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Abstract

Context—Early identification efforts are essential for the early treatment of the symptoms of 

autism but can only occur if robust risk factors are found. Children with autism often engage in 

repetitive behaviors and anecdotally prefer to visually examine geometric repetition, such as the 

moving blade of a fan or the spinning of a car wheel. The extent to which a preference for looking 

at geometric repetition is an early risk factor for autism has yet to be examined.

Objectives—To determine if toddlers with an autism spectrum disorder (ASD) aged 14 to 42 

months prefer to visually examine dynamic geometric images more than social images and to 

determine if visual fixation patterns can correctly classify a toddler as having an ASD.

Design—Toddlers were presented with a 1-minute movie depicting moving geometric patterns on 

1 side of a video monitor and children in high action, such as dancing or doing yoga, on the other. 

Using this preferential looking paradigm, total fixation duration and the number of saccades within 

each movie type were examined using eye tracking technology.

Setting—University of California, San Diego Autism Center of Excellence.

Participants—One hundred ten toddlers participated in final analyses (37 with an ASD, 22 with 

developmental delay, and 51 typical developing toddlers).

Main Outcome Measure—Total fixation time within the geometric patterns or social images 

and the number of saccades were compared between diagnostic groups.

Results—Overall, toddlers with an ASD as young as 14 months spent significantly more time 

fixating on dynamic geometric images than other diagnostic groups. If a toddler spent more than 

69% of his or her time fixating on geometric patterns, then the positive predictive value for 

accurately classifying that toddler as having an ASD was 100%.

Conclusion—A preference for geometric patterns early in life may be a novel and easily 

detectable early signature of infants and toddlers at risk for autism.
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It is undeniable that early treatment can have a significant positive impact on the long-term 

outcome for children with an autism spectrum disorder (ASD).
1–3

 Early treatment, however, 

generally relies on the age at which a diagnosis can be made, thus pushing early 

identification research into a category of high public health priority. Unfortunately, easily 

implemented methods for facilitating early identification remain to be found.

Eye tracking technology holds promise as an objective method for characterizing the early 

features of autism because it can be implemented with individuals of virtually any age or 

functioning level. Historically, the bulk of eye tracking studies have been conducted with 

older children, adolescents, and adults with autism.
4–10

 In one of the first studies on this 

topic, Klin and colleagues 
10

 showed that when watching a socially intense movie, adults 

with autism predominantly looked at the mouth region of the actors whereas typical subjects 

looked at the eye region. Bringing this effort into the childhood years, Jones and 

colleagues 
11

 later showed that even 2-year-olds with autism spent more time fixating on the 

mouth region than the eyes during face viewing. They raised the provocative possibility that 

how social images are visually examined could be an early warning sign for autism.

Continuing with the idea that reduced fixation time on the eye region could be diagnostically 

revealing, Merin and colleagues 
12

 studied 6-month-olds at risk for autism by virtue of 

having a sibling with the disorder and found abnormalities similar to the Jones et al 

experiment: in contrast to typical infants, baby siblings at risk for having an ASD spent more 

time looking at the mouth region than the eyes. Given the young age of the baby sibling 

sample, the eventual diagnoses of these infants were not known at the time. In a follow-up 

study that used virtually the identical sample of baby siblings, Young and colleagues 
13 

examined the clinical outcome of these subjects and found that, contrary to their 

expectations, eye gaze patterns at 6 months did not predict diagnostic outcome. That is, 

many of the baby siblings who had reduced examination of the eye region at 6 months were 

not considered to have autism later in childhood. This makes sense given that even typically 

developing (TD) 3- and 6-month-old infants have been shown to be highly inconsistent in 

where they look during face viewing in comparison with older infants.
14

 Furthermore, the 

infant brain is undergoing an explosion of activity during the first year of life, a period when 

the number of synapses reaches a peak in many areas that is twice that of the adult 
15

 and 

brain volume doubles in size in comparison with birth.
16

 Given the active pace of brain 

development during the infancy period combined with high intersubject variability of eye 

tracking patterns to faces during this time, examining the percentage of time an infant 

attends to the eye region of a face may not be stable enough to make diagnostically 

predictive claims, especially at the individual subject level.

An alternative method to investigate early indicators of autism is to measure a very simple 

behavior: preference. Using a preferential looking paradigm wherein 2 images are placed 

side by side, Klin and colleagues 
17

 found a statistically reduced preference for biological 

motion in 2-year-olds with autism. Specifically, the 2-year-olds with autism in that study 

looked less often at point-light displays depicting well-known motions such as pat-a-cake 

and more often at inverted point-light displays than developmentally delayed (DD) and TD 

contrast groups. Thus, what infants prefer to look at when given a choice between 2 images 

may turn out to be a more clearly observable indicator of risk than how they look at a single 
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image. When given the direct choice, TD infants and toddlers prefer to look at social images, 

such as faces, over nonsocial images.
18,19

 It is unknown if this same preference exists in 

toddlers at risk for autism. Interestingly, in the first prospective study of infants at risk for an 

ASD, social behavior was not different from normal during the first 6 months of life.
20,21 

Infants in that study cooed and smiled at examiners and were indistinguishable from TD 

infants at that age.
22

 At 12 months of age, however, deviances in social behavior were 

evident in the at-risk group, suggesting that the 1-year period marks an age where social 

defects and possibly social preference behaviors may become clearly observable, a finding 

consistent with retrospective studies.
23–25

Many children with autism engage in a variety of repetitive behaviors 
26

 and, anecdotally, 

often prefer to attend to visual repetition, such as the moving blade of a fan or the spinning 

of a car wheel. In fact, individuals with autism have a noted strength in visuospatial abilities, 

particularly when considered relative to other abilities within the same individual. For 

example, high-functioning adults 
27

 and children 
28

 with autism are reported to be faster at 

finding a hidden object in an embedded figure task than TD individuals. Furthermore, adults 

with autism are better at remembering geometric patterns they have seen in the past than 

typical adults.
29

 It is thought that enhanced visuospatial abilities in autism may stem from a 

local processing bias.
30,31

 The early developmental profile of unusual preferences for visual 

repetition in autism is largely unknown and unexplored. If given the direct choice, would 

children with autism prefer to attend to highly repetitive images such as repeating geometric 

shapes rather than social images, and if so, would such a preference be evident early in 

development?

We hypothesized that, as a group, toddlers and young children at risk for autism would 

spend a greater amount of time examining dynamic geometric images (DGI) than dynamic 

social images (DSI) and that this preference would be observable as early as 1 year of age. 

Furthermore, because individuals with autism have deficits in shifting visual attention 
32–37 

and have been known to exhibit longer disengagement latencies,
20,38

 we additionally 

hypothesized that such individuals might show a reduction in the number of saccades overall 

when analyzing a visual scene.

To test this possibility, a preferential looking paradigm was developed that examined looking 

time toward highly salient social images, such as children dancing and doing yoga, in 

comparison with highly salient geometric images, such as repeating and moving concentric 

circles. Past studies have suggested that using highly salient or attention-directing stimuli 

may be critical for maximizing the potential for more typical patterns of brain activity in 

autism.
39,40

 To consider how a preference for geometric patterns may change during 

development, a wide age range of toddlers with an ASD spanning from 14 to 42 months 

were studied. Finally, to examine the degree to which preference patterns are related to 

delayed language or cognitive development rather than autism per se, a contrast group 

consisting of children with DD matched in ability to the ASD group was included.
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METHODS

PARTICIPANTS

Subjects were recruited from 2 sources: general community referral (eg, Web site) and a 

general population-based screening method called the 1-Year Well-Baby Check-Up 

Approach (K.P., C. Carter, PhD, M. Weinfeld, PhD, J.D., R.H., R. Bjork, MD, N. Gallagher, 

BA, unpublished data, 2006–2009). Using this method, toddlers at risk for an ASD, 

language delay, and DD as young as 12 months were identified with a broadband screening 

instrument, the Communication and Symbolic Behavior Scales Developmental Profile 

Infant-Toddler Checklist,
41,42

 and were recruited and tracked every 6 months until their third 

birthday. This method thus allowed for the prospective study of autism beginning at 12 

months of age. Typically developing controls were obtained from community referrals. All 

toddlers participated in a series of tests across multiple 2-hour sessions that included the 

Autism Diagnostic Observation Schedule–Toddler Module (ADOS-T), newly validated for 

use with infants as young as 12 months,
43

 and the Mullen Scales of Early Learning.
44 

Parents were also interviewed with the Vineland Adaptive Behavior Scales.
45

 Toddlers 

participated in additional behavioral (eg, play) and biological (eg, magnetic resonance 

imaging) tests as part of a larger study. (For more information, see 

www.autismsandiego.org.) All standardized assessments were administered by 2 highly 

experienced PhD-level psychologists with more than 10 years’ combined experience in 

autism.

Overall, 138 toddlers aged 12 to 43 months participated. Twenty-eight (10 with an ASD, 11 

with TD, 7 with DD) were excluded from final analyses because of noncompliance during 

testing, which almost always resulted in less than 50% valid trials. The final group of 110 

toddlers consisted of 37 with an ASD (27 with autistic disorder, 9 with pervasive 

developmental delay not otherwise specified, 1 with ASD features), 51 with TD, and 22 with 

DD (12 with language delay, 10 with global developmental delay). While several of the 

toddlers with an ASD were only a year old at the time of testing, all but 1 have been tracked 

and diagnosed using the ADOS-T until at least age 24 months, an age shown to be reliable 

for the diagnosis of autism.
20,43,46–49

 Final diagnoses for participants with an ASD older 

than 30 months were confirmed with the Autism Diagnostic Interview-Revised.
50

 Toddlers 

were determined to have language delay if 1 or both of the language subtest scores of the 

Mullen Scales of Early Learning were more than 1 SD lower than expected values for that 

age (ie, a t score <40). Toddlers were determined to have global DD if scores were more 

than 1 SD lower than expected values on 3 or more of the subtests of the Mullen Scales of 

Early Learning and the overall developmental quotient was more than 1 SD lower than 

expected values (ie, <85) (Table).

Thirty-seven TD toddlers were matched on a 1-1 basis to toddlers with an ASD based on age 

(±3 months) and sex. The remaining 14 TD toddlers were matched based on the 

chronological age range of the ASD group. Subjects with DD served as a contrast group and 

were matched to the ASD group based on chronological age, verbal and nonverbal 

developmental quotient as assessed by the Mullen Scales of Early Learning, and overall 

functioning as assessed by the Vineland Adaptive Behavior Scales. There were no 
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significant differences in any of these measures between the ASD and DD groups. As 

expected, the TD group had a significantly higher verbal developmental quotient, nonverbal 

developmental quotient, and adaptive behavior score and significantly lower ADOS-T scores 

than the ASD group. This study was approved by the University of California, San Diego 

Human Subjects Research Protection Program. Legal guardians of all participants gave 

written informed consent.

APPARATUS, STIMULI, AND EYE TRACKING PROCEDURE

Apparatus—A Tobii T120 eye tracker (Tobii, Danderyd, Sweden, www.tobii.com) was 

used to measure toddlers’ fixations and number of saccades in response to a visual stimulus. 

The binocular eye tracker used infrared light sources and cameras that are integrated into a 

17-in-thin film transistor monitor. Using corneal reflection techniques, the Tobii eye tracker 

records the X and Y coordinates of toddlers’ eye position at a frequency of 120 Hz (ie, 7200 

data collections/min). Two additional small cameras were placed on top of the eye tracking 

monitor to obtain video of each toddler’s behavior during the experiment at all times.

Stimuli—Toddlers were presented with a movie consisting of DGI on 1 side and DSI on the 

other. The DGI were produced from recordings of animated screen saver programs. The DSI 

were produced from a series of short sequences of children doing yoga (Yoga Kids 3; 

Gaiam, Boulder, Colorado, http://www.gaiam.com, created by Marsha Wenig, http://

yogakids.com/), which included images of children moving in a dramatic manner (eg, 

waving arms and appearing as if dancing). Audio information was discarded. The final 

presentation stimulus was composed of 2 rectangular areas of interest horizontally 

distributed containing DGI and DSI in which scenes changed in a simultaneous, time-linked 

fashion (Figure 1). To control for preference that may be mediated by spatial location, the 

side of presentation of DGI and DSI scenes was randomized across subject and diagnosis so 

that 50% of toddlers saw a movie containing DSI on the left. The final movie contained a 

total of 28 scenes with single-scene duration varying from 2 to 4 seconds for a total 

presentation time of 60 seconds at 24 frames per second.

Procedure—Toddlers were seated on their parent’s lap 60 cm in front of the eye tracking 

monitor. Parents were read a series of standardized instructions describing the eye tracking 

procedure. The lights were off during testing and a partition separated the operator from the 

toddler. To obtain calibration information, toddlers were first shown images of an animated 

cat that appeared in 1 of 9 locations on the screen. During this procedure, the eye tracker 

measured characteristics of the toddler’s eyes (eg, corneal light reflection) and used them 

together with a 3-dimensional eye model to calculate the gaze data. Quality of calibration 

was displayed as green lines with varying lengths, with shorter lines indicating better 

calibration. If an infant’s calibration was poor, the procedure was repeated as necessary.

Using a “live tracker” included in the Tobii software (Tobii Studio version 1.3) that 

superimposes the toddler’s eye tracking data on the test image in real time, the operator 

observed the infant’s gaze position and head position on a secondary monitor during the 

experimental procedure, making note of deviation from an established working range of 

positions. The operator also monitored the child’s behavior by observing the realtime video 
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recording. If the infant’s eyes were no longer picked up by the live tracker, or if the infant 

attempted to get out of his or her mother’s lap as indicated by the video recording, then the 

process was repeated, including pretrial calibration.

DEPENDENT VARIABLES AND STATISTICAL ANALYSES

Fixation Time—Using Tobii software, fixation data were calculated using a 35-pixel 

radius filter. Time spent fixating and number of saccades within each area of interest were 

tabulated for each subject. Offscreen fixations (ie, when a participant looked away from the 

movie) were determined by fixation coordinates that fell outside the areas of interest. Any 

subject with total fixation time less than 30 seconds (ie, 50% of the experiment) was 

excluded from analyses. There was a significant difference in total viewing time between 

groups (F3,106=3.2; P=.02; mean viewing time: ASD, 49.4 seconds; TD, 53.7 seconds; and 

DD, 48.1 seconds). To compare percentage of fixation time within DGI between the 3 

diagnostic groups, a 1-way analysis of variance was performed (diagnostic group [3 levels] × 

percentage of DGI fixation time [1 level]). Significant effects were followed by planned 

contrasts using t tests. To determine the specific percentage of fixation time within DGI that 

would best discriminate toddlers with an ASD from toddlers with DD and TD, a receiver 

operating characteristic curve was generated that graphically displayed a plot of the true 

positives vs false positives using SPSS statistical software (SPSS, Chicago, Illinois, http://

www.spss.com/statistics). To determine if a preference for geometric patterns or DSI became 

stronger or weaker with development, percentage of fixation time on DGI was correlated 

with age for toddlers within each diagnostic group using Pearson product-moment 

correlations. Bonferroni correction was used with a significance level set at P < .0125 for all 

post hoc comparisons.

Time Course Analysis—To determine if each toddler’s preference was stable across the 

experiment or changed with time, fixation time data were divided into thirds (ie, percentage 

of fixation on geometric patterns from 0–19.99 seconds, 20–39.99 seconds, and 40–60 

seconds) for each participant and plotted as an average for each major diagnostic group. A 

repeated-measures analysis of variance was used to examine differences between each of the 

3 periods.

Number of Saccades—To determine if the overall number of saccades was different 

between groups, the total number of saccades divided by the total looking time was 

determined for each toddler.

Test-Retest Reliability—A subset of 41 toddlers (16 with an ASD, 5 with DD, and 20 

with TD) returned for a second eye tracking session 1 to 14 months following the first 

session (mean [SD], 7.79 [3.2] months later). Test-retest reliability was calculated as the 

percentage of preference difference between test time 1 and test time 2.
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RESULTS

A PREFERENCE FOR DGI IN A SUBGROUP OF TODDLERS WITH AUTISM

Overall, the percentage of time that toddlers spent viewing DGI was significantly different 

between diagnostic groups (F2,107=11.8; P< .001). As a group, toddlers with an ASD spent 

significantly more fixation time on DGI than TD toddlers (t86=4.5; P<.001) and toddlers 

with DD (t57=2.7; P= .009). Forty percent of the ASD group spent greater than 50% of 

viewing time fixated on DGI in contrast to only 1.9% of TD toddlers and 9% of toddlers 

with DD. Of the 15 toddlers with an ASD who preferred DGI, more than half spent more 

than 70% of their time visually examining DGI, with several toddlers exceeding 90% DGI 

viewing time, a pattern not found in any other group (Figure 2 and Figure 3). As is visually 

apparent in Figure 2, and confirmed with a receiver operating characteristic curve analysis 

(area under the curve=0.686 ±0.06; P < .001), when 68.6% geometric pattern viewing time 

was used as a cutoff, the positive predictive value for an ASD was 100%. Furthermore, a 

preference for geometric patterns was found in several subjects with an ASD younger than 

18 months, with the youngest age being 14 months.

An examination of the relationship of age on preference revealed no significant correlation 

between percentage of time viewing DGI (or DSI) and age, for any diagnostic group (ASD: 

r=0.06;P=.74;DD: r=0.05;P=.80; TD: r=0.11; P = .43). When age was used as a covariate in 

the overall analysis of variance, the main effect of age in the model was very low (F1,106= 

0.51; P =.47) while the main effect of group was still highly significant (F2,106= 10.9; P< .

001).

Excluding 1 TD toddler who preferred geometric patterns, 50% of viewing time on DSI 

marks the end of the range for TD toddlers, who all preferred DSI. Using this as a boundary, 

we next identified 2 subgroups within the larger ASD group: those who preferred DSI (ie, 

spent >50% of viewing time within DSI) and those who preferred DGI (ie, spent >50% of 

viewing time within DGI). Considering “geometric” and “social” responders with an ASD 

as separate groups, we next asked if the overall clinical characteristics differed between 

these 2 subgroups. Independent-sample t tests revealed no difference between geometric and 

social responders with an ASD on the social affect (t35 = 1.6; P = .10), restricted and 

repetitive (t35=−1.2;P = .23), or overall (t35 = 0.91;P = .36) ADOS-T scores. There were also 

no differences in the visual reception (t35 = −0.99; P = .32), fine motor (t35 =−1.7; P=.32), 

receptive language (t35=−0.98; P = .33), expressive language (t35=−0.42; P=.67), or early 

learning composite (t35=−1.2; P = .22) scores.

TIME COURSE ANALYSIS

An examination of differences in fixation on DGI across time for the 4 major groups 

(geometric responder with an ASD, social responder with an ASD, toddlers with DD, and 

TD toddlers) revealed a strong main effect of group (F3,106=49; P< .001) and follow-up t 
tests revealed that geometric responders with an ASD spent significantly more time fixating 

on DGI than other groups during all 3 periods. Although there was a small, significant 

increase in DGI fixation across time in all groups (F2,212= 12.7; P<.001), there was no group 

X time interaction (F6,212= 0.667; P>.05) (Figure 4).
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UNIQUE SACCADE PATTERN IN TODDLERS WITH AN ASD WHO 

PREFERRED GEOMETRIC IMAGES

The number of saccades while viewing DGI (F3,106=4.6; P = .005) and DSI (F3,106=8.9; P< .

001) was significantly different between geometric responders with an ASD, social 

responders with an ASD, and the DD and TD groups. Follow-up t tests revealed that the 

geometric responders with an ASD had a unique saccade signature and exhibited 

significantly fewer saccades when they were viewing their preferred geometric stimuli in 

comparison with all other groups (all P< .01). In contrast, when the geometric responders 

with an ASD viewed their nonpreferred stimuli, namely the social stimuli, they exhibited a 

significantly greater number of saccades in contrast to TD toddlers and toddlers with DD. 

The significance level in contrast to social responders with an ASD was P = .02, but this did 

not meet the Bonferroni correction threshold of less than .0125 (Figure 5).

TEST-RETEST RELIABILITY

Each toddler’s preference for a particular movie type was relatively stable. The mean change 

in percentage of preference within our sample was 15.62% (range, 1%-36%; SD, 9.2). As 

revealed by the range, 1 subject changed his preference by 36%. This subject had an ASD 

and changed his preference from social responder on test 1 to geometric responder on test 2. 

A paired-sample t test revealed no significant difference between percentage of fixation on 

DGI between test 1 and test 2 (t40 = 1.7; P>.05).

COMMENT

Using a simple preferential looking paradigm, toddlers who were at risk for or had a 

confirmed ASD diagnosis spent a greater amount of time visually examining dynamic 

geometric images (DGI) in contrast to dynamic social images (DSI). This pattern was not 

found in TD controls or DD contrast groups. When the percentage of time a toddler spent 

fixating on geometric patterns was 69% or greater, the positive predictive validity for 

accurately classifying that toddler as having an ASD was 100%. Furthermore, a preference 

for DGI may be a risk factor for autism in that this preference was observed in a toddler at 

risk for an ASD as young as 14 months.

This phenomenon, however, was not ubiquitous across the entire ASD sample. While a 

considerable portion of the ASD sample, namely 40%, were geometric responders, in that 

they preferred to visually examine DGI, the remaining 60% of participants with an ASD 

performed similar to the TD and DD contrast groups in that they preferred DSI. A 

preference for geometric patterns was not associated with general cognitive delay in that 

there was no relationship between IQ and fixation time within the ASD group. Additionally, 

with 2 exceptions, none of the toddlers with DD showed a preference for DGI. This is 

particularly compelling given that several of the toddlers with DD had IQ scores less than 

65. Given that there was also no relationship with the social affect or overall algorithm 

scores on the ADOS-T, it was thus not the case that toddlers with an ASD who preferred 

DGI had more severe symptoms in general. Instead, the findings illustrate a definable 

subgroup of toddlers with an ASD who may be linked to perceptual variables not examined 
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in this study, such as superior visual acuity,
51

 weak central coherence,
30

 or enhanced 

perceptual processing in general.
52

 Alternatively, this subgroup of toddlers may be a 

particularly strong example of those who do not prefer biological motion, as has been 

recently demonstrated.
17

While a preference for geometric patterns alone may be an intriguing novel identifier of 

early autism, results also illustrated a distinct pattern of saccades within the geometric 

responders. Based on research documenting deficits in shifting 
32–37

 and disengaging 

attention 
20

 in autism, we initially predicted that toddlers with an ASD overall would show a 

reduced number of saccades. Results revealed that it was only the geometric responders, not 

the group as a whole, who displayed a reduced number of saccades. Furthermore, this 

reduction in saccades was evident only when geometric responders with an ASD were 

viewing their preferred geometric patterns. In contrast, when geometric responders with an 

ASD viewed their non-preferred stimuli, namely DSI, they exhibited a significantly greater 

number of saccades (almost twice as many) in comparison with other diagnostic groups. A 

recent eye tracking study suggested that an increased number of saccades to DSI may be the 

result of anxiety in individuals with autism.
53

 Therefore, for this particular subgroup, the 

profile appears to be increased saccades during the viewing of nonpreferred stimuli and 

decreased saccades while viewing preferred stimuli. Thus, the combination of a preference 

for geometry combined with saccade quantity might be a particularly strong early identifier 

of autism.

Importantly, each toddler’s preference, be it DGI or DSI, was relatively stable across time. 

Additionally, there were no age effects in that there was no relationship between the quantity 

of looking time at DGI or DSI and age, suggesting that the current paradigm is suitable for 

use across at least the first 3 or 4 years of development.

Surprisingly, more than half of the toddlers with an ASD in the study behaved just like those 

who were TD or DD: they preferred DSI. The nature of the stimuli used may have 

contributed to this finding. In the past, we demonstrated that using highly compelling social 

images, such as images of mothers’ or children’s faces, resulted in much more normal brain 

activity in ASD than the use of less compelling stimuli, such as the faces of strangers.
39,54

 In 

the same way, the present study used attention-grabbing social stimuli that consisted of 

young children dancing and doing yoga. We can only speculate that the brain systems that 

are normally active in response to rich social images, such as the fusiform gyrus, cingulate, 

medial frontal lobes, and amygdala,
55

 were likely more engaged in the social responders 

group than in the geometric responders group. If this is true, then reanalyses of past 

functional magnetic resonance imaging studies with older children or adults with autism 

may be able to reveal distinct subgroups: those with an ASD with more “typical” social 

brain activity and those with less, reflecting a lifetime of differences in social preference and 

attention. Likewise, it may be that the neural profile of geometric responders when looking 

at geometric images may be stronger than social responders in brain regions classically 

involved in basic visual perception and attention, such as the extrastriate visual cortex and 

parietal lobes.
56,57

 While functional magnetic resonance imaging is currently not feasible 

with awake toddlers, other imaging modalities, such as electroencephalography and near 
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infrared spectroscopy, hold promise for future studies aimed at revealing possible unique 

neural signatures between these 2 groups.

It is undeniable that eye movements guide learning.
58

 What an infant chooses to look at 

provides images and experiences from which to learn and mature. To our knowledge, the 

present study is the first to empirically demonstrate that this preference in a subgroup of 

toddlers with an ASD may begin as early as 14 months, and quite possibly even earlier. The 

impact of reduced social attention in favor of attention to geometry at such an early age in 

development can only be surmised, but it is thus no surprise that functional magnetic 

resonance imaging studies of older children and adults with autism often report weak or 

absent functional activity in brain regions involved in social processing, such as the 

fusiform, medial frontal lobes, amygdala, and cingulate.
59–61

While the discovery of a putative new early warning sign of autism is encouraging, results 

should be interpreted with some caution for 2 reasons. First, approximately 20% of the 

overall sample was dropped from analyses because of poor compliance during testing, with 

the impact of such exclusion unknown. Second, participants viewed a movie that was only 1 

minute. While 1 minute has been previously demonstrated to be the average attention span 

of a 1-year-old,
62

 thus suggesting that 1 minute is optimal, examining a preference for 

geometric patterns would be even more compelling if established across multiple testing 

sessions. In the present study, only one-third of the overall sample participated in test-retest 

reliability.

Overall, however, the present study provides strong evidence that some infants at risk for an 

ASD begin life with an unusual preference for geometric repetition. We believe that it may 

be easy to capture this preference using relatively inexpensive techniques in mainstream 

clinical settings such as a pediatrician’s office. Furthermore, we also believe that infants 

identified as exhibiting preferences for geometric repetition are excellent candidates for 

further developmental evaluation and possible early treatment. Mechanisms of 

developmental plasticity provide clear rationale that an enriched environment, such as one 

afforded by careful early treatment, can significantly improve brain structure and 

function.
63,64

 The discovery of an early preference for geometric repetition moves beyond 

the more commonly studied social defects and opens up a new line of inquiry into the early 

emerging developmental abnormalities in autism.
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Figure 1. 
Sample stimuli illustrating 5 movie frames (Yoga Kids 3; Gaiam, Boulder, Colorado, http://

www.gaiam.com, created by Marsha Wenig, http://yogakids.com/) contained within the 

larger movie with dynamic geometric images on the right and dynamic social images on the 

left. Half of the subjects viewed the movie with this orientation and the other half, with the 

side of dynamic geometric images and dynamic social images reversed. The areas of interest 

are depicted by the white box highlighted on the first frame. Eye tracking data were recorded 

at 120 Hz for a total of 7200 data collections across the 1-minute movie.
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Figure 2. 
Scatterplot illustrating the percentage of fixation time on both dynamic geometric images 

(DGI) and dynamic social images (DSI) for each toddler with an autism spectrum disorder 

(ASD), typically developing (TD) toddler, and toddler with developmental delay (DD). Total 

percentage of time viewing DGI and DSI sums to 100% for each toddler. For example, a 

toddler who spends 80% of viewing time on DGI (as noted on the y-axis on the left) thus 

spends 20% of viewing time on DSI (as noted on the y-axis on the right). A toddler who 

spends more than 50% of viewing time on DGI is considered a “geometric responder” and a 

toddler who spends more than 50% of viewing time on DSI is considered a “social 

responder.”
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Figure 3. 
Example scan paths for a typically developing (TD) toddler, toddler with developmental 

delay (DD), geometric responder with an autism spectrum disorder (ASD), and social 

responder with an ASD across a 3-second scene overlaid on a single movie scene (Yoga 
Kids 3 ; Gaiam, Boulder, Colorado, http://www.gaiam.com, created by Marsha Wenig, 

http://yogakids.com/). The numbers inside the circles represent the order of saccades, with 

larger circles representing longer fixation times.
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Figure 4. 
Line graph depicting the time course of percentage of fixation on dynamic geometric images 

(DGI) across the 1-minute movie divided into 3 periods for geometric responders with an 

autism spectrum disorder (ASD), social responders with an ASD, typically developing (TD) 

toddlers, and toddlers with developmental delay (DD). Period 1 represents the mean 

percentage of fixation from 0 to 19.99 seconds, period 2 represents the mean percentage of 

fixation from 20 to 39.99 seconds, and period 3 represents the mean percentage of fixation 

from 40 to 60 seconds. Percentage of fixation on DGI was significantly different between 

periods 1 and 2. Error bars represent standard error of the mean.
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Figure 5. 
Bar graphs illustrating the mean number of saccades during the viewing of dynamic social 

images (DSI) (left) or dynamic geometric images (DGI) (right). The toddlers with an autism 

spectrum disorder (ASD) were grouped according to movie preference (ie, geometric or 

social responder). When viewing social images, geometric responders with an ASD had 

significantly more saccades than all other groups. When viewing geometric images, 

geometric responders with an ASD had significantly fewer saccades. *P<.01. †P<.001. ‡P=.

02. DD indicates developmental delay; TD, typically developing.
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