − RVn 1015 − RVn

valve-closure threshold factor, cfact [8] 0.221

lymph viscosity, μ (Poise) 0.01 10−3

default Δpae = pa − pe (dyn cm−2) 3924 (4 cmH2O) 392.4

typical maximum ΔP = pb − pa (dyn cm−2) 9810 (10 cmH2O) 981

typical maximum Ǭ (cm3 s−1) 2.78×10−5 (0.1 ml/hr) 2.78×10−11

7Maximum valve resistance RVn + RVx is thus 1010 dyn cm−5 s (1015 in SI units).
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