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Abstract

Objective—The purpose of this study is to evaluate automated implementations of cEEG-based 

detection of DCI based on methods used in classical retrospective studies.

Methods—We studied 95 patients with either Fisher 3 or Hunt Hess 4-5 aneurysmal SAH who 

were admitted to the Neurosciences-ICU and underwent continuous EEG monitoring. We 

implemented several variations of two classical algorithms for automated detection DCI, based on 

decreases in ADR and RAV.

Results—Of 95 patients, 43 (45%) developed DCI. Our automated implementation of the 

classical ADR-based trending method resulted in a sensitivity and specificity (Se,Sp) of (80,27)%, 

compared with the values of (100,76)% reported in the classic study using similar methods in a 

non-automated fashion. Our automated implementation of the classical RAV-based trending 

method yielded (Se,Sp) values of (65,43)%, compared with (100,46)% reported in the classic 

study using non-automated analysis.

Conclusion—Our findings suggest improved methods to detect decreases in ADR and RAV are 

needed before an automated EEG-based early DCI detection system is ready for clinical use.

INTRODUCTION

Aneurysmal subarachnoid hemorrhage (SAH) accounts for approximately 5% of all strokes. 

Survivors are at risk for secondary neurologic deterioration due to ischemia and infarction 

during the subsequent two weeks. This phenomenon, known as delayed cerebral ischemia 

(DCI), is the major source of long-term neurological disability in survivors of SAH(Haley, 

Kassell, & Torner, 1992).
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Up to 46% of SAH patients may develop DCI(Charpentier et al., 1999),(Hijdra, van Gijn, 

Nagelkerke, Vermeulen, & van Crevel, 1988),(Hop, Rinkel, Algra, & van Gijn, 

1999),(Frontera et al., 1963),(J Claassen et al., 2001). In approximately 25% cases, DCI is 

clinically ‘silent’ (Jan Claassen, Stephan A Mayer, Kurt T Kreiter, Joseph E Bates, Noeleen 

Ostapkovich, Adam S Mednick, 2000). Early detection of DCI may prevent permanent 

neurologic disability by enabling timely interventions, such as initiation of hypertensive 

therapy, administration of intra-arterial vasodilator therapy, or cerebral angioplasty(Frontera 

et al., 1963). Currently transcranial Doppler ultrasound, serial clinical examination, and 

cerebral angiography are chief methods to detect DCI. However, these methods are 

insensitive and cannot be used in a continuous manner. Consequently DCI often goes 

undetected or is detected too late for effective intervention.

Two “classical” small yet influential retrospective studies provided evidence that continuous 

EEG monitoring (cEEG) might allow early detection of DCI(Vespa, 1997),(Jan Claassen et 

al., 2004). (For a review of other studies that provide additional evidence, see the article in 

this journal issue by Gaspard.) Decreases in the alpha-delta ratio (ADR) were found in one 

study to precede many DCI events.(Jan Claassen et al., 2004) A decrease in relative alpha 

variability (RAV) in the other study was found preceding DCI events(Vespa, 1997). Because 

the methods in these studies rely on quantitative EEG (QEEG) measures, they lend 

themselves to automation for continuous prospective DCI surveillance. Nevertheless, more 

than 10 years later, DCI surveillance using ADR and RAV trending is not routine practice in 

most medical centers. How well the methods from these pioneering studies perform in 

practice when implemented in a fully automated fashion remains unclear.

In this study we implemented automated DCI detection algorithms adapted from the 

classical methods cited above, from Claassen et al 2004 (Jan Claassen et al., 2004) and 

Vespa et al 1997(Vespa, 1997). We tested these algorithms on continuous EEG recordings 

from 95 patients with SAH. We report on the sensitivity and false alarm rates of both 

automated algorithms for detection of DCI, and explore potential ways to improve their 

performance.

METHODS

Patient population

All patients with aneurysmal SAH with a Hunt–Hess grade of 4 or 5 (stupor or coma) or a 

Fisher score 3 or 4 admitted to the Neurosciences ICU (Neuro-ICU) at Massachusetts 

General Hospital (MGH), Boston between February 2012 and December 2014 were 

included in the study. Patients with SAH resulting from trauma (non-aneurysmal SAH) were 

excluded. For our adaptation of the ADR-trending method of Claassen et al(Jan Claassen et 

al., 2004), we required patients to have a minimum of 24 hours of EEG monitoring to be 

included in the analysis. For our adaptation of the the RAV trending method of Vespa et 

al(Vespa, 1997), we required patients to have a minimum of 12 hours of EEG monitoring 

data to be included in the analysis. Following MGH clinical protocol, EEG monitoring 

generally started 2 days after the initial SAH and continued for 10 consecutive days, though 

monitoring times did vary (see manuscript in this issue by Muniz et al for full details). All 
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data analysis for this study was retrospective and was performed under a protocol approved 

by the MGH Institutional Review Board.

Definition of DCI

In the literature on aneurysmal SAH, DCI is sometimes divided into two separate categories: 

radiologically-confirmed delayed cerebral infarction; and delayed ischemic neurologic 

deterioration, or DIND. Patients were diagnosed with delayed cerebral infarction when a 

radiologic sign of infarction was present on CT or MRI neuroimaging that was not present 

on hospital admission and was not attributable to a neurosurgical procedure. DIND was 

diagnosed in patients who developed a new neurological deficit or significant decrease in 

Glasgow Coma that was not attributable to a non-ischemic cause. In this study DIND and 

delayed cerebral infarction were combined into single event, hereafter referred to simply as 

DCI. For all diagnoses of DCI for this study were determined by a process of independent 

review of the medical record and subsequent adjudication of any cases of initial 

disagreements by three study neurologists who were blinded to the EEG findings (MBW, 

ESR, SZ).

EEG analysis

EEG data was acquired using the standard international 10-20 system. Data was first cleaned 

using clinical commercially available artefact reduction technology provided as part of the 

Persyst software suite (Persyst Development Corporation, San Diego, CA). This software 

uses blind source separation techniques to reduce non-cerebral artefacts in scalp EEG data, 

and is used routinely in clinical practice at MGH.

ADR and RAV trending were based on EEG data grouped into six regions: Right frontal 

(F4-C4), left frontal (F3-C3), right rolandic (C4-T4), left rolandic (C3-T3), right posterior 

(P4-O2) and left posterior (P3-O1). These areas were chosen to roughly correspond to 

territories of the anterior cerebral artery (ACA), middle cerebral artery (MCA), and posterior 

cerebral artery (PCA), respectively.(Rubin, Strayer, & Rubin, 2008)

Algorithm for ADR-based DCI Detection

We adapted the method of Claassen et al (Jan Claassen et al., 2004) to create an automated 

method for detecting DCI based on detection of a decrease in ADR. We note at the outset 

that this method is not an exact copy of Claassen et al’s method, but rather an adaptation 

using similar principles. See the Discussion section for a more detailed comparison.

For each of the six brain regions described above we computed time-frequency spectrograms 

using the method of multitaper spectral estimation(Bokil, Andrews, Kulkarni, Mehta, & 

Mitra, 2010; Bokil, Purpura, Schoffelen, Thomson, & Mitra, 2007; Thomson, 

1982),implemented in the Chronux toolbox (http://chronux.org). The spectral analysis 

parameters were: window length T = 10s with no overlap, time-bandwidth product TW = 3, 

number of tapers K = 5, and spectral resolution 2W of 0.75 Hz.

From each regional spectrogram, for each time t, we calculated the summed power in the 1-4 

Hz range, PA(t), and 8-13 Hz range, PD(t). Hereafter we call these frequency ranges the 
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alpha and delta bands, respectively. Subsequently we calculated the ratio of these sums to 

form the alpha-delta ratio, ADR:

(1)

As in Claassen et al(Jan Claassen et al., 2004), we calculated one ADR value each hour. In 

our adaptation we did this by taking the average ADR value over each hour. Overall, these 

calculations resulted in 6 ADR time series, each with one ADR measurement per hour for 

each patient.

Our algorithm attempts to detect DCI by looking for decreases in ADR relative to the 

baseline value that persist in consecutive measurements some specified number of times. We 

considered two ways of determining an ADR baseline value:

1. fixed baseline: the first 24 hours of the ADR time series.

2. moving baseline: the previous 24 hours of the ADR time series.

In the method of Claassen et al(Jan Claassen et al., 2004), two parameter value settings that 

were found to be most promising in terms of sensitivity (Se), specificity (Sp), positive 

predictive value (PPV), and negative predictive value (NPV) were (1) a decrease in ADR of 

>10% at least 6 times in row, or (2) any decrease in ADR of >50%. In the present study, as 

conditions for issuing DCI alarms, we considered ADR decreases relative to baseline of 

10%, 20% or 50% over 2, 4, 6, 8, or 10 consecutive measurements. In case more than 10 

consecutive below-threshold measurements occurred, we restarted the count over from zero, 

as illustrated in Figure 1.

Algorithm for RAV-based DCI Detection

We adapted the method of Vespa et al (Vespa, 1997) to create an automated algorithm for 

detecting DCI based on detection of a decrease in RAV. As above, we note that this method 

is not an exact copy of Vespa et al’s method, but rather an adaptation using similar 

principles. See the Discussion section for a more detailed comparison.

The initial step in our adaptation of the algorithm is calculating the RAV is to create time 

series of “alpha to total power ratio” (ATR) values from the 6 regional spectrograms 

(computed as described above). For RAV the alpha power was defined as the summed power 

over the range 6-14 Hz (note the slightly different meaning of “alpha” compared with (Jan 

Claassen et al., 2004)), and the “total” power was the summed power over the 1-20 Hz 

range. The ATR was defined as the alpha power divided by the total power, multiplied by 

100%:

(2)

These initial ATR time series have a sampling frequency of 0.1Hz (one value every 10 

seconds). We next convert these values into a time series of 0.0083Hz (1 value every 2 
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minutes) by taking the average ATR value within consecutive non-overlapping windows. 

Finally, we grouped ATR values in these final time series into 12 hour epochs.

As in Vespa et al (Vespa, 1997), each 12 hour epoch was assigned a “relative alpha 

variability” (RAV) score, ranging from 1 to 4, to characterize the degree of variability during 

that epoch. The categories are called “poor” (RAV score =1), “fair” (RAV score = 2), “good” 

(RAV score = 3), and “excellent” (RAV score = 4).

We assigned sequential RAV scores to each of the 6 brain regions in each patient following 

the method of Vespa et al (Vespa, 1997), as follows (see Table 1). The “baseline” value for 

each epoch was defined as the median ATR value for that epoch. A “poor” RAV score 

(RAV=1) was given to epochs with no excursions greater than 2% around the baseline. 

Epochs with excursions between 2-10% around the baseline were given a “fair” RAV score 

(RAV = 2). Epochs with excursions of 10% at least every 4 hours were categorized as 

“good” RAV (RAV = 3).

The criteria for assigning a score of “excellent” RAV (RAV = 4) were not fully specified in 

(Vespa, 1997); therefore we considered two different options. In the first option RAV = 4 

was assigned if there was at least 1 excursion around baseline of at least 15% every hour. In 

the second option, a score of RAV = 4 was assigned if there were at least 12 excursions of at 

least 15% around the baseline during the entire 12 hour epoch, regardless of when they 

occurred.

Following (Vespa, 1997), our RAV-based DCI detection algorithm is “positive” whenever 

there is a decrease of at least one RAV grade in at least two brain regions during the same 

epoch.

RESULTS

We identified 95 patients within the study period with aneurysmal SAH. The mean (SD) age 

of this group was 56.5 (14.7) years. 46 of these patients underwent endovascular coiling, and 

49 underwent surgical clipping of their aneurysm. The number of patients who developed 

DCI was 43 (45%). The mean (SD) time to DCI was 7.5 (3.5) days after onset of SAH. The 

median [IQR] time from onset of SAH to beginning of EEG monitoring was 61 [42, 84] 

hours. The median [IQR] duration of EEG monitoring data available for analysis was 154 

[97, 196] hours.

For the ADR-based DCI detection method, 85 patients had sufficient EEG data to satisfy 

inclusion criteria. Of these, 41 (48%) developed DCI. The 12 patients who were excluded 

lacked the minimal requirement of 24 hours of baseline EEG data needed by the algorithm.

For the RAV-based DCI detection method, 90 patients had sufficient EEG data to satisfy 

inclusion criteria. 43 of these 90 patients (48%) developed DCI. The 5 patients who were 

excluded lacked the minimal 12 hours of data required by the detection algorithm.
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Results for automated ADR-based DCI detection

Figure 1 illustrates how the ADR-based DCI detection algorithm works. In this example, the 

ADR trend is shown for the left frontal (LF) region of one patient who had a clinically 

diagnosed DCI on day 9. In this example there is a clear decreasing trend in ADR values 

over time. Using the fixed baseline (upper panels) results in a progressively increasing 

frequency of negative differences relative to baseline. In this case, the trend is so persistent 

repeated alarms would occur with any of the thresholds we consider, i.e. whether we require 

anywhere between 0 up to 10 consecutive below-baseline ADR measurements to sound a 

DCI alarm.

By contrast with the fixed baseline, the moving baseline (lower panels) decreases over time. 

This results in smaller differences between ADR and baseline and fewer consecutive 

detections. In this case the DCI alarm may or may not sound, depending on the number of 

consecutive below-baseline ADR values that we set as an alarm threshold. In this example, 

we can see that the algorithm would successfully sound the alarm before the clinical 

diagnosis of DCI on day 9 under a range of possible choices for the alarm threshold.

Unfortunately, despite this encouraging example, in general the trade-off between sensitivity 

and false alarm rate is not favourable, as we will next see from ROC analysis.

Figure 2 shows points on the receiver operating characteristic (ROC) curve for three 

threshold values (−10%, −20% and −50%) and for different numbers of consecutive below-

baseline ADR measurements used as thresholds to sound an alarm (0, 2, 4, 6, 8 or 10 

consecutive measurements). These statistics are based on the entire sample of 85 cases. For 

comparison, a diagonal “chance line” is shown, representing the sensitivity and specificity 

values obtainable by sounding an alarm whenever a randomly generated number with 

uniform probability of taking values between values of 0 and 100% crosses a threshold that 

likewise varies between 0 to 100%. As is evident from the plots, all ROC points are close to 

chance performance levels for the fixed baseline method. Slightly better but still poor 

performance is achieved by the moving baseline method, with highest sensitivity and 

specificity achieved by requiring 10 consecutive below-threshold ADR values.

Table 2 provides numerical values for the sensitivity, specificity, positive predictive value 

(PPV) and negative predictive value (NPV) achieved by the ADR-based automated DCI 

detection algorithm using both fixed and moving baselines. In general, the fixed baseline 

method gives higher sensitivity but lower specificity, whereas the moving baseline method 

achieves higher specificity but lower sensitivity. However, as was seen in Figure 2, 

performance is generally poor for both methods. Under all conditions, adding the sensitivity 

to the specificity produces values close to 100%, reflecting the observation in Figure 2 that 

ROC points were generally close to the chance-performance line.

The highest sensitivity and specificity combination (respectively 95% and 34%) achieved by 

the automated method is obtained with a fixed baseline, a threshold of −10%, and an alarm 

criterion of 2 consecutive below-baseline ADR values (Table 2). Using these criteria on the 

clinical cases with DCI the mean time between the first ADR change detection and the 
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clinical DCI was 3.9 days. As indicated by the low specificity value of 34%, this “early 

detection” is achieved largely by frequent relatively indiscriminate alarming.

Results for automated RAV-based DCI detection

Figure 3 illustrates how the RAV-based DCI detection algorithm operates. ATR values are 

plotted every 2 minutes for each of the 6 brain regions, and the RAV score assigned to each 

12 hour epoch is plotted above the ATR values. An alarm is emitted for each epoch in which 

there is a decrease in the RAV score in two or more brain regions. In this case six alarms are 

issued at different times due to subtle decreases in RAV.

Table 3 shows the sensitivity and specificity achieved by the automated RAV-based detection 

algorithm for each method of assigning RAV scores, based on the entire sample of 90 cases. 

Both methods show performance near chance levels, i.e. sensitivity + specificity is nearly 

equal to 100%. This performance is substantially worse than was achieved by the non-

automated method of Vespa et al 1997(Vespa, 1997) in a cohort of 32 patients, in which 

sensitivity and specificity were reported to be 100% and 46%, respectively.

Using criterion 1 for assigning an RAV score of 4, the sensitivity and specificity were 

respectively 65% and 43%. Using this method, in cases with DCI the mean time from the 

automated alarm to the clinical diagnosis of DCI was 4.7 days. This is earlier than in study 

of Vespa et al 1997(Vespa, 1997), where alarms occurred an average of 2.9 days before DCI. 

However, in the case of our automated RAV-based detection algorithm, given the poor 

sensitivity and specificity, this lead time reflects the tendency for alarms to occur randomly 

rather than a true ability detecting events early.

Histograms in figure 4 show the difference in number of alarms for patients with and 

without DCI. Differences in histograms resulting from option 1 and 2 for assigning scores of 

RAV = 4 are also demonstrated (left and right Figure columns). In most of the 90 cases in 

the SAH cohort, no alarm went off, regardless of whether the patient was eventually 

diagnosed with DCI. In many other cases numerous alarms went off, again without any 

striking difference between cases with vs without DCI. Using option 1 for assigning scores 

of RAV = 4 generally results in more alarms than using option 2.

DISCUSSION

In this study we tested whether EEG-based methods modelled after those used in the 

pioneering retrospective studies of Vespa et al(Vespa, 1997) and Claassen et al(Jan Claassen 

et al., 2004) could allow early detection of DCI when deployed in a fully automated fashion. 

Our major finding is that straightforward adaptations of both ADR-based and RAV-based 

DCI detection algorithms perform at near-chance levels. These findings do not throw doubt 

on the relationship between cerebral ischemia and spectral changes in the EEG, which are 

well-established. However, these findings do suggest that further work is required before an 

automated EEG-based early DCI detection system can be ready for clinical use.

The primary strengths of our study were the relatively large number of cases analysed, and 

the use of a completely automated, and thus human bias-free, methodology. The algorithms 
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that we developed employed simple rules to detect decreasing trends in the RAV or the ADR 

over time. We considered several different criteria for issuing a DCI alarm, by varying the 

free parameters of each algorithm to optimize statistical measures of performance. The 

present study was based on relatively large samples of unelected cases (90 cases for RAV-

based DCI detection, and 85 cases for ADR-based detection), and performed detections in a 

completely automated, and thus objective and reproducible way. Our findings are therefore 

likely to generalize to other groups of patients.

While the automated methods investigated herein were based on methods used in classical 

retrospective studies, there were important differences in both the findings and in the details 

of the methodology.

In the study of Claassen et al(Jan Claassen et al., 2004) based on non-automated trending of 

ADR values, two parameter settings were suggested as particularly promising criteria for 

issuing DCI alarms: (1) Triggering an alarm upon observing six consecutive ADR values 

10% of more below baseline gave a detection sensitivity and specificity (Se,Sp) of (100, 

76)%, respectively; (2) triggering an alarm for any ADR decrease of >50% yielded (Se,Sp) = 

(89,84)%. By contrast, in the present study, observing six consecutive measurements ADR 

values >10% below baseline, using criterion (1) with a fixed baseline yielded (Se,Sp) = 

(80,27)%, whereas criterion (2) yielded (Se,Sp) = (44,50)%. Using a criterion of one ADR 

decrease >50% yielded (Se,Sp)= (90,11)% with baseline criteria (1) and (Se,Sp)=(61,43)% 

with baseline criteria (2). Both results fall close to chance performance on the ROC plot 

(Figure 2), indicating that the method performs little or no better than guessing. Changing 

the algorithm to use a moving baseline resulted in no meaningful improvement in detection 

performance.

In the study of Vespa et al (Vespa, 1997) using non-automated detection of decreases in 

RAV, a decrease in RAV by one or more grade resulted in a sensitivity of 100% and a 

specificity of 46%. By contrast, our automated adaptations of this method performed poorly 

(Table 1). Using the first of two RAV scoring methods yielded (Se,Sp) = (65,43)%, whereas 

the second method yielded (Se,Sp)=(42,62)%. Performance of both methods falls near 

chance levels on the ROC curve, where Se + Sp = 100%.

Our implementation of RAV-based DCI detection causes frequent alarms in patients with 

and without eventual DCI. Thus, although we found that on average cases of DCI had 

decreases in RAV 4.7 days before clinically diagnosed DCI, this apparently impressive lead 

time is unfortunately apparently due to indiscriminate alarming.

The stark contrast between the disappointing results for automated DCI detection in the 

present work and the promising results of the pioneering studies on which the present work 

was modelled requires careful consideration. Several important differences between these 

prior studies and the present study might help to explain these differences while holding out 

hope that continuous automated DCI detection may yet be possible.

First, in the method of Claassen et al(Jan Claassen et al., 2004), ADR values were evaluated 

exclusively immediately after clinical staff had stimulated the patient, and presumably at 

times for which sedating drugs were minimized. In contrast, our automated ADR-based 
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method used all EEG data. This difference might be critical, as patients at their most alert 

may have higher ADR values, and ADR values from times of maximal alertness may not be 

comparable to ADR values obtained at other times. If measuring ADR post-stimulation 

indeed is critical to obtaining reliable DCI predictions, this would mean that fully automated 

DCI detection is not entirely possible. Rather, reliable prediction would need to incorporate 

standardized, regularly timed staff interactions to stimulate the patient, and an efficient 

means of passing along to the DCI surveillance algorithm the timing of stimulations.

A second probable difference is that in both the methods of Claassen et al(Jan Claassen et 

al., 2004) and Vespa et al (Vespa, 1997) data epochs were selected manually. It is well 

known that EEG patterns may be modulated by a wide variety of factors, including 

sedatives, state changes (e.g. sleep vs wake), metabolic factors, seizures, etc. Thus, while not 

stated explicitly in the methods sections, it is possible that the manual data selection 

processes in these prior studies somehow took these factors into account and excluded data 

for which variations in ADR or RAV had explanations other than DCI. By contrast, in the 

“naïve automation” approaches explored in the present study, these sources of extrinsic 

variation remained present in the data, and may have led to frequent alarms.

Overall, we believe that the correct inference from the disappointing findings of the present 

study are that further work is needed to make automated EEG-based early detection of DCI 

into a clinical reality. Several mitigating considerations leave room to hope that robust 

automated DCI detection will eventually be possible. First, the physiological principles 

underlying EEG-based ischemia detection are well established(Vespa, 1997),(Nagata, 

Tagawa, Hiroi, Shishido, & Uemura, 1989),(Jan Claassen et al., 2004),(Nuwer, 

1987),(Tolonen & Sulg, 1981) (see e.g. the paper by Foreman et al. in this journal issue). 

Second, subsequent studies using prospective but non-automated approaches to DCI 

detection based on visual analysis of continuous EEG show promising results (reviewed by 

Gaspard in this issue; see also the paper by Muniz et al in this journal issue). Third, the 

attempts made at automation in the present study were relatively unsophisticated from the 

standpoint of statistical signal processing. Thus, while the present study suggests that “naïve 

automation” of DCI fails, it is possible that improved methods might yet succeed.

Improvements in case selection might also improve chances of success in future attempts at 

automated DCI detection. First, several of the cases had common non-DCI complications 

(e.g. re-hemorrhage, parenchymal ICH, or surgical complications; data not shown) that may 

produce changes in the EEG similar to those caused by DCI. As in other studies these events 

were not classified as DCI events, and therefore may complicate the training of any 

discriminative algorithm. Future work could either exclude such cases, or make special 

provisions so as to ignore periods surrounding non-DCI complications when training and 

evaluating detection algorithms. Second, the beginning times and total duration of 

monitoring varied. Future studies might benefit from restricting analysis to only cases that 

include data beginning soon after the onset of SAH, e.g. within 48 hours, continue until at 

least day 6-7, and perhaps by excluding patients who underwent procedures with high rates 

of confounding complications, e.g. surgical clipping. Of course the downside of stricture 

inclusion criteria will be that any method developed in this way would have a more limited 

scope.
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Finally, along the same lines, it is likely that a DCI detection algorithm that takes into 

account covariate factors that affect the EEG (e.g. sedative infusion rates, metabolic factors, 

times of stimulation) will produce more reliable predictions than algorithms like those in the 

present study which ignore these factors.

Therefore, while automated EEG-based early detection of DCI is not yet ready for clinical 

use, we believe that non-automated clinical monitoring for ischemia remains a valuable 

component of caring for patients with aneurysmal SAH, and remain hopeful that automated 

continuous EEG-based ischemia monitoring will eventually be possible.
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Figure 1. 
ADR (red) from the left frontal region of one patient who developed DCI 9 days after SAH. 

One ADR value is calculated each hour. In the upper plots alarms are determined by 

comparing ADR values to a constant baseline (blue). In the lower plots alarms are 

determined by comparing ADR values to a moving baseline (blue). The alarm threshold is 

set to −10% in the leftmost panels, to −20% in the middle panels, and to −50% in the 

rightmost panels. The time in days (x axis) represents the time elapsed from the time of 

initial SAH. The number of consecutive baseline crossings (green) is reset to zero and starts 

over after exceeding a count of 10.
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Fig. 2. 
ROC points for the (A) constant baseline and (B) shifting baseline cases. 1-specificity 

against sensitivity. Each ROC curve includes 6 points, corresponding to different thresholds 

(0, 2, 4, 6, 8, 10) on the number of consecutive below-baseline values required to sound an 

alarm. The different colours represent the three different thresholds. Abbreviations: BL – 

10%, alarm threshold is 10% below baseline; BL – 20%, alarm threshold set to 20% below 

baseline; BL – 50%, alarm threshold set to 50% below baseline.
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Fig. 3. 
ATR plots and associated RAV scores for a patient with a clinically diagnosed DCI 7.5 days 

after onset of SAH. RAV scores are assigned using the scoring rules in Table 1, using option 

1 to assign scores of RAV = 4. In this example 6 different alarms are issued during the 

course of EEG monitoring. The decreases in RAV that lead to the alarms in this case are 

subtle. Abbreviations: LF/RF, left/right frontal; LR/RR, left/right rolandic; LP/RP, left/right 

posterior. Time (x-axis) is counted relative to the time of SAH onset.
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Fig. 4. 
Histograms of number of alarms vs frequency of alarms. The upper histograms are for 

patients without clinically diagnosed DCI. The lower histograms are for patients with 

clinically diagnosed DCI. The left plots result from using option 1 for RAV = 4 and the right 

plots result from using option 2 (see Table 2).
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Table 1

Classification of RAV, adapted from the method of Vespa et al 1997. We considered two methods for assigning 

a score of 4.

Calculation of RAV scores

Score: Description: Excursions from baseline:

1 Poor RAV All < 2%

2 Fair RAV All <10% but some >2%

3 Good RAV > 10% every 4 hours but not meeting RAV =4 criteria

4 Excellent RAV Option 1: >15% every hour
Option 2: >15% at least 12 times in 12 hours
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Table 2

Performance statistics for the automated ADR-based DCI detection algorithm, using either a fixed baseline (a) 

or a moving baseline (b). Thresh, threshold; Sens, sensitivity; Spec, specificity; PPV, positive predictive value; 

NPV, negative predictive value.

Fixed baseline Moving baseline

Thresh successive
measurements

Sensa

(%)
Speca

(%)
PPVa

(%)
NPVa

(%)
Sensb

(%)
Specb

(%)
PPVb

(%)
NPVb

(%)

−10% 0 100 0 48 - 80 34 53 65

change 2 95 34 57 88 63 66 63 66

4 90 7 47 43 54 48 49 53

6 80 27 51 60 44 50 45 49

8 73 34 51 58 27 66 42 49

10 51 34 42 43 10 82 33 49

−20% 0 98 0 48 0 78 34 52 63

change 2 95 7 49 60 56 43 48 51

4 85 23 51 63 49 50 48 51

6 71 34 50 56 39 59 47 51

8 59 36 46 48 17 77 41 50

10 41 41 40 43 5 84 22 49

−50% 0 90 11 49 56 61 43 50 54

change 2 76 30 50 57 46 59 51 54

4 46 41 42 45 20 77 44 51

6 41 43 40 35 15 82 43 37

8 24 61 37 47 2 95 33 51

10 15 66 29 45 0 100 - 52
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Table 3

Sensitivity (sens.) and specificity (spec.) of the RAV-based automated detection algorithm tested on our cohort 

of 90 patients, using the two different options for assigning RAV = 4 (see Table 1). For comparison, we also 

provide here the results reported by Vespa et al 1997 on their cohort of 32 patients.

RAV Sens. Spec.

Automated detection (Score 4 – option 1) 65% 43%

Automated detection
(Score 4 – option 2)

42% 62%

Vespa et al 9 100% 46%
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