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Abstract

There are large differences between the cellular environment and the conditions widely used to
study RNA /n vitro. SHAPE RNA structure probing in Escherichia coli cells has shown that the
cellular environment stabilizes both long-range and local tertiary interactions in the adenine
riboswitch aptamer domain. Synthetic crowding agents are widely used to understand the forces
that stabilize RNA structure and in efforts to recapitulate the cellular environment under simplified
experimental conditions. Here, we studied the structure and ligand binding ability of the adenine
riboswitch in the presence of the macromolecular crowding agent, polyethylene glycol (PEG).
Ethylene glycol and low molecular mass PEGs destabilized RNA structure and caused the
riboswitch to sample secondary structures different from those observed in simple buffered
solutions or in cells. In the presence of larger PEGs, longer range loop-loop interactions were
more similar to those in cells than in buffer alone, consistent with prior work showing that larger
PEGs stabilize compact RNA states. Ligand affinity was weakened by low mass PEGs, but
increased with high mass PEGs, indicating that PEG cosolvents exert complex chemical and steric
effects on RNA structure. Regardless of polymer size, however, nucleotide-resolution structural
characteristics observed in cells were not recapitulated in PEG solutions. Our results reveal that
the cellular environment is difficult to recapitulate /n vitro; mimicking the cellular state will likely
require a combination of crowding agents and other chemical species.
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INTRODUCTION

RNAs function in the complex cellular environment where macromolecules reach
concentrations of 300 g/L and occupy at least 30% of the total volume.1 The cellular
environment also contains metabolites, small ions, and polyamines, many of which have the
potential to affect RNA folding and ligand binding.z‘4 Most studies of RNA structure and
function have been carried out in simple buffered solutions; however, extensive recent work
demonstrates that RNA stability,5‘10 structure,svgvn‘18 and dynami(:57v10v11v14 in simple
buffered solutions can differ substantially from that formed both in the presence of
macromolecular crowding agents, such as polyethylene glycol (PEG),7‘11'14 and in the

complex environment inside cells.™

The two broadest effects of macromolecular crowding, whether in cells or in vitro, are steric
. . . 19 20 . .

repulsion, which favors compaction of macromolecules,” "~ and nonspecific chemical

. . . . . 2123 oo . . .

interactions, which can be attractive or repulsive. Repulsive interactions reinforce steric

effects, whereas attractive charge-charge interactions favor less compact species. The effects

of crowding on proteins have been studied extensively and recently reviewed.2*-%°

Effects on RNA are now receiving substantial interest, especially studies of RNA folding
and structure in the presence of crowding agents /n |/itr07‘11v14 and in cells.lzil?’vls‘18 In
general, crowded conditions, either in vitro or in cells, tend to stabilize RNA secondary and
tertiary structures but the effects of other features, especially those associated with function,
are more variable. High concentrations of synthetic polymers tend to stabilize the formation
of compact RNA states, accelerate folding, and promote RNA-mediated activities including
catalysis. Steric repulsion is undoubtedly a major component of the influence of the cellular
environment on RNA structure but is not the only one. The extent to which macromolecular
crowding — as imposed by synthetic cosolvents — recapitulates the cellular environment is
not well understood.

We recently used single-nucleotide resolution selective 2’-hydroxyl acylation analyzed by
primer extension (SHAPE) probing to interrogate the structure of the add A riboswitch
aptamer domain RNA in healthy, growing £. coli cells with 2-min time resolution.13 This
RNA forms a three-helix junction stabilized by both long-range loop-loop interactions and
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by a network of interactions in the three-helix junction and ligand-binding pocket (Figure 1).
The conformation of the free add A riboswitch aptamer domain in £. colicells is different
from, and more highly structured than, the conformation in buffer at physiological (~1 mM)
Mg?* concentrations. Increasing the Mg2* concentration to high levels (30 mM) did not
recapitulate the structure observed in cells. In contrast, the cellular environment had almost
no effect on the structure of the ligand-bound aptamer,13 which was organized and compact
both in cells and under simplified /n vitro conditions, in agreement with high resolution
structures.27w28 These in-cell studies provided an initial indication that it may be difficult to
mimic the cellular environment using simplified conditions, especially with respect to
biologically important, partially folded (in this case, unliganded) RNA structures.

Here, we investigate the effects of the widely used macromolecular crowding agent
polyethylene glycol (PEG) and its monomer ethylene glycol (EG) on the structure of the
adenine riboswitch aptamer domain in the context of a tRNA scaffold (Figure 1). We found
that high molecular mass PEGs stabilize interactions involving long-range loop-loop
interactions in the RNA but do not significantly affect local interactions in the three-helix
junction or the ligand-binding cleft. Low molecular mass PEGs destabilized or partially
denatured the RNA, consistent with attractive interactions between the cosolvent and the
RNA. PEG did not induce the riboswitch RNA to adopt a structure that fully mimics the
structure that predominates in the cellular environment.

EXPERIMENTAL PROCEDURES

RNA construct and in vitro folding

The adenine riboswitch aptamer domain RNA was expressed in £E. coliin the context of a
tRNA cassette, in which the riboswitch RNA was inserted into the tRNA anticodon stem
(Figure 1). The aptamer construct was purified by anion exchange, fast performance liquid
chromatography as described.™ The purified aptamer RNA construct was folded by
incubation in folding buffer [50 mM HEPES (pH 8.0), 200 mM potassium acetate (pH 8.0),
and 1 mM MgCl,] for 30 min at 37 °C. If included, EG (Fisher Scientific, MA) or PEG
(Sigma Aldrich, MO) was then added, and incubation was continued for 20 min.

Equilibrium dissociation constants

Ligand dissociation constants were measured by the ability of the riboswitch RNA to quench
2-aminopurine (2AP) fluorescence upon adding RNA to a fixed concentration of 2AP#
Samples (50 pL) were prepared in folding buffer with aptamer concentrations from 0 to 3
UM, containing 0 or 100 g/L. EG or PEG and 40 nM 2AP. Fluorescence intensities were
measured in a 40 pL cuvette at 25 °C in a Varian Cary Eclipse fluorimeter. Data were
acquired from 330 nm to 450 nm with excitation at 300 nm. The emission was integrated
and fit to a single-site binding equation:>* /= (1 — &) [RNA] / Kp app + [RNA]), where
dFis the change in fluorescence intensity, £ is the intensity in the absence of RNA, a (< 1.0)
is proportional to the ratio of quantum yields of the 2AP-RNA complex and free 2AP, and
Kp,app is the apparent dissociation constant.
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SHAPE probing

The purified aptamer was folded and incubated with EG or PEG as described above. For
SHAPE analysis of the ligand-bound aptamer, 2AP (1 mM) was added after folding, and
incubation was continued for 10 min. The aptamer construct (8 pmol) was then added to
1/50 volume 300 mM 1-methyl-7-nitroisatoic anhydride (1M7) in DMSO or neat DMSO.
The samples were incubated at 37 °C for 3 min. RNA was precipitated with ethanol, washed
three times with 70% (vol/vol) aqueous ethanol, and resuspended in 15 pL deionized H20.30
SHAPE adducts were detected by primer extension, resolved by capillary electrophoresis.13
SHAPE reactivities were quantified using QuShape.31 SHAPE reactivities are reported as
the mean of replicate experiments; per-nucleotide variation was typically within £10%. Full
datasets are provided in the Supporting Information.

RESULTS
RNA Affinity for 2-Aminopurine

The apparent equilibrium dissociation constant, Kp app, of the complex between the aptamer
and 2-aminopurine (2AP) was determined by analysis of fluorescence quenching of 2AP as
a function of aptamer concentration. Experiments were performed in 200 mM potassium
acetate and 1 mM MgCls; this is the approximate Mg?* concentration in £, colicells (0.8

+ 0.2 mM) as directly measured previou'sly.13 The Kp app for the aptamer-2AP complex in
simple buffered solution was 48 £ 5 nM (Figure 2). This value is modestly tighter than that
measured for the free riboswitch (120 nM),32 likely reflecting a stabilizing effect of the
tRNA cassette.

We next performed binding experiments in the presence of ethylene glycol (EG, 62 Da;
Figure 2A) and PEGs with mean molecular masses of 200, 400, 1000, 3350, 8000 and 12000
Da. Measurements of binding affinities as a function of crowder were carried out using 100
g/L solutions of EG or a given PEG. The apparent binding affinities showed a polymer size-
dependent trend (Figure 2B). In the presence of EG or low molecular mass PEGs, the
affinity of the aptamer for 2AP decreased by three-fold compared to the affinity in buffer
alone. This effect was diminished with increasing PEG size such that in 12000 Da PEG the
affinity was =2-fold higher than in buffer (Figure 2B).

These ligand-binding studies suggested that the effects of PEG on the structure of the
riboswitch RNA are complex and, importantly, that PEG might destabilize RNA in a way
that affects ligand binding. The inhibition of binding by low molecular mass PEGs is
consistent with a chemical effect that weakens RNA-ligand interactions. In contrast, higher
molecular mass PEGs restore or even modestly enhance ligand affinity relative to
experiments performed in the absence of cosolvent, consistent with stabilization of more
compact forms of the RNA.

Effect of PEG on Ligand-Free Riboswitch RNA

We used nucleotide-resolution SHAPE to probe the nucleotide-resolution aptamer RNA
structure in the presence of low (62 Da EG), medium (3350 Da PEG), and high (12000 and
35000 Da PEG) molecular mass crowding agents in buffer containing 1 mM Mg?*. SHAPE
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has been extensively benchmarked against RNAs of known structure, including as a function
of Mg?* concentration and in the presence of ligands containing hydroxyl groups and
amines™: in the presence of high concentrations of proteins and Iipids34v35 and inside £. coli
cells.lg'ﬂv18 These studies strongly support the view that the intrinsic reactivity of the 1IM7
SHAPE reagent is insensitive to the solution components present during probing because
any 1M7-reactive molecule would have to out-compete reaction with water (at >40 M even
under the most crowded conditions) to have a substantial impact. Individual reactivity
profiles were normalized using an approach that assumes that a few nucleotides in every
RNA are highly dynamic and thus reactive by SHAPE.*®® In-cell reactivities (Figures 3A,
3B, 3C) were taken from previous work, where a ligand-free form of the riboswitch was
shown to predominate in cells in the absence of added 2AP.13 SHAPE reactivity profiles are
shown both as histograms (Figures 3A, 3B) and superimposed in color on secondary
structure models (Figures 3C-E).

In buffer, the RNA formed a state in which the three major helices were stably folded but in
which nearly all nucleotides in the loop and joining regions showed medium and high
SHAPE reactivities and were thus unstructured (Figures 3A, 3B, 3D). Addition of EG
yielded a SHAPE reactivity pattern that differed strongly from that observed either in buffer
alone or in cellsls.(Figure 3E). In EG, nucleotides in the P1 and P3 helices were reactive,
whereas some nucleotides in each of the L2, L3, J1-2 and J2-3 loops were unreactive. The
reactivity of the P1 helix in the presence of EG is especially striking given that the RNA is
linked to the (presumably stabilizing) tRNA scaffold. These observations suggest that EG
causes the RNA to sample conformations that are quite different from the native structure.

When the aptamer structure was probed in the presence of 12000 and 35000 Da PEGs,
nucleotides in each of the three primary helices were unreactive, with the exception of a few
nucleotides at helix termini, indicating stable formation of these helices (Figures 3B and
3E). In addition, multiple nucleotides in the L2 and L3 loops showed low SHAPE
reactivities (implying increased structure), roughly similar to the in-cell state (Figure 3). In
particular, nucleotides G37 and G38, which form base pairs with C60 and C61, and the 3'
AA sequence in L3, which forms an extended network of tertiary interactions with L2 in the
high resolution structure,28 were either less reactive or unreactive in the presence of the high
molecular mass PEGs (Figure 3E). In clear contrast however, nucleotides in the J2-3 and
J3-1 joining segments remained reactive in the presence of the high molecular mass
cosolvents. These reactivity patterns support the interpretation that the L2 and L3 loops do
interact stably but that the J2-3 and J3-1 regions do not adopt in-cell-like structures in the
presence of high mass PEGs. With 3350 Da PEG, the RNA showed features intermediate
between those observed in EG (62 Da) and high mass PEGs. Nucleotides in P1 were
reactive, suggesting partial destabilization, whereas the pattern of reactivity in the L2 and L3
loops resembled that of the in-cell state (Figure 3E).

To further quantify the effects of PEG, we calculated correlation coefficients (/) comparing
in-cell SHAPE reactivities with those measured /7 vitro in the presence of PEG cosolvents
(Figure 4). Correlation coefficients were calculated over the loop, joining, and terminal base-
paired nucleotide positions because SHAPE reactivities at these nucleotides are specifically
diagnostic of higher-order RNA folding in the adenine riboswitch RNA (Figures 1 & 3). For
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the ligand-free RNA, the correlation between the in-cell reactivities and reactivities in
aqueous buffer was 0.6 (Figure 4A, open symbol). Upon adding EG, the correlation with in-
cell reactivities was much lower at 0.1. Structural correlation between in-cell reactivities and
those determined /n vitro increased with PEG molecular mass. The correlation between in-
cell reactivities and reactivities in 35,000 Da PEG reached 0.8 (Figure 4A, solid symbols).
The lower correlation largely reflects the substantial structural differences measured for the
J2-3 and J3-1 regions. Taken together with the nucleotide-resolution SHAPE reactivities
(Figure 3), this analysis supports a model in which 12,000 and 35,000 Da PEGs promote net
formation of native-like long-range tertiary interactions between the L2 and L3 loops.
However, the high mass PEGs do not stabilize native structure in the region of the three-
helix junction to the same extent. EG largely destabilizes the RNA structure, and the 3350
Da PEG induces a conformation roughly intermediate between these two extremes.

Effect of PEG on the Ligand-Bound Aptamer State

Finally, we used SHAPE probing to examine the effect of EG or PEG cosolvent in the
presence of saturating concentrations of the 2AP ligand. SHAPE reactivities in the presence
of 3350, 12000, and 35000 Da PEGs were essentially identical and were highly similar to
reactivities in the ligand-bound states in buffer and in cells (Figures 5 and S1). The
correlation coefficients relating the in-cell state with 12000 and 35000 Da PEG were 0.9
(Figure 4B). In contrast, the SHAPE profile in EG was very different from the other ligand-
bound states. The correlation coefficient relating in-cell and EG SHAPE reactivities was 0.4
(Figure 4B) and nucleotide reactivities in the P1 and P2 helices and in the L2 loop were
higher in EG than those observed in cells (Figure 5). These data emphasize that binding by
the 2AP ligand strongly promotes formation of the fully folded state such that higher
molecular mass PEGs no longer significantly affect the final (largely folded) RNA structure.
However, interactions between the riboswitch RNA and EG remain strong enough to disrupt
native RNA folding.

DISCUSSION

The structure of the adenine riboswitch aptamer domain RNA is significantly stabilized in
the crowded intracellular environment relative to its structure in simple buffered solutions,13
emphasizing that it is important to consider the contributions of the cellular environment
when exploring RNA structure and function. We initiated this work with the goal of
identifying /n vitro solution conditions that might do a good job of mimicking the in-cell
structure of this RNA. The net result of these efforts, however, has been to accomplish the
opposite: to show that the cellular environment is difficult to mimic with PEG, the most
commonly employed macromolecular crowding agent.7 11,14,37.39

The effects on ligand binding affinity and riboswitch RNA structure depended on the
molecular mass of PEG, and were much more important for the ligand-unbound state. EG
decreased ligand-binding affinity by 3-fold relative to the affinity in the absence of cosolvent
(Figure 2) and disrupted both the free and ligand-bound aptamer structures (Figures 3 and
5), consistent with work showing that EG destabilizes RNA structure.” These observations
suggest that relatively strong attractive interactions between cosolvent and RNA destabilize
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ligand binding and folding. Similar interactions have been observed between PEG and
DNA.37'38 In the presence of PEGs of increasing size, binding affinity increased to surpass
the affinity in buffer alone by >2-fold (Figure 2). The RNA also became more highly
structured and interactions between the L2 and L3 loops were at least partially formed in the
presence of high molecular mass PEG (Figures 3 and 4).13 Taken together, these data
suggest that steric repulsion is enhanced by increasing crowder size, as has been observed
with both RNA and DNA,8v9v38 and that PEG may partially pre-organize RNA structure
leading to increased ligand affinity.

However, despite these notable stabilizing effects on a subset of interactions, especially in
the L2 and L3 loops, and increased overall correlations in SHAPE reactivities between the
PEG and in-cell data, high concentrations of EG or any PEG did not result in formation of
an RNA structure equivalent to that visualized in cells. Specifically, the J2-3, and J3-1
strands that comprise the ligand-binding pocket and form other tertiary interactions
remained reactive by SHAPE, and thus relatively unstructured, even in the presence of high
mass PEGs (Figure 3). These differences presumably reflect the large differences between
PEG and the intracellular environment. For example, PEG forms a random coil or a random-
flight chain in solution,‘w'41 but the cytoplasm primarily contains globular macromolecules
and relatively stiff nucleic acids.24v42 In addition, although PEG interacts with nucleic
acids,37'38 only a small subset of potential in-cell chemical interactions are available to the
methylene, ether, and hydroxyl groups in PEG.

In general, the cellular environment has a strongly structuring effect on the ligand-free
aptamer RNA relative to that of an aqueous buffer with roughly physiological ion
concentrations (Figures 6A and 6B). In cells, the free RNA samples a state that shares some
structural similarity with the ligand-bound state. High molecular mass PEGs appear to
specifically stabilize the L2 and L3 loop regions. This effect is sufficiently strong that PEG
resulted in a conformation in the L2 and L3 loops that was moderately less reactive by
SHAPE (and thus more structured) than that in cells (Figure 6C, blue backbone). In contrast,
in PEG, binding pocket regions of the ligand-free aptamer (J2-3 and J3-1) remained reactive
by SHAPE (Figure 6C, red backbone). The physical basis for these differences likely
reflects, first, that chemical interactions with PEG cosolvents destabilize some structures,
interactions that are most clearly seen with EG and 3350 Da PEG (Figures 2-4) Second, the
steric repulsive effect contributed by a random-flight PEG chain may be better at stabilizing
longer-range RNA-RNA interactions, as occur between the L2 and L3 loops, than more
localized interactions such as those in the RNA three-helix junction of the aptamer (Figure
6).

In sum, both chemical interactions and steric repulsion appear to contribute to the effects of
PEG on the aptamer RNA structure studied here. The chemical effects that destabilize RNA
structure are partially overcome in the presence of high molecular mass PEGs. The high
mass PEG crowders induced the aptamer RNA to adopt a more compact state that correlated
better with the conformation in cells™ than did the conformation in buffer alone.
Nevertheless, SHAPE reactivities for the ligand-free riboswitch RNA obtained under
crowding conditions /n vitro were distinct from the in-cell RNA structure (Figure 6). These
results emphasize that the cellular environment — which contains diverse macromolecules,
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ions, and ligands — has an effect on RNA structure that is not readily recapitulated by PEG
cosolvents and remains difficult to simulate /n vitro.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.

Secondary structure models of the ligand-free (left) and ligand-bound (right) add adenine
riboswitch aptamer domain. The aptamer RNA (backbone in dark blue) was expressed and
analyzed imbedded within a tRNA scaffold.13
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Figure2.
RNA-ligand affinities. (A) RNA binding to the fluorescent ligand, 2AP, in a 100 g/L solution

of EG. Curve shows fit to single-site binding. (B) Aptamer RNA ligand affinity as a function
of PEG molecular mass. Kp qpp Values were determined at cosolvent concentrations of 100
g/L. The curve emphasizes the general trend, but is not of theoretical significance. The
affinity at 12000 Da PEG represents an upper limit (because the Kp pp is approaching the
assay 2AP ligand concentration). Error bars indicate standard deviations from triplicate
experiments.
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Figure 3.

SHAPE reactivity profiles of the ligand-free RNA aptamer (A) in ceIIs,13 in buffer, and in
EG and (B) 12000 Da PEG. SHAPE reactivities overlaid on the secondary structure of the
free aptamer (C) in cells, (D) in buffer, and (E) in buffer containing the indicated PEGs at
100 g/L. Nucleotides are colored by SHAPE reactivity (see scale); gray indicates no data.
The complete data are available in supporting Tables S1 and S2.
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Figure 4.

Relationships between in-cell and /n-vitro SHAPE reactivities for the aptamer RNA as a
function of PEG molecular mass. Pearson correlation coefficients (/) for the (A) ligand-free
and (B) 2AP-bound aptamer are shown. The reference state in each case is the structure
probed in £. colicells.™® Open symbols indicate correlations in the absence of added PEG
cosolvent. Correlation coefficients were calculated based on reactivities of nucleotides A21-
U25, U31-U39, A45-C54, G59-C67, and G72-u7s.2
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Figureb.

SHAPE reactivities for the ligand-bound aptamer in ceIIs,13 in buffer with 100 g/L EG, and
in buffer with 100 g/L 12000 Da PEG plotted on the standard secondary structure.
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Figure®6.
Nucleotide-resolution effects of the intracellular environment and high molecular mass PEG

cosolvent on adenine riboswitch RNA structure. SHAPE reactivity data from experiments
performed in the absence of ligand are superimposed on a ribbon diagram of the ligand-
bound RNA (PDB ID 1y26).28 In cells, the structure of the free RNA is similar to that of the
ligand-bound RNA, especially in base paired and the L2, L3, J2-3 and J3-1 regions.
Backbone regions colored red and blue indicate differences in SHAPE reactivities (= |0.24
SHAPE units|) that suggest less or more structure, respectively, than the in-cell state. (A)
The in-cell structure reference state structure. Comparisons of the reference state with the
aptamer domain RNA (B) in dilute buffer, (C) in buffer plus 12000 PEG. RNAs were studied
imbedded in a tRNA scaffold.
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