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Abstract

Type 1 diabetes (T1D) is an autoimmune disorder resulting from a self-destruction of pancreatic 

islet beta cells. The complete proteome of the human pancreas, where both the dysfunctional beta 

cells and their proximal environment co-exist, remains unknown. Here, we used TMT10-based 

isobaric labeling and multidimensional LC-MS/MS to quantitatively profile the differences 

between pancreatic head region tissues from T1D (N = 5) and healthy subjects (N = 5). Among the 

5357 (1% false discovery rate) confidently identified proteins, 145 showed statistically significant 

dysregulation between T1D and healthy subjects. The differentially expressed pancreatic proteome 

supports the growing notion of a potential role for exocrine pancreas involvement in T1D. This 

study also demonstrates the utility for this approach to analyze dysregulated proteins as a means to 

investigate islet biology, pancreatic pathology and T1D pathogenesis.
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1 INTRODUCTION

The autoimmune destruction of insulin-secreting pancreatic beta cells in the islets of 

Langerhans is a hallmark of type 1 diabetes (T1D). Although T1D is generally considered as 

a disease resulting from a complex interplay of genetic and environmental factors, its exact 

etiology remains unknown.[1, 2] Therefore, markers that foretell disease progression and 

facilitate understanding of the pathogenic mechanisms are of great need.[3] The pancreas is 

composed of both endocrine and exocrine tissues, and although the endocrine portion (i.e., 

the islets) only comprises 1-2% of the tissue mass, it is crucial in maintaining glucose 
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homeostasis through a delicate balance of insulin secreted from beta cells and glucagon from 

the alpha cells.[4, 5] Over the past few decades, the islets/beta cells have attracted the most 

attention in T1D research owing to their unique roles in insulin secretion and as the targets 

of autoimmune destruction . However, growing evidence indicates the potential roles of 

exocrine pancreas in T1D.[6-8] Indeed, recent observations in the exocrine pancreas from 

T1D patients demonstrate the abnormal propensity for exocrine insufficiency,[9] exocrine 

atrophy and smaller pancreas[8] as well as immunological aberrations such as 

autoantibodies against exocrine tissue,[10] complement activation,[11] and infiltration of 

neutrophils[12] and CD8 T-cells[7]. Therefore, in this respect, the identification of proteins 

that specifically change and/or undergo induction in the pancreas of T1D subjects may 

provide additional insights to better understand the pathogenic mechanisms that lead to this 

devastating disease.[6, 7]

Proteomics, or large-scale analysis of proteins, has been successfully applied to analyze 

human and other biological samples for the purpose of disease biomarker discovery.[13-15] 

In settings of T1D, many human biofluids including urine, serum, plasma, and saliva from 

patients have been analyzed using various proteomics techniques to discover potential 

markers of this disease.[16-19] In addition, due to the importance of islets and beta cells in 

T1D, both isolated human pancreatic islets and islet-derived cell lines have been cultured 

and widely used to uncover novel proteins involved in glucose regulation and other 

biological processes.[20-24] Those large scale proteomic studies have not only expanded our 

knowledge of proteins expressed in isolated human pancreatic islets and beta cells, but also 

provided an opportunity to uncover the potential mechanisms in the pathogenesis of 

diabetes. However, owing to the location and safe accessibility of the pancreas, limited tissue 

availability and ethical concerns related to obtaining samples of human origin,[25] there is 

no detailed, holistic proteomic survey of the T1D human pancreas, where both the 

dysfunctional islets and their environments co-exist.

In this work, we performed a comprehensive quantitative proteomic profiling of human 

pancreas using cadaveric pancreatic head region tissue samples obtained from 5 T1D and 5 

healthy subjects. By applying the TMT10-based isobaric labeling approach and 2D-LC-

MS/MS, we confidently identified a very comprehensive human pancreatic proteome. 

Dysregulation of proteins between T1D and healthy subjects suggests certain physiological 

pathways may be highly relevant to the pathology of the pancreas in subjects with this 

disease.

2 MATERIALS AND METHODS

2.1 Pancreatic tissues and patient information

Snap-frozen, cadaveric pancreatic head (PanHead) region tissues were obtained from the 

Network for Pancreatic Organ Donors with Diabetes (nPOD). Pancreas recovery and 

transport met transplant-grade criteria.[25] All tissue processing procedures were conducted 

by the nPOD Organ Processing and Pathology Core in accordance with federal guidelines 

for organ donation and the University of Florida Institutional Review Board (IRB).[25] The 

case identification number, disease condition, tissue integrity, patient clinical parameters, 

tissue histopathological scoring and serum immunological testing data provided by the 
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nPOD are listed in Table 1. In addition, all work reported here was approved by the IRB of 

the Pacific Northwest National Laboratory and the University of North Carolina at 

Greensboro.

2.2 Solvents and Chemicals

Common solvents were purchased from Sigma-Aldrich (St. Louis, MO). Phosphatase 

inhibitor cocktail 2 and 3 were also purchased from Sigma-Aldrich, and protease inhibitor 

cOmplete® from Roche Life Sciences. The TMT10plex reagent set was obtained from 

Thermo Scientific (Rockford, IL).

2.3 Sample preparation

Approximately 30 mg of tissue from each sample was pulverized, and homogenized in 500 

μL of lysis buffer (8M urea, 75 mM NaCl in 100mM NH4HCO3 pH 7.8, 10 mM NaF, 

phosphatase inhibitors cocktail 2 and 3, and protease inhibitor cOmplete® at manufacturer 

suggested concentrations). The samples were sonicated for 3 min in an ice water bath, and 

then incubated with 10 mM DTT at 37°C for 1hr. This procedure was then followed by 

alkylation with 20 mM iodoacetamide for 1hr at room temperature in the dark. The samples 

were further diluted two fold with 50 mM NH4HCO3, trypsin was added at a ratio of 1:50, 

and digestion carried out at 37°C for 4 hr with 1 mM CaCl2. A second step of trypsin 

digestion was performed overnight at room temperature after 4-fold dilution of the first 

digestion mixture with 50 mM NH4HCO3. The digestion mixture was acidified with TFA to 

pH 2-2.5 and desalting was performed according to the instructions of the standard SPE C18 

columns (Sigma-Aldrich). The peptides were concentrated in vacuum concentrator and 

measured by BCA assay (Thermo Scientific).

For isobaric labeling, 50 μg of peptides from each sample were labeled using the 

TMT10plex reagents as per the instructions of the manufacturer. The labeled peptides were 

pooled and fractionated on an Xbridge C18 analytical column (5 μm particles, 250 × 4.6mm) 

from Waters (Milford, MA) at flow rate of 0.5 mL min−1. Mobile phases were composed of 

10 mM NH4HCOO, pH 10 (A) and 10 mM NH4HCOO in 90% ACN, pH 10 (B). Sample 

separation was accomplished using the following linear gradient: from 0% to 5% B in 10 

min, from 5% to 35% B in 60 min, from 35% to 70% B in 15 min, and held at 70% B for an 

additional 10 min. Ninety six fractions were collected and further concatenated into 24 

fractions. Each of the final 24 fractions were dried down and reconstituted in 0.1% FA at a 

final concentration of 0.1 μg μL−1 for further LC-MS/MS analysis.

2.4 LC-MS/MS analysis

The chromatographic separation of peptides was performed on a 50 cm × 75 μm column in-

house packed with 3 μm Jupiter C18 particles from Phenomenex (Torrence, CA). Mobile 

phases for separation (A: 0.1% FA in water; B: 0.1% FA in ACN) were delivered by a 

nanoAcquity UPLC system (Waters). For analysis, 5.0 μL of each peptide sample was 

loaded onto the column and elution of peptides was carried out with a linear gradient of 40% 

B in 100 min. Eluted peptides were ionized by nano-electrospray and analyzed by a Q-

Exactive mass spectrometer (Thermo Scientific). MS/MS data were acquired in data 

dependent mode with one full MS scan (resolution 70,000 at m/z 200) followed by 10 
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MS/MS scans (resolution 35,000 at m/z 200). Other settings of the Q-Exactive used for 

analysis include: full MS AGC target of 3e6, MS/MS AGC target of 1e5, dynamic exclusion 

of 45s, mass isolation window of 2, and normalized collision energy of 30.

2.5 Data Analysis

The acquired datasets were analyzed by using MaxQuant (Version 1.5.2.8, http://

www.maxquant.org/) and the built-in Andromeda search engine with a UniProt human 

database (12/3/2014) containing 89,734 entries. The search parameters were as follows: 

variable modifications of protein N-terminal acetylation and methionine oxidation, and fixed 

modification of cysteine carbamidomethylation and TMT labeled N-terminus and lysine. 

The minimum peptide length was set to 7 amino acids and a maximum of 2 missed 

cleavages were allowed for the search. Trypsin/P was selected as the semi-specific 

proteolytic enzyme. The global false discovery rate (FDR) cut off used for both peptides and 

proteins was 0.01, and the precursor intensity fraction (PIF) was set as 0.75 to minimize 

influence of the co-eluting peptides in quantification.[26] To further improve the 

quantification accuracy, only the razor/unique peptides were used for quantitative 

calculations. The other parameters used were the default settings in MaxQuant software for 

processing orbitrap-type data.

2.6 Statistical Analysis

The resultant data matrix obtained after MaxQuant analysis was further analyzed by Perseus 

software (Version 1.5.1.6, http://141.61.102.17/perseus_doku/doku.php). Briefly, the data 

matrix was cleansed by removing the proteins only identified by site, reverse hits and 

potential contaminants (manually selected for contaminants with no protein names), then the 

protein intensities were log2–transformed and normalized before performing analysis using 

various builtin statistical functions of Perseus. A two sample t-test adapted from significance 

analysis of microarrays [27] was performed with S0 of 0.02 and a Benjamini-Hochberg FDR 

cut off of 0.05.

2.7 Gene Ontology (GO) Functional Annotation Analysis and Enrichment

For GO functional annotation analysis, the UniProt accession IDs from protein groups 

identified in the study were analyzed by the PANTHER (Protein Analysis Through 

Evolutionary Relationships) classification system.[28, 29] PANTHER version 10.0 (release 

date May 15, 2015) was used in this study, which includes 11,929 protein families with 

83,190 functionally distinct protein subfamilies. Homo Sapiens was chosen as the organism 

for GO annotations. GO terms that included biological processes (GOBP), cellular 

components (GOCC) and molecular function (GOMF) were used for annotation of 

significantly regulated proteins. The GO enrichment analysis was performed using DAVID 

Bioinformatics Resource 6.7.[30, 31] The 5,368 proteins identified in the pancreatic tissue 

were used as “background” for GO enrichment of significantly (t-test P value < 0.05) 

expressed proteins.

Liu et al. Page 4

Proteomics. Author manuscript; available in PMC 2017 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.maxquant.org/
http://www.maxquant.org/
http://141.61.102.17/perseus_doku/doku.php


3 RESULTS AND DISCUSSION

3.1 Comprehensive coverage of pancreatic tissue proteome was achieved for T1D and 
healthy subjects

PanHead tissues from 5 healthy and 5 T1D subjects were used in this study, with relatively 

good match of age, race and gender as shown in Table 1. A schematic representation of the 

experimental workflow including sample preparation and analysis is indicated in Figure 1. 

In total, 5368 (4720 and 3942 with at least 2 and 3 unique peptides, respectively) proteins 

were identified with high confidence (FDR settings for both peptide and protein levels 

<1%), after removing reverse hits and potential contaminants. This high confidence list of 

identified proteins is provided in Table S1 of supporting information. Among them, 5357 

(99.8%) proteins were commonly observed in all 10 samples, which showcased the high 

quality of our dataset. In comparison, an earlier study using two-dimensional gel 

electrophoresis and mass spectrometry identified 302 proteins for the whole human 

pancreas.[32] Using LC-MS/MS, Jin et al. identified 1100 proteins from human beta cell 

line RNAKT-15 with only 249 of which were commonly observed in their two iTRAQ 

(isobaric tags for relative and absolute quantification) experiments.[22] Using islets pooled 

from 21 donors, Schrimpe-Rutledge et al. identified 4594 proteins with at least two unique 

peptides using label free 2D-LC/MS/MS.[21] For pooled islets isolated from mice, 

Waanders et al. reported 6873 proteins; however, the protein identification was based on 

single unique peptide identifications with 5% FDR on peptide and 2.5% on protein level.[33] 

In contrast, the list of pancreatic tissue proteins in our study were observed in all 10 

individuals including both healthy and T1D subjects, without any missing values because of 

the application of TMT10-based isobaric labeling approach.

The PANTHER tool was utilized for functional classification of these proteins.[28, 29] As 

shown in Figure 2, 8126, 4867, and 2555 annotation hits, in total, were found in the GOBP 

(Figure 2A), GOMF (Figure 2B), and GOCC (Figure 2C), respectively. It is of note that 

one protein could involve in multiple biological processes and pathways and some proteins 

might not have the GO annotations available; therefore, different annotation hits were 

obtained in each category from the 5368 identified proteins. In the category of GOBP, more 

than 80% of the annotation hits relate to the metabolic process, cellular process, biological 

process, localization, cellular component organization or biogenesis, and developmental 

process (Figure 2A). The metabolic process is the dominant subfamily, which can be further 

classified into primary metabolic process, nitrogen compound metabolic process, phosphate-

containing compound metabolic process, and more. A majority (64.8%) of the metabolic 

process hits were primary metabolic process related (i.e., associated with protein, lipid, 

nucleobase-containing compound, and carbohydrate). In the category of GOMF, 

approximately 80% of the annotation hits are highly involved in the functions of catalytic 

activity, binding, and structural molecule activity (Figure 2B). In addition, more than 50% 

of the annotation hits in catalytic activity have hydrolase and transferase activity. On the 

other hand, for the classification results in the GOCC (Figure 2C), 40% of the annotation 

hits were related to cell components and within this category, 88% of the annotation hits 

were intracellular (data not shown). Overall, the functional classifications of the expressed 

proteome in pancreatic tissue indicate that the highly active enzymes and regulators are 
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involved in metabolic and cellular processes for maintaining the precise regulations in the 

digestive and endocrine systems.

3.2 Proteome data demonstrated consistency with databases of gene expression, human 
islet and pancreas proteome

The pancreas is a complex organ with the endocrine and exocrine components, of which 

only 1-2% of tissue mass is islets, with beta cells comprising of 50-80% of total islet cells.

[4, 5] Kutlu et al. reported in the Beta Cell Gene Atlas (BCGA) the basal (untreated) gene 

expression in primary beta cell, pancreatic islets, ductal cells, and exocrine pancreas,[34] 

which categorized gene expression into four levels including Enriched, Moderate, Low, and 

No expression. Our proteomic data was annotated against the BCGA database as shown in 

Table S1 of supporting information. When we define specific as a gene that is “Enriched” in 

one cell/tissue type while being “Moderate”, “Low” or “No expression” in all three other 

cell/tissues, there are 342, 85, 186 and 91 proteins specific for islets, beta cell, duct cell and 

exocrine pancreas, respectively. Despite the whole pancreas tissue homogenate being used in 

our study, we were able to identify the proteins expressed by islets and beta cells.

Of the 5368 proteins identified in the current study, 3782 (70.5%) were also identified in the 

previous human islets proteome study by Schrimpe-Rutledge et al.[21] Although 30% of the 

proteome was different between these two studies, it is of note that depth of proteomic 

profiling could be affected by many factors such as LC gradient, sample complexity, sample 

loading amount and MS instrument parameters and performance as well as database search 

issue, even in the case of identical samples. Nevertheless, very similar GO annotation results 

were observed between these two when we used PANTHER to analyze their listed proteins 

(Figure 2 vs Figure S2 of the supporting information). The similarity may be a result of 

acinar tissues (exocrine) still attached to some of the isolated islets used in their study; 

however, to our knowledge, this largely can be attributed to proteins commonly expressed in 

both islets and acinar tissue. On this note, results from Human Protein Atlas demonstrated 

that within the pancreas proteome, there is a large overlap (1998 proteins) between the 

pancreatic islet proteome (2142 proteins) and the proteome of the exocrine glandular cells of 

the pancreas (2486 proteins).[35]

Very recently, significant progress has been made in characterizing the complete human 

proteome. Uhlén et al. presented a tissue-based map of the human proteome using antibody-

profiling method.[35] Among the 37 pancreas enriched genes/proteins which have at least 

five-fold higher gene expressions in the pancreatic tissue as compared to all other tissues 

analyzed in their study, we identified 30 pancreas-enriched proteins as listed in Table S1 of 

the supporting information. On the other hand, Kim et al. published a draft map of the 

human proteome using mass spectrometry based approaches to analyze human tissues.[36] 

In their study, gel-based (SDS-PAGE) separation and high-pH RPLC fractionation (similar 

to our experiment) were implemented before label free LC-MS/MS analysis in order to 

provide the deepest coverage of pancreas proteome. In total, 48 LC-MS/MS raw files (24 in 

each type of fractionation) were generated for the pancreas proteome in their study. To 

minimize the variations derived from database searching, we re-analyzed their datasets using 

MaxQuant under the same search parameters as in this study, except only for protein 
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identification without enabling protein quantification. In total, 6584 proteins (5372 and 4284 

with at least 2 and 3 unique peptides, respectively) were identified. In comparison with our 

protein lists, 4637 protein families (86% coverage in our data) were identified in both studies 

(Table S1 and Figure S1 of supporting information). The greater number of proteins 

identified in their data likely is a result of 1) the additional benefits of gel-based 

fractionation and 2) the higher efficiency of label free conditions versus TMT-labeling in 

peptide identification.[37, 38] Overall, our data provided a comparable protein list in terms 

of protein number but with more accurate quantification results owing to the TMT-10plex 

labeling strategy used. Moreover, we applied the same criterion (at least five-fold higher 

expression in the pancreatic tissue as compared to all other tissues) to identify the pancreas-

enriched proteins from their data. In total, 129 proteins in their list satisfied the criterion as 

pancreas-enriched proteins, and we were able to identify 57 out of these 129 proteins (Table 
S1 of the supporting information).

3.3 Quantitative changes were identified in the pancreatic tissue proteome between T1D 
subjects and healthy controls

The samples used in this study were derived from organ donors, and time from recovery 

could cause proteome deterioration,[39] especially in the case of a protease-rich organ like 

the pancreas. Also, in the study of human samples there may be considerable amount of 

heterogeneity conferred due to varying disease duration, different donor ethnic origins and 

dissimilar disease etiologies. However, good correlation was found among the biological 

replicates of each respective group (healthy and T1D) and between the two groups, with an 

average sample to sample Pearson correlation coefficient of 0.96. This suggests that 

although the above-mentioned factors may contribute to a large variation among human 

biological samples, the majority of the proteins correlate well among biological replicates 

selected for our study. A multi-scatter plot demonstrating the correlation of all the samples is 

shown in Figure S3 of the supporting information. Because of the similarities on the whole 

proteome level, we investigated whether T1D patients can be differentiated from healthy 

controls. To this end, a principal component analysis (PCA) was implemented to visualize 

whether a clear separation between T1D and control groups could be achieved based on the 

intensities of the entire pancreatic proteome identified in each sample. As shown in Figure 
3, a well-separated gap between the two groups was observed with the first principal 

component accounting for 38.3% of the variance in the scores plot, this indicates that 

differentially expressed proteins do exist between T1D and healthy controls in PanHead 

tissue that may help us to better understand the pathogenesis of T1D.

For the 5357 proteins identified in all 10 samples, a two sample t-test analysis (Benjamini-

Hochberg FDR <0.05) between samples from T1D and healthy subjects identified 145 

proteins that exhibited statistically significant differences. It is of note that this t-test was 

adapted from significance analysis of microarrays to correct for the multiple testing 

problems in omics based statistical analysis,[27] in which a term of S0 is applied to take into 

account both the p value and the difference between group means. Among them, 77 and 68 

proteins were found to be down- and up-regulated in T1D samples, respectively. A Volcano 

plot indicating the t-test differences in the protein expression profiles of T1D samples in 

comparison to healthy control samples is shown in Figure 4. The list of differentially 
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expressed proteins was subjected to GO enrichment analysis using DAVID Bioinformatics 

Resource, and 29 significantly enriched GO categories were obtained as shown in Table S2 
of the supporting information. The enrichment results indicated that the functions were 

highly involved with DNA damage response, regulation of apoptosis by intracellular signals, 

regulation of hydrolase activity, cellular response to stress, and regulation of viral genome 

replication, among others. These indicate the pathological processes in T1D pancreata where 

beta cell death and the autoimmune response are dominant, and focusing on these 

differentially expressed proteins identified herein may help us to better understand the 

pathogenesis of T1D.

We also used PANTHER to classify the functions of dysregulated protein groups, and 220, 

120, and 76 annotation hits were found in the categories of GOBP (Figure 5A), GOMF 

(Figure 5B), and GOCC (Figure 5C), respectively. The subfamilies of metabolic and 

cellular processes in GOBP are major events. The similar distribution ratio of molecular 

functions is obtained between proteome profiling and differentially expressed proteins, and 

catalytic activity and binding are the top two subfamilies. In GOCC, cell part and organelle 

are also the top two subfamilies compared with the results of proteome profiling (Figure 2C 
vs Figure 5C), but interestingly, a relatively high proportion of extracellular region and 

matrix proteins were found to be differentially expressed. This difference might indicate the 

importance of the interactions between cells, or between ligands and receptors for the 

physiological variations between T1D and healthy controls.

In order to visualize whether those 145 differentially expressed proteins are able to clearly 

differentiate T1D patients from healthy controls (Figure 6A), an unsupervised hierarchical 

clustering was performed. In hierarchical clustering, relationships are represented by a tree 

whose branch lengths reflect the degree of similarity. Clearly, two distinct clusters were 

formed between the healthy subjects and T1D patients based on the intensities of 

differentially expressed proteins. In addition, we also applied GO analysis to classify the 

functions and biological processes for those 77 and 68 down- and up-regulated proteins, 

respectively (Figure 6B). While the categories of metabolic processes, biological regulation 

and response to stimulus were more dominant for the down-regulated proteins, proteins 

involved in immune system processes, multicellular organismal processes, biogenesis and 

localization were more often up-regulated.

3.4 Dysregulated proteins in T1D hold potential significance for disease pathology

All of the significant differentially expressed proteins between T1D and healthy controls are 

listed in Table S3 of supporting information. Based on this list, we further selected those 

proteins that were identified with at least three unique peptides and 2 fold changes. These 25 

proteins are listed in Table 2 and the potential correlation of these proteins with the 

pathogenesis of T1D is discussed herein.

3.4.1 Proteins related to immune response were differentially expressed in 
T1D and control pancreata—The inflammatory genes such as cyclooxygenase-2 

(COX-2) can be induced by RAGE ligand - S100b - a ligand for the receptor of advanced 

glycan end products in monocytes. Overexpression of Heterogeneous nuclear 
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ribonucleoprotein K (HNRNPK) increased S100b-induced COX-2 mRNA stability under 

diabetic stimuli.[40] HNRNPK has also been reported as a target of extracellular signal-

regulated kinase (ERK)-signaling in T-cell activation for IL-2 production, and gene 

knockdown of HNRNPK expression reduced the IL-2 production by T cells.[41] In addition, 

HNRNPK is an important protein for tumor cell viability, and reduced HNRNPK expression 

in tumor cells lowers their resistance against killing by cytotoxic lymphocytes.[42] In our 

study, a 4.2 fold up-regulation of HNRNPK with 84% sequence coverage was found in T1D 

patients. It has been shown in a murine model that a multiprotein complex (including 

receptor tyrosine kinase AXL, LDL receptor-related protein-1, and Ran-binding protein 9 

(RANBP9)) is involved in dendritic cell (DC) efferocytosis, and reduced function of this 

complex in DCs leads to apoptotic cell accumulation and decreased survival.[43] As a major 

component of this complex that is crucial for host defense against foreign attack, RANBP9 

is a down-regulated protein with 0.6 fold change and 2 unique peptides identified in our 

study. It is well recognized that proteins of the Syntaxin family play important roles in 

immune responses. Syntaxin-4 affects antibody secretion in human plasma cells;[44] 

Syntaxin-3 is involved in granule exocytosis and cytokine secretion in neutrophil 

granulocytes.[45] Very recently, Carmo et al. demonstrated that Syntaxin-17 is localized in 

the secretory granules of eosinophils, and might be involved in immune defense.[46] We 

identified up-regulation of three Syntaxin-related proteins including Syntaxin-12 (1.9 fold 

change), Syntaxin-binding protein 6 (2.1 fold change) and Syntaxin-17 (3.1 fold change) 

with at least 3 unique peptides (Table 2 and Table S3 of supporting information). Those 

differentially expressed proteins involved in immune responses support the notion that 

systemic immune impairment is regarded as one of the major physiological events in T1D 

pancreatic tissue.

3.4.2 Proteins related to virus infection were differentially expressed in T1D 
and control pancreata—HNRNPK also plays key roles in regulating viral replication, 

e.g., Hepatitis C virus (HCV),[47, 48] Hepatitis B virus,[49] Vesicular stomatitis virus,[50] 

Dengue virus type 2, and Junin virus.[51] Virus replication is greatly increased by host 

expression of HNRNPK. Interestingly, another major HNRNP protein, HNRNPM is also 

reported to facilitate the infection of enterovirus,[52] and we observed a 2.6 fold change for 

this protein in T1D cases. As one of the co-receptors for HCV infected hepatic cells, 

Claudin-1 (CDLN1) is required to regulate the diffusion of small molecules through tight 

junctions.[53] An isoform of CDLN1, CDLN3, was identified in our study with more than 6 

fold change and 16% sequence coverage; however, little is currently known about the 

functions of CDLN3. Additionally, conjugation of NEDD8 to Cullin 5 by UBE2F is required 

for HIV Vif-mediated degradation of the host restriction factor APOBEC3G.[54] We 

observed a down-regulation (0.4 fold change) of UBE2F in T1D tissues. HIV-1 tat 

interactive protein 2 (HTATIP2, or TIP30) involves in HIV-1 replication in which interaction 

of viral Tat protein with TIP30 affects transcription elongation by RNA polymerase II, and 

Xiao et al. demonstrated that coexpression of TIP30 enhances transactivation by Tat in 

transfected cells.[55] In our results, HTATIP2 is a significantly up-regulated protein in T1D 

subjects with 5.9 fold change and 14% sequence coverage.
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For some differentially expressed proteins that are not listed in Table 2, Yang et al. recently 

showed that certain inhibitors against Peptidyl-prolyl cis-trans isomerase A (PPIA or 

Cyclophilin A) were able to successfully obstruct the HCV replication and restore host 

immune responses.[56] PPIA is an up-regulated protein with 1.9 fold change and 11 unique 

peptides identified. In addition, Coiled-coil and C2 domain-containing protein 1A 

(CC2D1A) regulates the RIG-I-like (Retinoic acid-inducible gene I-like) receptors as an 

important RNA viral sensor in antiviral immunity. Chen et al. showed that knockdown 

CC2D1A expression diminishes cytokine production and antiviral responses.[57] CC2D1A 

is a down-regulated protein with 0.7 fold change and 11 unique peptides identified in our 

study. Altogether, these significantly dysregulated proteins involved in virus infection may 

suggest that this process is not an accidental event in the pathogenesis of T1D.

3.4.3 Proteins related to the ubiquitin proteasome system were differentially 
expressed in T1D and control pancreata—Protein ubiquitination is an important 

post-translational modification, and proteins modified by a special multi-ubiquitination 

linkage can further be degraded by the proteasome. E3 ubiquitin ligase is a key enzyme to 

tag target proteins that might affect normal cell metabolism. Cullin 4A is a core subunit of 

E3 ubiquitin ligase involved in proteasome-dependent degradation, abnormal expression 

(usually up-regulation) of Cullin 4A can lead to human diseases such as pituitary adenomas,

[58] and pleural mesothelioma.[59] We identified Cullin 4A with 3.5 fold change, and 

higher expression of degradation-related proteins might indicate the need to remove a large 

number of abnormal proteins generated by pathological tissue.

3.4.4 Proteins related to cell proliferation and apoptosis were differentially 
expressed in T1D and control pancreata—Recently, high over-expression of 

Tetraspanin-8 (TSPAN8) was reported in glioma cell migration and tumor cell progression.

[60, 61] Another report also indicated TSPAN8 is related to cell growth and invasion in 

gastric cancer.[62] TSPAN8 was up-regulated 3.1 fold in T1D tissue in our study. 

Alternatively, SPARC (Secreted protein, acidic and rich in cysteine) protein family has 

important functions in proliferation, differentiation, apoptosis, regulation of extracellular 

matrix remodeling, and other biological processes.[63] Down-regulation of SPARCL1, a 

member of SPARC family matricellular protein, is widely observed in various tumor-related 

diseases such as human prostate cancer,[64] glioma,[65] and pancreatic cancer.[63, 66] 

Hurley et al. reported that down-regulated SPARCL1 affects the migratory and invasive 

properties of prostate cancer cells via the actions of Ras homolog gene family member C, a 

mediator of metastatic progression.[64] In our study, down-regulated SPARCL1 was 

identified with 4 unique peptides and 0.2 fold change in T1D tissues. In addition, we also 

identified one Ras-related protein in our list of differentially expressed proteins - RAB1A 

(20 unique peptides, 1.9 fold change) as up-regulated in T1D patients (Table S3 of 

supporting information). Although there is no direct evidence published to date establishing 

the relationship between Ras-mediated SPARCL1 and T1D, our data suggests a potential 

role for SPARCL1 in T1D pathology.
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3.5 Insulin was down-regulated while glucagon and somatostatin were abundant in T1D 
pancreata

Despite the complexity of the cell structure of pancreas and the low population of the 

endocrine cells, we successfully identified insulin (INS), glucagon (GCG) and somatostatin 

(SST) in both the T1D and healthy control samples. While the levels of glucagon and 

somatostatin, secreted by alpha and delta cells in islets,[5] respectively, didn't have 

statistically significant differences, insulin is 1.8 fold down-regulated in T1D compared with 

controls (p-value = 0.033). The relatively unusual abundance of insulin in T1D subjects 

might be due to residual beta cells that still exist in these patients, as indicated by the histo-

pathological measurements conducted by nPOD which demonstrate that insulin and 

glucagon positive islets exist in these T1D cases, although with reduced numbers (Table 1).

Considering the different cell types that exist in the whole pancreas, and that majority of 

these cell types do not exhibit distinct change between T1D and healthy pancreata, we 

adopted a median centering global normalization strategy in this study, i.e. the median 

expression value of each sample is subtracted from the raw data of all the proteins for the 

sample. We also explored the option of normalization based on cell type composition, 

particularly for pancreatic beta cells (<1% of pancreas mass) as it is known that the number 

of beta cells is significantly reduced in T1D subjects. However, the heterogeneity of beta cell 

distribution makes it unfeasible to get an accurate count of the beta cell population in 

PanHead sections; therefore, high variability is associated with this type of normalization, 

which is further compounded by the smaller size of pancreas and smaller islets observed in 

T1D patients.[8]

3.6 Cadaveric pancreatic tissue presents unique challenges in the study of T1D 
pathogenesis

Due to the scarcity of sample availability, proteomic studies of human pancreas in T1D 

subjects are very limited. In addition, the tissue sample quality could be a concern given the 

interval between the time of death and the processing of organs cannot be rigorously 

controlled in human subjects. In this respect, the quality of samples used for proteomic 

analysis has attracted considerable attention and discussion.[67-69] The effects of ischemic 

events on the total proteome and phosphoproteome [70] as well as tyrosine 

phosphoproteome [71] in tumor tissue samples have been evaluated, which showed that the 

total proteome remains largely unchanged, but the phosphoproteome expressions were 

significantly affected by ischemic events during the sample preparation.[70, 71] In order to 

overcome/minimize these challenges and provide the highest possible quality of human 

pancreatic tissues for T1D research, the nPOD biobank implemented standard operation 

procedures for receiving and processing of cadaveric pancreatic tissues,[25] which greatly 

minimized the possible processing variations between samples. However, despite the best 

efforts in the organ donation process, the postmortem interval cannot be well controlled. In 

this respect, RNA integrity number (RIN) was used as a surrogate to evaluate the integrity of 

tissues used in our study.[72] All samples except one have relatively good RIN (>3.5). The 

good correlation (average correlation efficient = 0.96) between samples indicated by the 

Pearson correlation plots, even for the one with poor RIN, and the high number (5357) of 

protein identifications across all of the samples clearly demonstrates that the flash frozen 
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tissues stored in the nPOD biobank are amiable for global proteomic analysis to determine 

the dysregulation of proteins within the pancreas in the development of T1D.

3.7 Access to more pancreatic tissue samples is needed to validate significantly 
dysregulated proteins as T1D biomarkers

Although this study is aimed at proteomic profiling of the differences between the pancreatic 

tissues between the T1D and healthy controls, a list of significantly changed proteins were 

identified from this sample size-limited study after very stringent statistical data analysis. 

However, a rigorous validation study is needed to assess the utilities of these proteins as 

biomarkers to T1D. Validation of protein biomarkers lies in two stages: 1) using a different, 

higher throughput instrument platform (targeted MRM-MS or immunoassays) to verify the 

candidate markers in the same samples; and 2) validating the markers in large scale, 

independent sample cohorts.[73, 74] In terms of quantification precision, MRM-MS based 

targeted analysis is similar (<10% standard deviation) to iTRAQ or TMT based-isobaric 

labeling global analysis.[75] It is widely recognized that isobaric labeling approach can be 

more accurate than label free approach in quantitative proteomics, with quantification 

precision standard deviation <10% in labeled approach while it is typically 30% for label 

free.[75] Even for verification of label free discovery data, in general 80% of the candidate 

markers identified in the discovery stage can be verified using MRM-MS in the same 

samples. For examples, 48 peptides were verified by Whiteaker et al. from a candidate 

marker list of 60 peptides using the same samples of breast cancer tissues;[76] this is also 

true in our own work, where 40 candidate peptides for T1D were verified out of 52 using the 

same human plasma samples.[18] Therefore, a good validation of candidate proteins 

requires access to large scale, independent samples. However, it currently remains a 

challenge due to the limited supply of human pancreatic tissues for research. With the 

establishment of the nPOD biobank[25] and the community wide support in pancreatic 

tissue procurement and distribution, it is anticipated that more cadaveric pancreatic tissue 

samples will become available in the future.

4 CONCLUDING REMARKS

Using a TMT10-based isobaric labeling global proteomics approach coupled with extensive 

peptide level fractionation, we identified and quantified 5357 proteins in the pancreas of 

T1D and healthy control subjects. This comprehensive human pancreas proteome could 

serve as a resource to the pancreas biology and T1D research community. The dysregulated 

proteins between T1D and healthy subjects are consistent with the reported literature for 

beta cell destruction and the pathological processes that are thought to occur in the T1D 

pancreas. The differentially expressed proteome also provides an opportunity to reveal the 

potential roles of exocrine pancreas in T1D.[6-12] Several proteins with statistically 

significant fold changes and multiple unique peptides discussed in this study provide 

potential targets for exploration of their roles in T1D. Once validated in a larger cohort of 

pancreatic samples and further in the biofluid samples, these proteins could be useful as 

markers to T1D pathology and may identify potential pathways for therapeutic targeting 

aimed at disease prevention/cure.
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FDR false discovery rate

PIF precursor intensity fraction

GO Gene Ontology

PANTHER Protein Analysis Through Evolutionary Relationships
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GOCC Gene Ontology cellular components

GOMF Gene Ontology molecular function
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ERK extracellular signal-regulated kinase

RANBP9 Ran-binding protein 9
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HCV Hepatitis C virus

CDLN1 Claudin-1

PPIA Peptidyl-prolyl cis-trans isomerase A
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HTATIP2 HIV-1 tat interactive protein 2

CC2D1A Coiled-coil and C2 domain-containing protein 1A

RIG-I-like Retinoic acid-inducible gene I-like

TSPAN8 Tetraspanin-8

SPARC Secreted protein, acidic and rich in cysteine

INS insulin

GCG glucagon

SST somatostatin

RIN RNA integrity number
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Significance of the Study

This is the most comprehensive study of human pancreatic tissue protein expression 

changes between T1D and healthy organ donors. Dysregulated proteins related to 

immune response, viral infection and cell apoptosis were identified in our study, which 

suggests these physiological pathways may be highly relevant to the pathology of 

pancreas in subjects with this disease. Our data supports the growing notion of a role for 

exocrine pancreas involvment in T1D. It also demonstrated that the flash frozen 

pancreatic tissues obtained from cadaveric organ donors are amiable for global proteomic 

analysis to better understand the pathogenesis of T1D.
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Figure 1. 
Schematic representation of experimental work flow.
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Figure 2. Gene Ontology (GO) functional classification for pancreatic tissue proteome
In total, 5357 UniProt accession IDs from 5357 protein groups identified in the study were 

analyzed by PANTHER software, and 8126, 4867, and 2555 annotation hits were found in 

the categories of biological process (A), molecular function (B), and cellular component (C), 

respectively. The numbers after comma indicate the hit number in each subcategory.
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Figure 3. Principal component analysis of pancreatic tissue samples of Type 1 diabetes (T1D) 
and healthy subjects
All 5357 quantified proteins were used in the analysis. The blue and red filled squares 

represent healthy controls (HC) and T1D patients, respectively.
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Figure 4. Volcano plot for visualization of expression profiles of quantified proteins
The plot indicates – log p values versus the difference of mean (log2 scale) for all 5357 

quantified proteins in T1D group compared with healthy subject samples. The threshold 

criteria (FDR < 0.01, S0 = 0.02) were applied. Gene names of proteins with a significant p 
value and large fold change are selectively labeled.
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Figure 5. GO functional classification for significantly expressed protein groups between T1D 
and healthy controls
In total, 145 UniProt accession IDs from 145 protein groups with significant expression 

were analyzed by PANTHER software, and 220, 120, and 76 annotation hits were found in 

the categories of biological process (A), molecular function (B), and cellular component (C), 

respectively.
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Figure 6. Protein expression profiles of Type 1 diabetes and healthy pancreas samples
(A) Un-supervised hierarchical clustering analysis (B) Profile plot for up- and down-

regulation groups between Type 1 diabetes and healthy pancreas samples. The protein 

abundances (after Z-score normalization) are denoted by the abundances of their constituent 

peptides. Only two sample t-test (Benjamini-Hochberg based FDR <0.05) significant 

proteins were used for clustering. Each type-1 diabetes and healthy subjects sample is 

indicated by a column and the rows indicate the constituent protein groups within each 

sample. T1D and HC denote Type 1 diabetes and healthy control, respectively. GO analysis 

was applied to classify the functions in biological process for those 77 and 68 down- and up-

regulated proteins, respectively.
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