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Abstract

Technology advances in genome-wide association studies (GWAS) has engendered optimism that 

we have entered a new age of precision medicine, in which the risk of breast cancer can be 

predicted on the basis of a person’s genetic variants. The goal of this study is to evaluate the 

discriminatory power of common genetic variants in breast cancer risk estimation. We conducted a 

retrospective case-control study drawing from an existing personalized medicine data repository. 

We collected variables that predict breast cancer risk: 153 high-frequency/low-penetrance genetic 

variants, reflecting the state-of-the-art GWAS on breast cancer, mammography descriptors and BI-

RADS assessment categories in the Breast Imaging Reporting and Data System (BI-RADS) 

lexicon. We trained and tested naïve Bayes models by using these predictive variables. We 

generated ROC curves and used the area under the ROC curve (AUC) to quantify predictive 

performance. We found that genetic variants achieved comparable predictive performance to BI-

RADS assessment categories in terms of AUC (0.650 vs. 0.659, p-value = 0.742), but significantly 

lower predictive performance than the combination of BI-RADS assessment categories and 

mammography descriptors (0.650 vs. 0.751, p-value < 0.001). A better understanding of relative 

predictive capability of genetic variants and mammography data may benefit clinicians and 

patients to make appropriate decisions about breast cancer screening, prevention, and treatment in 

the era of precision medicine.
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1. INTRODUCTION

Breast cancer is the most common non-skin malignancy affecting women. Stratification of 

women according to the risk of developing breast cancer could improve risk reduction and 

screening strategies by targeting those most likely to benefit. Technology advances in 

genome-wide association studies (GWAS) has engendered optimism that we have entered a 

new age of precision medicine, in which the risk of breast cancer can be predicted on the 

basis of a person’s genetic variants. However, early attempts to use a set of common genetic 

variants to predict breast cancer risk demonstrate only modest improvements over 

conventional demographic risk factors 
1-3.

One of the most important questions of how much additional predictive power can be 

achieved by using more genetic variants remain uncertain. In our prior studies, we quantified 

predictive capability of 22 single-nucleotide polymorphisms (SNPs) in breast cancer risk 

estimation 
4, 5. Recently, we consolidated a list of 77 SNPs and found that they demonstrated 

a significantly higher predictive performance than those 22 SNPs 
6
. With the rapid progress 

of genome-wide association studies, more and more new SNPs associated with breast cancer 

have been identified
7
, which has engendered the potential to improve predictive capability 

further by using a larger set of SNPs.

Theoretically the ability of SNPs to predict breast cancer risk has an upper bound 
8, 9. 

However, practically the number of SNPs used to reach an upper bound of predictive 

capability is still unknown 
10

. Moreover, the implications of integrating SNPs into clinical 

practice along with other conventional diagnostic tests remain uncertain. In clinical practice, 

mammography is the most common breast cancer screening test, and the preeminent 

imaging modality supported by randomized trials demonstrating mortality reduction. A 

better understanding of relative predictive capability of SNPs in the context of 

mammography may help clinician and patients to make appropriate decisions of breast 

cancer screening, prevention, and treatment.

In this study, we assemble a list of breast cancer SNPs identified to date, which reflect the 

state-of-the-art breast cancer GWAS. We aim to evaluate the discriminatory power of genetic 

variants in personalized breast cancer diagnosis, using an existing personalized medicine 

data repository. We aim to reveal the relative predictive capability of genetic variants and 

mammography data in breast cancer risk estimation.

2. MATERIALS and METHODS

The Marshfield Clinic Institutional Review Board approved the use of Marshfield Clinic’s 

Personalized Medicine Research Project (PMRP) 
11

 cohort in the study.

2.1 Subjects

The subjects in this study were from the population-based PMRP cohort, details of which 

have been previously published 
11

. Western European women with an available plasma 

sample, a mammogram, and a breast biopsy within 12 months after the mammogram were 

included in the study. We decided to focus on high-frequency/low-penetrance SNPs that 
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affect breast cancer risk as opposed to low frequency SNPs with high penetrance or 

intermediate penetrance. We excluded individuals who had a known high-penetrance genetic 

mutation. For this case/control study, Cases were defined as women having a confirmed 

diagnosis of breast cancer obtained from the institutional cancer registry. Controls were 

confirmed through the Marshfield Clinic electronic medical records as never having had a 

breast cancer diagnosis. Moreover, we selected a control whose age was within five years of 

the age of each case to make sure that case and control groups were similar in age 

distribution.

2.2 Genetic Variants

We consolidated a list of 153 common genetic variants which were identified by the recent 

large-scale GWAS studies or used to generate published predictive models (Table 1). The list 

included 77 SNPs used in our recent study to quantify predictive capability of genetic 

variants 
6
, in which 41 were identified by Collaborative Oncological Gene-environment 

Study (COGS) through a meta-analysis of 9 GWAS studies 
12

. The list also included some 

SNPs garnered from several other recent studies related to COGS 
13-24

. To the best of our 

knowledge, the list of 153 genetic variants provided the most comprehensive summary of 

SNPs identified in the major GWAS for breast cancer risk up to 2015.

2.3 Mammography Features

The American College of Radiology developed the Breast Imaging Reporting and Data 

System (BI-RADS) lexicon 
25

 for mammography reporting. The BI-RADS lexicon consists 

of 49 descriptors 
4
, including the characteristics of masses and microcalcifications, special 

cases, associated findings, and breast composition. In this study, mammography data was 

recorded as free text reports in the electronic health record, from which we used a parser to 

extract these mammography features 
26

. After extraction, each mammography feature took 

the value “present” or “not present” except that the variable mass size was discretized into 

three values, “not present”, “small” and “large”, depending on whether there was a reported 

mass size and whether any dimension was larger than 30mm. In clinical practice, 

radiologists assign a BI-RADS assessment category to each mammogram, which indicates 

the radiologist’s assessment of the risk of breast cancer. In our study, the BI-RADS category 

prioritized values in the order of increasing probability of malignancy, 1, 2, 3, 0, 4a, 4, 4b, 4c 

and 5.

2.4 Study Design and Statistical Analysis

We built three breast cancer risk predictive models using Naïve Bayes implementation in 

WEKA 
27

.We developed a SNP153 model built on 153 SNPs. In this genetic model, we 

introduced one variable to represent the total count of risk alleles the person carries for those 

153 SNPs in the DNA. This way of coding genetic variants was used in several models 
3, 6, 

and is helpful to build risk models when each SNP only has a small contribution to the risk. 

To compare predictive power of SNPs with that of mammography, we developed a BI-

RADS Category model (BCM) built on BI-RADS assessment categories only. We developed 

a BI-RADS Category and Descriptor model (BCDM) built on the combination of BI-RADS 

assessment categories and 49 mammography features. We generated receiver operator 

characteristic (ROC) curves using ROCKIT software 
28, 29

 based on the probabilities of 
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malignancy predicted by each of the three models, and used the area under the curve (AUC) 

as a measure of performance. We compared predictive capability of the models using 

DeLong method 
30

, and evaluated the models using 10-fold cross-validation.

3. RESULTS

We identified 362 cases and 376 controls, details of which have been previously described 
6
. 

The age range for the subjects in this study was 29 to 90 years of age, with mean=62 and 

standard deviation=12.8. Among the cases, there were 358 Caucasians, three non-

Caucasians and one case whose race information was unknown. Among the controls, there 

were 372 Caucasians and four non-Caucasians.

We observed that the SNP153 model can achieve comparable predictive performance to the 

BCM (Figure 1). The AUC of the SNP153 model was 0.650 and the AUC of the BCM was 

0.659, with p-value = 0.742. We also observed that the SNP153 model demonstrated 

significantly lower predictive performance than the BCDM in terms of AUC (0.650 vs. 

0.751, p-value < 0.001).

Our prior study quantified predictive performance of genetic variants 
6
. The AUCs for the 

models developed with 10, 22 and 77 SNPs were 0.591, 0.622 and 0.684, which indicated 

that the more associated SNPs the prediction model includes, the more discriminative the 

model becomes. The 10 SNPs identified at the early stage of GWAS show strong 

associations with breast cancer risk 
3, 31

, which have been validated by several large-scale 

GWAS 
32, 33

. The 22 SNPs reflects the breast cancer GWAS up to 2010 and the 77 SNPs 

demonstrate the progress of breast cancer GWAS up to 2013. In this study, we found that the 

AUC of the SNP153 model was 0.650, which was less than that of the model developed with 

77 SNPs (Figure 2).

4. DISCUSSION

This study demonstrates that the genetic variants can improve breast cancer risk prediction 

substantially but an upper bound of discriminatory power exists. We predict that some novel 

SNPs could be identified in the near future but their contribution to breast cancer risk 

estimation would likely be modest. In addition, we observe that genetic variants demonstrate 

significantly lower predictive performance than mammography features in terms of AUC for 

women undergoing breast biopsy.

For the first time, our study empirically demonstrates that prediction models developed with 

common genetic variants achieve a potential upper bound of predictive power from an 

existing personalized medicine data repository. The more associated SNPs the prediction 

model includes, the more discriminative the model becomes. The AUCs for the models 

developed with 10, 22 and 77 SNPs were 0.591, 0.622 and 0.684. However, the AUC of the 

SNP153 model was 0.650, which was less than that of the model developed with 77 SNPs. 

The upper bound of predictive performance for genetic variants can be achieved using SNPs 

selected from the set of 153 SNPs. Some prior studies recommended the number of SNPs 

for breast cancer risk prediction but those numbers are only illustrative 
1, 34

. Of note, we 

quantified predictive performance of a series of SNPs according to the progress of breast 
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cancer GWAS; SNPs identified at the early stage of GWAS show strong associations with 

breast cancer risk while those discovered at the later stage were less likely to reach statistical 

significance 
9
. A possible line of future study is to seek the highest predictive performance 

of those 153 SNPs by using ranking algorithms such as mutual information analysis 
35, 36

, 

and constructing predictive models with ranked SNPs sequentially.

Genetic variants provide a lower predictive power than mammographic findings but they 

may still play an important role in risk stratification and breast cancer diagnosis. As one kind 

of so-called intermediate phenotypes, mammographic findings may both summarize breast 

cancer risk more powerfully and capture the interaction of genes and the environment 
37

, 

giving rise to sound performance in breast cancer diagnosis. Genetic variants could be used 

to augment diagnostic performance of mammography interpretation, as demonstrated in a 

series of prior studies 
4-6. In summary, even though an upper bound of discriminatory power 

exists and a lower predictive power occurs for SNPs in breast cancer risk estimation, 

identification of common genetic variants may eventually allow improving breast cancer risk 

prediction and stratifying women according to their breast cancer risk.

There are several limitations to our study. The sample size is small compared with large-

scale GWAS studies, due to the inherent difficulty of collecting a rich multi-modality 

dataset. Moreover, we do not explicitly model how individual SNPs function to alter breast 

cancer risk. Our current genetics model uses one feature to represent the total number of risk 

alleles for those 153 SNPs in the DNA, assuming that each individual SNP only confers a 

fairly mild relative risk and the genetic effect of the genetic variants is additive. Furthermore, 

we do not differentiate the different subtypes of breast cancers (for example, the estrogen-

receptor status and progesterone-receptor status) in the current study. Breast cancer is a 

complex and heterogeneous disease with different subtypes, including two main subtypes of 

estrogen receptor (ER) negative tumors (basal-like and human epidermal growth factor 

receptor-2 positive/ER− subtype) and at least two types of ER positive tumors (luminal A 

and luminal B) 
38

. These molecular subtypes are important predictors of breast cancer 

mortality and have different genetic susceptibility. We plan to extend our study by 

quantifying predictive power of SNPs for different subsets of breast cancer. Finally, SNP 

associations may be specific to subsets of women with breast cancer, as defined by 

ethnicity 
9
. Our results cannot be generalized beyond western European populations.

5. CONCLUSION

We consolidate a list of the latest identified SNPs, which reflects the state of the art of breast 

cancer GWAS study and COGS analysis. For the first time, our study empirically 

demonstrates that prediction models developed with common genetic variants achieve a 

potential upper bound of predictive power from an existing personalized medicine data 

repository. Even though the upper bound exists for SNPs in breast cancer risk estimation, 

identification of common genetic variants may eventually allow understanding molecular 

mechanisms of breast cancer and stratifying women according to breast cancer risk, with a 

hope of improving breast cancer screening, prevention, and treatment strategies.
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Figure 1. 
ROC curves for different predictive models. Solid curve, the SNP153 model; dashed curve, 

the BI-RADS Category model (BCM); dotted curve, BI-RADS Category and Descriptor 

model (BCDM).
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Figure 2. 
Comparison of AUC for predictive models developed with different number of SNPs. 

Dashed line, the BI-RADS Category model (BCM); dotted line, BI-RADS Category and 

Descriptor model (BCDM).
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Table 1

The 153 SNPs identified to be associated to breast cancer.

SNP Chromosome SNP Chromosome SNP Chromosome SNP Chromosome

rs616488 1 rs1017226 5 rs10965163 9 rs12422552 12

rs11552449 1 rs12655019 5 rs865686 9 rs6220 12

rs11249433 1 rs16886034 5 rs1011970 9 rs10771399 12

rs2290854 1 rs16886181 5 rs7072776 10 rs1292011 12

rs4245739 1 rs16886364 5 rs7904519 10 rs27633 12

rs6678914 1 rs16886397 5 rs2981582 10 rs17356907 12

rs6682208 1 rs16886448 5 rs10995190 10 rs11571833 13

rs1550623 2 rs2229882 5 rs2380205 10 rs2588809 14

rs16857609 2 rs2736108 5 rs2981579 10 rs941764 14

rs2016394 2 rs3822625 5 rs704010 10 rs999737 14

rs4849887 2 rs7726159 5 rs11196174 10 rs2236007 14

rs1045485 2 rs7726354 5 rs1219648 10 rs17817449 16

rs13387042 2 rs7716600 5 rs16917302 10 rs3803662 16

rs17468277 2 rs204247 6 rs2420946 10 rs12443621 16

rs4666451 2 rs2046210 6 rs1243182 10 rs8051542 16

rs12710696 2 rs2180341 6 rs17221319 10 rs4784227 16

rs184577 2 rs17530068 6 rs17550038 10 rs11075995 16

rs1830298 2 rs3757318 6 rs2981575 10 rs13329835 16

rs2070959 2 rs2253407 6 rs2981578 10 rs2075555 17

rs36043647 2 rs6569479 6 rs45631563 10 rs6504950 17

rs4458204 2 rs9348512 6 rs11199914 10 rs527616 18

rs59278883 2 rs9383938 6 rs11814448 10 rs1436904 18

rs6759892 2 rs9485372 6 rs3903072 11 rs4808801 19

rs7558475 2 rs12197388 6 rs3817198 11 rs8170 19

rs12493607 3 rs12662670 6 rs2107425 11 rs3745274 19

rs6762644 3 rs17529111 6 rs614367 11 rs2279343 19

rs4973768 3 rs9397435 6 rs909116 11 rs2363956 19

rs6828523 4 rs11242675 6 rs12575120 11 rs3760982 19

rs9790517 4 rs10235235 7 rs494406 11 rs2284378 20

rs10472076 5 rs720475 7 rs537626 11 rs13039229 20

rs1353747 5 rs2943559 8 rs554219 11 rs311499 20

rs1432679 5 rs6472903 8 rs585568 11 rs311498 20

rs10941679 5 rs9693444 8 rs593679 11 rs2823093 21

rs889312 5 rs13281615 8 rs657686 11 rs10483028 21

rs30099 5 rs1562430 8 rs679162 11 rs2242714 21

rs981782 5 rs4733664 8 rs75915166 11 rs6001930 22

rs10069690 5 rs799890 8 rs78540526 11 rs132390 22
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SNP Chromosome SNP Chromosome SNP Chromosome SNP Chromosome

rs16886113 5 rs11780156 8 rs11820646 11

rs4415084 5 rs10759243 9

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2016 June 06.


	Abstract
	1. INTRODUCTION
	2. MATERIALS and METHODS
	2.1 Subjects
	2.2 Genetic Variants
	2.3 Mammography Features
	2.4 Study Design and Statistical Analysis

	3. RESULTS
	4. DISCUSSION
	5. CONCLUSION
	References
	Figure 1
	Figure 2
	Table 1

