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Abstract

Multiple types of genetic, epigenetic, and genomic changes have been implicated in cutaneous 

melanoma prognosis. Many of the existing studies are limited in analyzing a single type of omics 

measurement and cannot comprehensively describe the biological processes underlying prognosis. 

As a result, the obtained prognostic models may be less satisfactory, and the identified prognostic 

markers may be less informative. The recently collected TCGA (The Cancer Genome Atlas) data 

have a high quality and comprehensive omics measurements, making it possible to more 

comprehensively and more accurately model prognosis. In this study, we first describe the 

statistical approaches that can integrate multiple types of omics measurements with the assistance 

of variable selection and dimension reduction techniques. Data analysis suggests that, for 

cutaneous melanoma, integrating multiple types of measurements leads to prognostic models with 

an improved prediction performance. Informative individual markers and pathways are identified, 

which can provide valuable insights into melanoma prognosis.
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1. INTRODUCTION

Cutaneous melanoma poses a major public health concern. In 2015, an estimated 73,870 

new cases of invasive melanoma are expected in the U.S., with an estimated 9, 940 deaths 

(Siegel, et al., 2015). Cutaneous melanoma is the largest subtype, and Caucasians have a 

much higher risk and poorer prognosis. Despite extensive research, the understanding of 

melanoma prognosis is still very limited. Clinicopathologic features that have been 

suggested as prognostic include age at diagnosis, gender, Breslow tumor thickness, 

ulceration status, mitotic index, and presence of lymph node micrometatases (Balch, et al., 

2009; Dickson and Gershenwald, 2011). Significant effort has been devoted to searching for 

omics markers that may contribute to melanoma prognosis independent of the 

aforementioned factors. Several multi-marker prognostic models have been published. 

Omics markers identified in the literature belong to the immunomodulation, DNA repair, 

signal transduction, melanoma endophenotypes, and other pathways.

Identifying prognostic omics markers has important implications. For basic scientists, it 

leads to a better understanding of the biological mechanisms underlying prognosis. For 

translational researchers and physicians, it assists patient stratification, treatment selection, 

and prediction of prognosis paths.

In the literature, multiple types of omics changes have been suggested as potentially 

associated with melanoma prognosis. For mRNA expression, Winnepenninckx and others 

(2006) identified 254 genes associated with distant metastasis-free survival. Gene expression 

studies also include Timar et al. (2010), Gerami et al. (2015), and others. Studies of tumor 

cells in melanoma patients have characterized prognostic alterations with a panel of five 

genes in copy number alteration (CNA; Chiu, et al. 2014). MicroRNA has also been 

implicated in melanoma prognosis. For example, the study by Streicher and others (2012) 

identified a fourteen-microRNA cluster on the X chromosome, the miRNA-506–514 cluster, 

and found that this cluster is critical in cancer cell growth and melanocyte transformation. 

DNA methylation profile has been investigated. Notable studies include Conway et al. 

(2011) and a review study by Schinke and other (2010). Sigalotti and others (2012) analyzed 

methylation data and constructed a seventeen-gene signature. For genetic mutations, the 

associations of several somatic variants – such as BRAF V600E and NRAS Q61R/L/H – 

with prognosis have been reported (Bucheit and Davies, 2014; Wu et al. 2014). A whole-

genome sequencing study found the RAC1 mutation as the third most frequent in sun-

exposed melanomas and suggested its potential role in prognosis (Krauthammer et al. 2012).

A common limitation shared by many of the existing studies, especially the early ones, is 

that they are “one-dimensional” in the sense that they profiled and analyzed only a single 

type of omics measurement. Multiple types of omics measurements are interconnected and 

have possibly overlapping but also independent information. For example, CNAs, 
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microRNAs, methylation, and other changes affect gene expressions, which affect cancer 

outcomes/phenotypes through proteins. On the other hand, they can also directly affect 

protein expressions and functionalities through channels other than gene expressions. That 

is, they contain independent information on cancer outcomes not reflected in gene 

expressions. Analyzing a single type of omics measurement cannot comprehensively and 

accurately describe the biological processes underlying prognosis and may lead to 

suboptimal prognostic models and uninformative marker identification (Zhao et al. 2015).

More recently, much effort has been devoted to multidimensional studies which profile 

multiple types of omics changes on the same subjects. A representative example is TCGA 

(The Cancer Genome Atlas) which is organized by NIH. For multiple cancer types such as 

breast cancer, ovarian cancer, and glioblastoma, the integrated analysis of TCGA data has 

been conducted. More accurate prognostic models have been constructed, and important 

markers missed by the existing studies have been identified (Cancer Genome Atlas, 2012; 
Cancer Genome Atlas Research, 2014; Cancer Genome Atlas Research, 2014). For 

cutaneous melanoma, the TCGA data were very recently published, making it possible to 

conduct integrated analysis and more accurately describe its prognosis.

For several cancer types, multiple approaches have been applied to conduct the integrated 

analysis of multidimensional data. Some of the existing studies focus on the regulations 

among multiple types of omics measurements. Of special interest is the regulation of mRNA 

gene expression by miRNA, CNA, methylation, and other mechanisms (Feng, et al., 2013; 
Wang, et al., 2013), as gene expression is the downstream product and can be more directly 

related to clinical outcomes and phenotypes. Different from these studies, the present one is 

more concerned with linking omics measurements with prognosis, which is of more 

practical interest. Some other studies have analyzed each type of omics measurement 

separately and then compare results across multiple types of measurements. This is basically 

a meta-analysis strategy and suitable for identifying “hot zones” that host multiple omics 

changes. However as prognosis is affected by the joint effects of multiple types of omics 

changes, such an approach may not be effective in building prognostic models.

Overall, this study may complement the existing literature and be warranted in the following 

aspects. First, it provides a timely integrated analysis of the TCGA cutaneous melanoma 

data, and the results may provide insights into this clinically important disease. Second, it 

describes in detail how to conduct effective integrated analysis of multiple types of omics 

data using advanced statistical techniques and proper statistical packages, which are 

potentially applicable to many other datasets and diseases.

2. METHODS

2.1 TCGA cutaneous melanoma data

TCGA is one of the largest and most comprehensive multidimensional cancer studies. For 

cutaneous melanoma, the goal was to collect data on about 500 samples. The protocols of 

TCGA sample and data collection have been described in detail elsewhere (Cancer Genome 

Atlas Research, 2015). Data analyzed in this study were downloaded either directly from the 

TCGA website or from cbioportal using the CGDS-R package. Brief data information is 
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provided in Table 1, and the flowchart of data processing is provided in the top part of 

Figure 1.

For clinical and pathological variables, the preprocessed level 3 data were downloaded. The 

number of samples with available data is 422. In the analysis, only white metastatic samples 

are included. Data on the normal samples are excluded, and multiple data records on the 

same samples are merged. Only variables with missing rates below 40% are considered. 

Among them, those that have been suggested as potentially associated with melanoma 

prognosis include: gender, age at diagnosis, tumor status, Breslow thickness at diagnosis, 

Clark level at diagnosis, primary melanoma tumor ulceration, AJCC tumor pathologic stage, 

AJCC nodes pathologic stage, new tumor event, percent of lymphocyte infiltration, percent 

of monocyte infiltration, percent of necrosis, percent of stromal cells, percent of tumor cells, 

and percent tumor nuclei. The following variable recoding is conducted to facilitate analysis 

(by reducing cells with very small counts). The AJCC tumor pathologic stage is coded as 0 

for T0 and Ts, 1 for T1-T3, and 2 for T4. The AJCC nodes pathologic stage is coded as 0 for 

N0 and Nx, 1 for N1, 2 for N2, and 3 for N3. After processing, data are available for 16 

variables and 317 samples. To accommodate the remaining missing measurements, multiple 

imputation is conducted using the package Amelia (Honaker et al. 2011).

Omics data were downloaded from cbioportal using the CGDS-R package. Mutation data 

are available on 278 samples. Following a recent study (Jayawardana et al. 2015), mutation 

data on NRAS and BRAF are included in analysis. For a sample, the mutation status is 

coded as 1 if there is at least one mutation in the specific gene, and as 0 otherwise. In 

addition, attempt has been made to incorporate all mutation data in analysis. It is found that, 

with the extremely high dimensionality and noisy nature of mutation data, including all 

mutations leads to inferior prediction performance (details omitted). Thus, only the two most 

important mutations are analyzed. CNA measurements were obtained using the Affymetrix 

Genome-wide Human SNP array 6.0 platform. The loss and gain levels of copy number 

changes of tumors compared to normal tissues were identified using segmentation analysis 

and expressed in the log2 transformed form. A total of 21,699 measurements are available 

on 366 samples. DNA methylation at CpG sites was measured using the Illumina Human 

Methylation 450 platform. The available data contain the beta values, which represent the 

percentages of methylation, for 15,589 genes and 373 samples. The range of the beta values 

is from 0 (fully unmethylated) to 1 (fully methylated). mRNA gene expressions were 

measured using the Illumina Hiseq RNAseq V2 platform. The downloaded data are the 

robust Z-scores which have been lowess-normalized, log-transformed, and median-centered 

and represent the gene expression status (up or down regulated) in tumor samples relative to 

normal tissues. A total of 19,626 measurements are available on 371 samples.

Besides the aforementioned omics measurements, TCGA also has miRNA data, which, 

however, are not available from cbioportal. The miRNA data are not analyzed in this study 

with the concern on data source consistency. In addition, both the TCGA website and 

cbioportal have protein data. However measurements are only available on 129 protein 

expressions and 204 samples. A closer examination suggests that including the protein data 

in analysis leads to a significant reduction in sample size and hence is not pursued in this 

study.
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As shown in Figure 1, different types of data are merged using sample ID. A total of 253 

samples have data on clinical variables, mutation status, gene expression, methylation, and 

CNA. Gene expression, methylation, and CNA measurements are high dimensional. The 

integrated analysis methods described below are capable of analyzing all available data. 

However, with concern on the stability of estimation and the fact that the number of 

prognosis-associated markers is expected to be small, we follow the literature (Zhao et al. 

2015) and conduct a supervised prescreening. More specifically, we fit a Cox regression 

model for each gene expression, methylation, and CNA measurement. For each type of 

measurement, the p-values of regression coefficients are sorted, and the 2,500 measurements 

with the smallest p-values are selected for down-stream analysis. Note that to avoid bias, the 

prescreening needs to be conducted in each prediction evaluation run described below.

The prognosis outcome of interest is overall survival, which has been analyzed in recent 

studies (Mrazek and Chao, 2014). Among the 253 samples, 121 died during followup. For 

them, the median survival time is 103.2 months, with 95% confidence interval (72.0, 151.2) 

months. For those censored, the median followup time is 54.8 months, with standard 

deviation 59.5 months. Brief demographic information on the samples is provided in 

Appendix.

2.2 Methods for integrated analysis

Accommodating the high data dimensionality—Denote T as the survival time and C 
as the random censoring time. Under right censoring, one observes (T̃ = min(T,C), δ = I(T ≤ 

C)). Assume n iid observations. Even with processing, the number of omics measurements 

remained for analysis is still dramatically larger than the sample size. We adopt the 

following variable selection and dimension reduction techniques to accommodate the high 

dimensionality. First consider a single type of omics measurement. Take gene expression as 

an example. Denote X = (X1,…,Xd)′ as the d gene expressions.

Enet: Elastic net is a variable selection technique. It applies penalization and shrinks the 

small coefficients in a regression model to zero, and only selected variables with nonzero 

regression coefficients are identified as important and used for model building. For detailed 

discussions on Enet and other penalized regularization techniques, refer to Zou and Hastie 

(2005) and others. Consider the Cox proportional hazard model, where the conditional 

hazard function is λ(T|X) = λ0.(T)exp (β′X) Here λ0(T) is the unknown baseline hazard 

function, and β = (β1,…βd)′ is the d-vector of regression coefficients. Denote l(β) as the log 

partial likelihood function. The Enet estimate is defined as

where ‖β‖1 = Σj|βj|, ‖β‖2 = Σjβj
2, and 0 ≤ α ≤ 1 and λ > 0 are tuning parameters. By changing 

the value of, Enet includes the popular Lasso and ridge penalties as special cases and are 

more flexible. Gene expressions corresponding to the nonzero components of β̂ are 

identified as important and associated with prognosis. The number of identified genes is 

jointly controlled by λ and α, with a larger value of λ leading to fewer identified genes. In 
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our analysis, Enet is realized using the R package glmnet. α is set as 0.5 to balance the two 

penalties, as in the literature. The selection of λ is discussed below.

SPCA: Principal component analysis (PCA) is one of the most commonly adopted 

dimension reduction techniques. It constructs k linear combinations of the original variables, 

denoted as Z = (Z1,…,Zk)′, and uses them in downstream regression analysis. Here usually k 
≪ n, and thus standard model fitting techniques can be applied. Zj′s, which are referred to 

as the principal components (PCs), are orthogonal to each other and hence solve the 

collinearity problem in regression. Z1 explains the most variation, followed by Z2 The 

“classic” PCA can be realized using singular value decomposition (SVD). One problem of 

the PCA is that each PC is a linear combination of all original variables. Thus when PCs are 

used in regression, all original variables enter the model, and the results are difficult to 

interpret. In addition, with a large number of variables and a small number of samples, 

estimating the loadings of the PCs may not be reliable. To tackle these problems, the sparse 

PCA (SPCA) technique has been developed (Witten et al. 2009). It applies penalization to 

achieve sparsity in PCs, so that each PC is composed of a smaller number of variables. In 

data analysis, SPCA is realized using the R package PMA. With a slight abuse of notation, 

still use Z = (Z1,…,Zk)′ to denote the sparse PCs. Consider the Cox model with conditional 

hazard function λ(T|X) = λ0(T)exp (γ′Z), where γ is the length-k vector of regression 

coefficients. With k ≪ n, this model can be fit in a standard manner using the R package 

survival.

SPLS: Partial least squares (PLS) is another dimension reduction technique. Different from 

PCA which constructs the new variables in an unsupervised manner, PLS takes a supervised 

approach. With a continuous response, PLS first searches for a linear combination of the 

original variables that has the highest correlation with the response. The remaining linear 

combinations are constructed in a similar manner, with the constraint of being orthogonal to 

the previous linear combination(s). PLS has been extended to censored survival data. 

Notably, in Nguyen and Rocke (2004), a two-step approach is developed. In the first step, 

linear regression is used to determine the PLS components; And in the second step, the Cox 

regression is applied. In Bastien (2004), the linear regression step is replaced by the Cox 

regression. Similar to PCA, a limitation of the standard PLS is that the constructed variables 

consist of all of the original variables. The sparse PLS (SPLS) has been developed (Chun 

and Keles, 2010), sharing a similar spirit with the SPCA. With high dimensional data, to 

reduce computational cost, the approach proposed in Chun and Keles (2010) is adopted 

which replaces the survival times by the deviance residuals in extracting the PLS 

components. This approach has been shown to have a good approximation performance. In 

data analysis, it is realized using the R package plsRCox.

Remarks: Penalized variable selection has been extensively applied to cancer genetic data. 

Compared to some other penalties, Enet has a ridge term and thus is capable of 

accommodating highly correlated markers, which are common in genetic analysis. It is also 

computationally simpler than some alternatives. It is noted that a few other penalization 

techniques may also be applicable for the present problem. PCA and PLS are the two most 

popular dimension reduction techniques. Tailored to the high dimensionality of omics data, 
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their sparse versions are adopted. As our goal is not to compare different penalization and 

dimension reduction methods, only the aforementioned three are adopted.

Integrating multiple types of omics measurements—To integrate clinical variables 

with multiple types of omics measurements, the following approach is adopted. First 

consider the Enet-based analysis. (a) For clinical variables with or without mutation status, 

fit a Cox model with Enet for variable selection. With the relatively low dimensionality of 

data, select the tuning parameter λ in a way such that five variables are identified. (b) For a 

single type of omics measurement, fit a Cox model with Enet. Select the tuning parameter so 

that ten variables are identified. (c) Consider a Cox model with the additive effects of 

variables selected in Steps (a) and (b). As shown in Table 2, multiple combinations are 

considered. As the number of variables in the model is not small compared to the sample 

size, ridge regression is adopted to generate stable estimation. This is also realized using the 

R package glmnet with the tuning parameter selected using cross validation. With SPCA and 

SPLS to accommodate the high dimensionality, the analysis approach is similar. The 

difference is that in Steps (a) and (b), the sparse PCs and sparse PLS components take the 

place of individual variables.

The above approach first extracts important features from each type of omics measurement. 

The numbers of features in Steps (a) and (b) may be somewhat subjective. They are chosen 

with the consideration that the numbers of prognosis-associated features are expected to be 

small. In data analysis, we have also experimented with a larger number of selected features 

but found less stable estimation and inferior prediction. An additive model is adopted in Step 

(c), which accommodates the contribution from all types of measurements. It is noted that 

some measurements may contain information heavily overlapping with other measurements. 

The ridge penalized estimation can appropriately accommodate such a scenario.

2.3 Assessing prediction performance of the integrated models

To assess the predictive power of the integrated models listed in Table 2, the ideal scenario is 

to apply them to independent testing data. As the TCGA data are very unique, comparable 

independent data are difficult to identify. Thus the following cross-validation based approach 

is adopted: (a) randomly split data into a training and a testing set with sizes 4:1; (b) apply 

the approach described in the above subsection, fit the Cox model, and obtain parameter 

estimates; (c) use the training set model and testing set samples to compute the predicted 

risk scores; (d) compute the C-statistic (Uno et al. 2011) to quantify prediction performance; 

(e) to avoid an extreme split, repeat Steps (a)-(d) 200 times and compute the mean and 

standard deviation of the C-statistics. The flowchart is shown in the bottom part of Figure 1.

The nonparametric C-statistic is a special case of the time-integrated AUC (area under 

curve) under the time-dependent ROC framework. It is essentially a rank correlation 

measure and takes values between 0.5 and 1. A larger value indicates better prediction, and a 

value of 0.5 corresponds to a model with no predictive power. It has been adopted in 

multiple studies (Riester et al. 2012; Schroder et al. 2011). In data analysis, it is realized 

using the R package survAUC.
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Remarks—The procedure described above covers the whole spectrum of analysis, from 

processing to estimation to evaluation. It is more comprehensive than quite a few of the 

existing studies. In addition, the statistical techniques, all developed in the recent literature, 

are more effective than the “classic” techniques adopted in some existing studies. An 

advantage of the proposed procedure is that it can be realized using the existing software 

packages, and the computational cost is much affordable with practical data. To facilitate 

future applications, we have compiled code used in analysis and submitted along with this 

article.

3. RESULTS

3.1 Prediction performance of the integrated models

For models with a single or multiple types of measurements, the summary C-statistics are 

shown in Table 2. Multiple insightful observations can be made. The first is that prediction 

performance depends on the approach taken to accommodate high data dimensionality. For 

this specific dataset, SPLS in general has better prediction than Enet and SPCA. For 

example with methylation, SPLS has a mean C-statistic of 0.702, compared to 0.605 of Enet 

and 0.668 of SPCA. The inferior prediction of Enet may be caused by both the shrinkage 

and sparsity properties. Unlike PLS, PCA is constructed in an unsupervised manner. Thus, 

the constructed PCs may not contain sufficient information on prognosis. The second 

observation is that the relative prediction performance of one type of measurement also 

depends on the analysis approach. With Enet, it is observed that the clinical variables have 

the best prediction performance with a mean C-statistic of 0.708, and CNA has almost no 

predictive power. With SPCA, the C-statistic of methylation is the largest (0.668). The third 

and the most important observation is that integrated analysis can lead to models with 

improved prediction. With Enet, the model with “clinical variables + mutation + 

methylation” has the best prediction performance, with a mean C-statistic of 0.724. With 

SPCA, the model with “clinical variables + mutation + methylation + CNA” has the best 

prediction, with a mean C-statistic of 0.718. Among the multiple constructed models, the 

one with the highest mean C-statistic (0.746) is obtained using SPLS and “clinical variables 

+ mutation + gene expression + methylation”. T-tests are conducted to compare the C-

statistics of the best models against those of the models with only clinical variables. The 

corresponding p-values are 0.015 (Enet), <0.001 (SPCA), and <0.001 (SPLS), respectively, 

indicating significant differences. For all three methods, the DNA methylation profile is 

included in the models with the best prediction. Using the best models, we compute the 

samples’ risk scores, dichotomize at the medians, and create two risk groups. The 

corresponding survival curves are shown in Figure 2, and the p-values are computed using 

the logrank tests. The separation between the two risk groups is clear.

In the existing analysis of prognosis data on melanoma and other cancer types, usually just a 

single analysis method is applied. Our analysis of the TCGA data suggests that prediction 

performance can depend on the specific analysis method adopted. Thus for melanoma and 

other cancers, it is prudent to experiment with multiple methods. For some other cancer 

types, it has been observed that integrated analysis can lead to improvement in prediction. It 

has also been suggested that the specific combinations of omics measurements with the best 
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prediction is cancer type-dependent (Zhao et al. 2015). With the TCGA melanoma data, our 

analysis confirms the improvement in prediction. The best prediction model contains clinical 

variables. The set of clinical variables collected by TCGA has been manually selected based 

on previous epidemiological studies and is expected to be prognostic. This model also 

contains gene expression. A recent Australian study suggested the superior predictive power 

of gene expression (Jayawardana et al. 2015). In the analyzed data, gene expression is the 

downstream product of other omics changes and “closest” to clinical outcomes. The model 

also includes BRAF and NRAS mutation status and methylation, which may affect 

prognosis through gene expression as well as other independent channels.

3.2 Identified individual markers and pathways

Enet—Using Enet, a small number of variables are identified, and their estimates and 

corresponding hazard ratios are shown in Table 3. Among the clinical variables and mutation 

status, the five identified are tumor status, Breslow thickness at diagnosis, Clark level at 

diagnosis, age at diagnosis, and gender. All have positive regression coefficients, suggesting 

that their higher values correspond to a higher risk and shortened survival. The findings are 

consistent with those in the literature (Jayawardana et al. 2015).

The identified top ten methylation loci are also shown in Table 3. The most interesting 

finding is HLA.C. A closer examination of data shows that 94 out of the 253 samples have a 

beta value larger than 0.7 (which is a commonly used cutoff value for hypermethlation). It is 

not surprising to observe that the gene expressions of samples with hypermethylated HLA.C 

status are significantly lower than those of the rest (p-value=1.687e-8). Samples with the 

hypermethylation of HLA.C tend to have a higher Clark level (p-value=0.007) and more 

advanced tumor status (p=0.012). Eight genes are found to be highly correlated with HLA.C, 

which are PSMB9, HLA.B, HLA.E, HLA.G, PSMB8, HLA.F, IRF1, and B2M. Their 

corresponding gene expressions are down-regulated due to hypermethylation. Samples that 

have hypermethylated HLA.C and correlated genes tend to have a poorer survival. The 

results are consistent with the finding of decreased HLA class I molecule in melanoma cells 

with the degree of de-differentiation of the tumor and increased malignancy (Carretero et al. 

2008). The down-regulation of HLA class antigen can be linked to an important cancer 

immune escape mechanism. It is noted that most of the identified methylation are located on 

chromosome 6. The implication of instability of chromosome 6 has been studied (Santos et 

al. 2007). It has also been observed that genetic changes on chromosome 6 are highly 

associated with the expression of gene BCL2, which plays an important role in programmed 

cell death.

The identified gene expressions are also shown in Table 3. Beyond those genes, analyzing 

the original data also suggests a few genes expressions highly correlated with those 

identified. The network structure of the identified genes and their highly correlated ones are 

shown in the figure next to the table. Specifically, three clusters of genes are identified as 

associated with prognosis – the up-regulation of PI3K–related genes, up-regulation of 

TRIM32-related genes, and down-regulation of PARP-related genes are associated with 

poorer prognosis. The PI3K pathway has been suggested as a core pathway for melanoma 

development (Davies 2012). The PI3K gene has been widely studied as a potential 
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therapeutic target for melanoma (Russo et al. 2014). A phase 1/2 clinical trial of PI3K 

inhibitor BKM120 combined with Vemurafenib (PLX4032) is currently in progress 

(clinicaltrials.gov/ct2/show/NCT01512251). MAP2K2 (MEK2) is also a known therapeutic 

target (Flaherty et al. 2012). TRIM32 is an E3-ubiquitin ligase and has been found to be 

involved in both cancer and human development by negatively regulating tumor suppressor 

p53 (Liu et al. 2014).

SPCA—Even though the PCs have been sparsified, they still include a considerable number 

of variables. As opposed to looking into individual genes, we map the genes to pathways and 

use the estimated regression coefficients to compute the pathway norms for the best model. 

A better understanding of the pathway functions and networks may help identify the 

molecular targets for therapy (Smalley 2010). As shown in Table 2, the model that has the 

highest C-statistic is “clinical + mutation + methylation + CNA”. Thus, the pathway norms 

are computed based on the methylation and CNA measurements. The top pathways with the 

largest norms are shown in Table 4. The top three are the Mitogen Activated Protein Kinase 

(MAPK), integrin, and CSK pathway. The MAPK pathway plays an important role in 

melanoma development. Dysregulation of the MAPK pathway is partially due to the 

mutation of BRAF and RAS and other genetic modifications. Its activation leads to 

increased cell proliferation, metastasis, migration, and angiogenesis. The significant role of 

MAPK in melanoma prognosis has been studied intensively. This pathway has also been 

identified as a therapeutic target for melanoma treatment (Inamdar et al., 2010). The second 

pathway is integrin. Proteins in the integrin family are the major cell surface receptors that 

respond to extracellular matrix. Upon extracellular stimuli, such proteins activate cellular 

responses, such as cell proliferation, cytoskeletal reorganization, and cell survival. In 

addition, the integrin pathway has been found to crosstalk with the PI3K and MAPK 

pathways during tumor progression (Guo and Giancotti, 2004). The specific role of the 

integrin pathway in melanoma has been discussed in Bosserhoff (2011) and others. The CSK 

pathway is related to T cell activation. The pathway norms have been computed using both 

methylation and CNA measurements. In Table 4, we also decompose the two types of 

measurements. It is observed that for the top ten pathways, the norms of methylation 

measurements are considerably larger than those of CNAs. Thus, the contributions of the 

identified pathways to prognosis may have been more heavily driven by methylation. Such 

an observation has not been made in the literature and may demand additional attention.

SPLS—The analysis is similar to that with SPCA. The model with the best prediction 

contains “clinical + mutation + methylation + gene expression”. Thus the pathway norms are 

computed using the methylation and gene expression measurements. The top ten pathways 

with the largest norms are shown in Table 4. The top three are the MAPK, IL6, and NFAT 

pathways. Same as SPCA, the top is the MAPK pathway. IL-6 is a pleiotropic cytokine, 

mainly secreted by T cells and macrophages. The binding of IL-6 to its receptors activates 

the downstream signaling of JAK/STA. Studies have shown that both IL6 and IL10 appear to 

be involved in the progression of melanoma. Higher levels of serum IL6 and IL10 are 

associated with poorer survival (Moretti et al., 2001). The NFAT pathway is important in T-

cell development and function. In addition, the HIVNEF and NTHI pathways also play 

important roles in innate immune response. When decomposing the pathway norms, we find 
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that the contributions from methylation and gene expression are largely similar. Thus under 

this model, prognosis is found to be driven by both types of measurements.

4. DISCUSSION

In this study, we have described in detail an integrated analysis approach that can aggregate 

information from multiple types of omics measurements and build prognosis models. Cancer 

omics data have extremely high dimensionality, are noisy, and contain sparse signals. 

Performance of different methods is data-dependent. It is thus prudent to develop and apply 

multiple techniques. The proposed procedure is comprehensive in that it covers data 

processing, model construction, and evaluation. It is built on advanced variable selection, 

dimension reduction, and cross validation techniques. It is noted that although the proposed 

models and procedure are only applied to cutaneous melanoma in this study, they are 

relatively “data-independent”, and thus it is expected that they are also applicable to other 

datasets and cancer types, and possibly other types of diseases too.

The recently published TCGA data on the prognosis of cutaneous melanoma is analyzed. 

The most important finding is that data integration leads to a significant improvement in 

prediction. The inferiority of the models with only clinical variables suggests the necessity 

of omics profiling. It is noted that the observed increase in C-statistic is not “dramatic”, 

which is reasonable. The prognosis of cancer is a very complex process. Besides omics risk 

factors, environmental and socioeconomic factors, treatment, and others also play important 

roles. Thus omics measurements are only expected to be able to explain a certain percentage 

of variation in prognosis. On the other hand, the observed improvement can be of significant 

importance at the population level. In future studies, it can be of interest to collect and 

analyze data that can lead to more accurate prognosis models at the individual level.

In our data analysis, the SPLS integrated model has the best prediction performance and 

deserves further attention. We have examined individual findings. With Enet, meaningful 

individual markers have been identified. With SPLS and SPCA, the optimal models contain 

different sets of measurements. However, it is interesting to notice that the top pathways are 

similar, which partly supports the validity of findings. Different types of omics 

measurements are connected. Especially, gene expression is regulated by both methylation 

and copy number variation. Thus it is reasonable to expect that the model with “gene 

expression + methylation” and that with “methylation + CNA” contain overlapping 

information, which can explain the similarity in the top pathways in Table 4. It is interesting 

to note that with all three approaches, the DNA methylation profile is included in the models 

with the best prediction. Although methylation has been linked to the prognosis of 

melanoma and other cancer types, there is still a lack of study investigating its superior 

importance in prognosis.

Our data analysis can be potentially improved in multiple aspects. For example, there is a 

lack of cost-effectiveness analysis. In practice, the prognostic power of a model may need to 

be considered along with its cost. In addition, cutaneous melanoma, as other cancer types, is 

heterogeneous, and subset analysis may be needed. This is not conducted with concern on 

sample size. We have conducted comparison with the models built on only clinical variables. 
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A few such models have been developed in the literature. We did not compare with these 

models because of data unavailability.

The integrated analysis of melanoma prognosis has also been pursued by others. The most 

notable is Jayawardana et al (2014). The present study advances from Jayawardana et al 

(2014) in multiple ways. First, the dataset in Jayawardana et al (2014) is much smaller and 

thus has a lower power. In addition, Jayawardana et al (2014) analyzes a binary prognosis 

outcome (good or poor prognosis), which can be less informative than the actual survival 

time analyzed in this study. In addition, to be prudent, we have applied three approaches to 

accommodate the high data dimensionality. The data-dependent nature of performance may 

also be true for other datasets/cancer types. To the best of our knowledge, this study is the 

first to conduct the integrated analysis of TCGA melanoma data. This dataset has a higher 

quality and a larger sample size than the other datasets. In addition, the statistical techniques 

adopted in this study are more advanced and effective. The observed improvement in 

prediction of the integrated models and identified individual markers/pathways deserve 

further investigation. This study also demonstrates the necessity of developing and 

implementing multiple analysis approaches given the complexity of multidimensional data.

For TCGA data on other cancer types as well as other databases, the proposed procedure can 

also be rigorously applied. However, it is hard to “predict” what the optimal models and 

their performance are. We postpone examining other datasets to future studies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Flowchart of data processing and analysis
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Figure 2. 
Survival curves for the low-risk (blue lines) and high-risk (red lines) samples using the three 

methods. P-values are from the log-rank tests.
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Table 1

Brief data information, before and after processing

Platform
/Method

Number of
samples

Number of
features before

processing

Number of features
after processing

Clinical-pathological N.A. 317 83 16

Mutation Mutation Calling 278 15861 2

CNA Affymetrix
Genome-wide
Human SNP array
6.0

336 21699 2500

Methylation Illumina Human
Methylation 450

373 15589 2500

Gene Expression Illumina Hiseq
RNAseq V2

371 19626 2500
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Table 2

Prediction performance of different combinations of clinical and omics measurements: mean (sd) of C-

statistic.

Model Enet SPCA SPLS

Cln 0.708 (0.077) 0.610 (0.076) 0.714 (0.023)

Cln+Mu 0.707 (0.078) 0.612 (0.072) 0.710 (0.021)

Gen 0.575 (0.071) 0.662 (0.063) 0.665 (0.022)

Met 0.605 (0.068) 0.668 (0.067) 0.702 (0.021)

CAN 0.501 (0.069) 0.570 (0.071) 0.586 (0.026)

Cln+Mu+Gen 0.705 (0.076) 0.661 (0.072) 0.713 (0.022)

Cln+Mu+Met 0.724 (0.071) 0.707 (0.060) 0.743 (0.020)

Cln+Mu+CNA 0.691 (0.083) 0.626 (0.069) 0.722 (0.023)

Cln+Mu+Gen+Met 0.717 (0.070) 0.714 (0.059) 0.746 (0.021)

Cln+Mu+Gen+CNA 0.686 (0.076) 0.660 (0.073) 0.714 (0.022)

Cln+Mu+Met+CNA 0.713 (0.073) 0.718 (0.061) 0.743 (0.020)

Cln+Mu+Gen+Meth+CNA 0.706 (0.072) 0.707 (0.059) 0.746 (0.021)

Cln: clinical variables; Mu: mutation; Gen: mRNA gene expression; Met: methylation; CNA: copy number alternation. A larger value of C-statistic 
indicates better prediction. A value of 0.5 corresponds to a model with no predictive power.
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Table 3

Integrated analysis based on Enet: identified prognostic markers. (A) Top five for clinical variables + 

mutation; (B) Top ten for methylation. (C) Top ten for gene expression. In the figure, the identified genes (red 

dots) and those with highly correlated expressions (green dots).

(A)

Clinic+Mutation Coefficient Hazard
Ratio

Tumor status 2.243 9.423

Breslow thickness at diagnosis 0.0564 1.058

Clark level at diagnosis 0.075 1.078

Age at diagnosis 0.020 1.020

gender 0.053 1.054

(B)

Methylation Coefficient Hazard
Ratio

ZNF503.AS2 −0.192 0.825

HLA.C 0.272 1.313

IFITM1 0.051 1.052

LIMA1 −0.122 0.885

SLC4A2 −0.005 0.995

PPTC7 −0.199 0.819

MYADML 0.399 1.490

ASCL1 −0.064 0.938

SYT7 −0.035 0.966
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Table 4

Top ten pathways with the largest norms identified by SPCA and SPLS. (Methylation, CNA/GE): norms of the 

methylation and CNA/GE measurements, respectively.

SPCA (Methylation, CNA)

1 MAPK_PATHWAY (0.0648, 0.0060)

2 INTEGRIN_PATHWAY (0.0624, 0.0035)

3 CSK_PATHWAY (0.0601,0.0028)

4 CELL2CELL_PATHWAY (0.0574,0.0011)

5 SRCRPTP_PATHWAY (0.0562,0.0011)

6 CARM_ER_PATHWAY (0.0519,0.0039)

7 KERATINOCYTE_PATHWAY (0.0492,0.0060)

8 NFAT_PATHWAY (0.0502,0.0032)

9 TCYTOTOXIC_PATHWAY (0.0502,0.0021)

10 CTL_PATHWAY (0.0481,0.0023)

SPLS (Methylation, GE)

1 MAPK_PATHWAY (0.0323, 0.0439)

2 IL6_PATHWAY (0.0243, 0.0389)

3 NFAT_PATHWAY (0.0262, 0.0365)

4 TEL_PATHWAY (0.0175, 0.0432)

5 NO1_PATHWAY (0.0210, 0.0396)

6 IL10_PATHWAY (0.0259, 0.0319)

7 ACH_PATHWAY (0.0131, 0.0432)

8 HIVNF_PATHWAY (0.0192, 0.0365)

9 STATHMIN_PATHWAY (0.0224, 0.0327)

10 NTHI_HWAY (0.0189, 0.0344)
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