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KATP and cardiovascular disease: The theoretical case

Cardiovascular KATP and cardioprotection

Since their discovery in cardiac myocytes over 30 years ago, it has been recognized that 

KATP channels provide a very large potential ionic conductance in the surface membranes of 

all muscle cells. Under normal metabolic conditions, cardiac KATP channels are 

predominantly closed, and they do not significantly contribute to cell excitability. However, 

these channels can open when exposed to a severe metabolic stress such as anoxia, 

metabolic inhibition or ischemia. By shortening the action potential, KATP activation will 

reduce Ca2+ entry and inhibit contractility
1
, thereby reducing energy consumption, 

potentially protecting the cell. Such a preservation ‘strategy’ is naturally self-limiting - if too 

many myocytes stop contracting, the heart will stop pumping and the animal will die, but it 

has always been a reasonable notion that temporary protection of a small number of cells, or 

region of the heart, against the damage of Ca2+-overload during ischemia, is a likely 

beneficial consequence of KATP channel activation.

In the vasculature, activation of KATP channels will hyperpolarize the membrane potential, 

leading to inhibition of voltage-sensitive Ca2+-channels and lowering of intracellular Ca2+, 

resulting in vasodilation
2
.
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Cardiac KATP channels and arrhythmia

Opening of cardiac KATP channels both shortens the action potential and reduces the 

refractory period, such that channel activation could establish an arrhythmogenic substrate 

supporting reentry. Hence inhibition of KATP could be a way to stop or even prevent 

arrhythmias. Because KATP channels tend to open only when cell metabolism is inhibited, 

any agents that inhibits KATP activity should specifically target channels only during 

ischemia, leaving non-ischemic myocardium unaffected. On the other hand activation of 

cardiac KATP channels has consistently been shown to protect the heart from damage during 

ischemia, by limiting Ca2+ entry.

The molecular basis of KATP channels

KATP channels are heterooctameric complexes of 4 pore-forming Kir6 channel-forming 

subunits, each associated with one regulatory SUR subunit. Two Kir6-encoding genes, 

KCNJ8 (Kir6.1) and KCNJ11 (Kir6.2)
3,4, and two SUR genes, ABCC8 (SUR1) and ABCC9 

(SUR2)
4–6

 encode mammalian KATP subunits, but alternative RNA splicing can give rise to 

multiple SUR protein variants (e.g. SUR2A and SUR2B) that confer distinct physiological 

and pharmacological properties on the channel complex
7,8. Interestingly, the genes for 

Kir6.2 and SUR1 are located next to each other on human chromosome 11p15.1
4
 suggesting 

an as yet unrecognized co-regulation at the gene level. In addition, the genes for Kir6.1 and 

SUR2 are also adjacent to one another on chromosome 12p12.1
6,9, implicating an 

evolutionary duplication. In heterologous expression, both Kir6.2 and SUR1 subunits co-

assemble in a 4:4 stoichiometry
4
 to generate the functional KATP channel

10–12
. Similarly, 

biochemical studies confirm that the SUR2 protein variants, SUR2A and SUR2B, also 

coassemble with Kir6 subunits
3,13–15

, presumably in a similar octameric arrangement.

Crystallographic studies of bacterial and eukaryotic Kir channels
16,17

[new] demonstrate a 

conserved architecture of Kir channels with two transmembrane helices (M1, M2) bridged 

by an extracellular loop that generates the narrow portion of the pore and controls ion 

selectivity. As with other ABCC proteins, SURs contain two six-helix transmembrane 

domains, TMD1 and TMD2 and two cytoplasmic nucleotide binding folds (NBFs), but also 

contain an additional N-terminal TMD0 domain that is critical for trafficking and gating of 

the channel complex
18

. The details of the physical connection between Kir6 and SUR 

subunits remains unknown, but electron micrography and intersubunit FRET studies of 

complete KATP complexes suggest an intimate packing of 4 SUR and 4 Kir6.x subunits
19,20

.

The key regulatory features of KATP channels are rapid and reversible closure by 

cytoplasmic ATP, and activation by nucleotide tri- and diphosphates
21

. In the absence of 

other nucleotides, the free [ATP] that causes half-maximal channel inhibition is in the 

micromolar range. Since intracellular ATP concentrations are in the low millimolar range 

and change little under physiologic conditions, [ATP] is probably always sufficient to almost 

fully inhibit channel activity. Channel activation then arises from the activating effects of 

Mg-nucleotides, particularly MgADP, on the SUR subunit
22

. Nucleotide regulation is 

probably the key molecular regulator of KATP channel activities, although other second 

messenger systems and regulators
23

 may be involved in control of channel activity and 

channel-dependent pathologies.
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Cardiovascular tissue distribution of KATP channel subunits

From studies in heterologous expression systems where SUR and Kir6 subunit expression 

can be controlled, it is apparent that all possible subunit combinations can and do occur. 

Post-translational quality control mechanisms have been described that ensure the 

appropriate octameric composition of the channel
24,25

, yet there is no evidence that these 

mechanisms discriminate between subunits. There have been relatively few studies to 

examine the transcriptional regulation of KATP subunits and still little is known about what 

specific factors might control KATP structure, although members of the forkhead 

transcription factor family and HIF-1α have been shown to regulate the expression of some 

subunits (as well as metabolic enzymes) 
26,27

.

Kir6.1 and Kir6.2, as well as SUR2 and SUR1, are all expressed in the heart
3,28–30

. There is 

now good evidence that in mouse hearts, SUR1 and Kir6.2 are major constituents of the 

atrial myocyte sarcolemmal KATP, whereas SUR2A and Kir6.2 generate ventricular 

KATP
31,32

. However, in hearts of larger animals, including humans, both SUR1 and SUR2A 

subunits probably contribute to sarcolemmal channels in both atrial and ventricular 

myocytes
33

 (Fig. 1). The situation may be more complex in critical subregions of the heart, 

including nodal and conduction cells. KATP channel currents have been detected throughout 

the pacemaking and conduction systems
34–36

. Low KATP single channel conductances in 

rabbit SA node cells and mouse conduction cells
34

 suggests a role for Kir6.1 in generating 

the channel pore in these tissues, yet sarcolemmal KATP is abolished in Kir6.2−/− SA node 

cells
37

 indicating a necessary requirement for Kir6.2. The identity of the SUR component of 

KATP in conducting and pacemaker tissues is unknown, although KATP channels in nodal 

cells do respond to the relatively SUR2-specific openers cromakalim and pinacidil, 

suggesting a major role for SUR2
34–36

.

KATP channel density is relatively low in vascular smooth muscle (VSM) compared to 

cardiac myocytes
38,39

 and the biophysical and pharmacological properties are quite variable, 

reflecting variable expression of KATP subtypes between vascular beds
40–47

. There is 

considerable variation in reported single channel conductances
43,44,48–52

, although low-

conductance channels (unitary conductances from 20–50 pS) may represent the predominant 

KATP channel subtype, with a more limited distribution of medium- and high conductance 

KATP channels (50–70 pS and >200 pS, respectively)
53

. Importantly, and unlike classic KATP 

channels of the heart
3,54

 or pancreas
4,55

, the predominant VSM KATP conductances are 

inactive in isolated membrane patches, and require nucleotide diphosphates (ADP, UDP, 

GDP) in the presence of Mg 2+ to open, leading to their functional designation as 

‘nucleotide-dependent’ K+-channels, or KNDP channels
46,56,57

. Heterologously expressed 

Kir6.1/SUR2B channels recapitulate many of these biophysical properties of native VSM 

KATP/KNDP
9,13,58–61

. Thus the Kir6.1/SUR2B channel may represent the predominant VSM 

KATP, but other subtypes are also likely to be expressed in specific vascular beds, separately 

or in combination with Kir6.1/SUR2B subunits
56

 (Fig. 1).

Finally, it is important to note that KATP channels are also prominent in lymphatic muscle. 

While the classical understanding was that fluid flow in the lymphatic system was passive, it 

is now clear that lymphatic vessels are lined by smooth muscle. Contractility of these vessels 
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is clearly sensitive to KATP activation
62

, with a pharmacological profile that is consistent 

with the major subunits expressed in lymphatic muscle being Kir6.1 and SUR2
63

.

Cardiovascular disease and KATP mutations

Predictions from genetically modified animals

Murine knockout models of each of the four KATP channel genes have been generated and 

extensively analyzed. Knockout of Kir6.2 or SUR1 results in a loss of glucose-dependent 

insulin secretion, modeling features of hyperinsulinism in humans
64,65

. Conversely, 

knockout of Kir6.1 or SUR2 leads to a vascular hypercontractility phenotype
30,66

. The key 

features are baseline hypertension, coronary artery vasospasm and sudden cardiac death. 

SUR2−/− mice treated with the Ca2+ channel blocker nifedipine exhibit a reduction in 

coronary artery vasospasm, implicating abnormally elevated [Ca2+]i due to loss of 

hyperpolarizing KATP current as causal in the hypercontractility
66

. Collectively, these KATP-

null mice recapitulate clinical features of the human disorder of Prinzmetal (or variant) 

angina, but several studies have failed to demonstrate any association of human coronary 

vasospasm or hypertension with LOF mutations in Kir6.1 or SUR2
67,68

, even though linkage 

analysis indicates that there are associated genes within the same locus as Kir6.1 and 

SUR2
69

.

We have extensively explored the potential for KATP gain-of-function (GOF) action in the 

heart and vasculature by transgenic introduction of mutant Kir6.1 and Kir6.2 channels that 

are very insensitive to closure by ATP
70–72

. Under aMHC control, GOF subunits expressed 

in the heart generate channels that still remain closed under all but extreme circumstances, 

and cause little overt malfunction, with no decrease in cardiac action potential duration, nor 

decrease in contractility
70,72

. Curiously, we find that in ventricular myocytes from these 

animals there is actually dramatically enhanced Ca2+ current,
73

 which may be a 

compensatory response to an initial or local action potential shortening. These studies also 

reveal that overexpressing the SUR1 isoform the myocardium has an effect to prolong the 

PR interval
74

, and that when Kir6.2 GOF is expressed together with SUR1, second and third 

degree AV block, progressing to ventricular and supra-ventricular arrhythmias and 

death
74,75

.

While the phenotype of animals expressing KATP GOF in the heart is complex, expression of 

Kir6.1 GOF mutants in smooth muscle (under smooth muscle HC promoter control) leads to 

enhanced KATP activity in vascular smooth muscle, and a clear reduction of systolic and 

diastolic blood pressures
71

, paralleling the effects of KCOs in human hypertensive patients.

KATP-associated human disease

Thus animal studies have provided a clear prediction of hypertensive or hypotensive 

consequences for KATP LOF or GOF, respectively, in smooth muscle, but rather complex and 

contradictory predictions regarding KATP mutations in the heart. This may help explain why, 

until recently, there has been little evidence for human cardiovascular disease resulting from 

KATP gene mutations (Table 1). Gain- and loss-of function mutations in KCNJ11 (Kir6.2) 

and ABCC8 (SUR1), which encode the predominant KATP channel subunits in pancreatic β-
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cells and in neurons
76

, are now well understood to underlie neonatal diabetes and congenital 

hyperinsulinism, respectively
77

. However, and despite evidence for expression of these 

subunits in cardiac myocytes, there is no published evidence for any cardiovascular 

problems in these patients.

Sequence analysis of DNA from necropsy tissue on sudden infant death syndrome (SIDS) 

cases identified coding mutations in KCNJ8 (Kir6.1), an in-frame deletion (E332del) and a 

missense mutation (V346I), both in the distal C-terminus of Kir6.1. Reduced channel 

activity was reported from expressed mutant channels, leading the authors to conclude that 

loss-of-function mutations in Kir6.1may be one cause of SIDS
78

, through as yet unexplained 

mechanisms. There have also been two reports of SUR2 loss of function mutations leading 

to cardiac disease
79,80

. In each case, the mutations were identified in the C-terminal exons 

and would therefore lead to a disruption of the second nucleotide binding fold of SUR2A, 

and hence reduction of nucleotide stimulation of channel activity, without affecting SUR2B. 

In the first report, the single patient with the mutation presented with long-standing atrial 

fibrillation originating in the vein of Marshall, with normal cardiac morphology and 

contractile features
80

. In the second report, two individuals with two distinct mutations 

presented with heart failure due to idiopathic dilated cardiomyopathy
79

. There have been no 

subsequent reports of similar genetic defects, and further evidence for causal association of 

Kir6.1 or SUR2 LOF mutations with disease is lacking.

Several studies reported a single KCNJ8 mutation (encoding S422L in Kir6.1) protein to be 

associated with the ‘J-wave’ phenomenon, characterized by abnormalities in the J-point of 

the ECG and early repolarization syndrome (ERS). First reported by Haissaguerre et al
81

, 

subsequent studies have reported association of this variant with atrial fibrillation (AF)
82

, as 

well as additional Brugada syndrome and early repolarization syndrome patients
83,84

. 

However, a recent study has reported that this variant is relatively common in individuals of 

Ashkenazi Jewish origin and it remains unclear whether the reported associations are 

causal
85

.

More recently, it has become clear that mutations in both ABCC9 (encoding SUR1) and 

KCNJ8 (Kir6.1) are associated with Cantu syndrome (CS)
86

. (MIM 239850), or 

hypertrichosis-osteochondrodysplasia-cardiomegaly syndrome, a distinctive multi-organ 

disease
87–90

. In many cases, the mutations are de novo, but autosomal dominant inheritance 

also occurs
91

. The conclusion that these mutations all lead to gain-of KATP channel function 

has been confirmed in several studies
87,89,92

, which demonstrate reduced sensitivity to ATP 

inhibition or enhanced activation by MgADP in each case.

Cantu Syndrome: Multiple tissue symptoms

Perhaps most striking about this recent discovery is that so many of the CS features are not 

trivially predictable, and in the heart, the resultant phenotypes are even counter to any naïve 

predictions. Since first being recognized as a unique syndrome in 1982
86

, a constellation of 

features has been described in CS patients
91,93–100

 (Table 2). Multiple cardiovascular 

features include cardiac enlargement, concentric hypertrophy of the ventricles and 

pericardial effusion. Some patients have required pericardiocentesis and even pericardial 

stripping to prevent reaccumulation of the pericardial effusion. Multiple vascular 
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consequences include pulmonary hypertension secondary to partial pulmonary venous 

obstruction has been reported, associated with severe mitral valve regurgitation that 

spontaneously resolved
95

. A significant number of patients have had patent ductus arteriosus 

(PDA) requiring surgical closure, as well as bicuspid aortic valves with and without stenosis. 

Lymphedema involving the lower extremities may develop over time, and in one patient, 

lymphangiogram demonstrated dilated lymphatic vessels in the legs with delayed lymphatic 

drainage
101

. Interestingly, diazoxide, minoxidil and other related KATP channel openers that 

are used to treat severe refractory hypertension can also result in similar features as 

unexplained side effects, including hypertrichosis, pericardial effusion, edema, and even 

coarsening of the facial featuresl
102,103

. Teratogenic effects of minoxidil, including marked 

hypertrichosis, dysmorphic facial features, low blood pressure, and transposition of the great 

vessels and pulmonary bicuspid valvular stenosis, have been reported in the offspring of 

minoxidil-treated mothers
104,105

. These observations first led to the suggestion that CS 

might result from gain-of-function (GOF) in K+ channel activity
91

.

Normally, abrupt increase in oxygen tension and falling PGE2 and PGI2 levels lead to 

inhibition of voltage-gated K channels and contraction of smooth muscle fibers in the ductus 

arteriosus, resulting in wall thickening and lumen obliteration after birth. Persistence of the 

PDA in Cantu syndrome patients may thus be readily explained as a consequence of 

maintained vessel dilation due to KATP overactivity. More generally, mechanisms of 

persistent PDA are not clear
106

, but the enhancement of a K current in smooth muscle 

presents an obvious potential explanation in Cantu syndrome patients. Altered vascular tone 

may also underlie pericardial effusion, but the reason for cardiomegaly is not obvious. 

Cardiomegaly reported in most cases of Cantu Syndrome is due to increased myocardial 

mass (hypertrophy) with larger cardiac chambers but with normal systolic function, and this 

does not fit the diagnostic criteria of dilated or hypertrophic cardiomyopathy
107

, and may be 

a secondary response to reduced vascular tone
108

. Similarly, the reason for 

osteochondrodysplasia and facial dysmorphology is not obvious, and the mechanism by 

which minoxidil causes hair growth has remained controversial
109

. While CS patients show 

no evidence of orthostatic blood pressure problems, systematic analysis of patient blood 

pressures does show that these are physiologically below the norm for age (G.K. Singh, 

M.D. Levin, D.K. Grange, C,G. Nichols, unpublished). Through opening vascular K 

channels and dilation of blood vessels, the supply of oxygen, blood and nutrients to the hair 

follicle may be increased, causing follicles in the telogen phase to shed and be replaced by 

new thicker hairs in a new anagen phase. However, there is also evidence that SUR2 

isoforms are present in follicular dermal papillae 
110

 and while the new realization 

definitively ties the hair growth to an action on KATP channels, it does not immediately 

prove where the action is.

KATP manipulation in heart disease

Perhaps no other channels in the heart carries more potential and promise than KATP 

channels for breaking the link between myocardial ischemia and cardiac arrhythmia. Since 

the first report detailing the presence of KATP in cardiac myocytes was published
111

, the 

possibility that this channel 1) determines the electrical behavior of the heart during 

ischemia and 2) might protect the heart has been well recognized. Nevertheless, efforts to 
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exploit the “cardiac KATP” channel to ameliorate arrhythmia and moderate damage of the 

myocardium during ischemia have yet to mature.

As genetic variation in humans, and manipulation in animals, has made clear, cardiac 

sarcolemmal KATP channels are normally predominantly closed in physiological conditions, 

and application of channel-blocking sulfonylureas generally has little or no effect on the 

ventricular action potential
112

. Because KATP channels in different regions of the heart have 

different composition, it is likely that they will be operative under different conditions in 
vivo. For example, shortening of the Purkinje action potential may be greater than that of the 

ventricular action potential at the same ATP/ADP ratio, given that SUR2B and Kir6.1 may 

be prominent in these cells
113

. KATP channels composed of SUR1 and Kir6.2, as in the 

mouse atrium
32

, will have still different activating conditions.

When metabolism is inhibited, the action potential can shorten markedly and contraction can 

be inhibited as a result of KATP activation
1,114,115

. KATP activation during ischemia is likely 

to be cardioprotective, since reduction of APD and contraction may preserve ATP stores that 

would otherwise be consumed during the contractile cycle. In support of this idea, treatment 

with the KATP opener pinacidil during ischemia increases cellular ATP and energy stored as 

creatine phosphate
116

. AP shortening is absent in Kir6.2−/− hearts, and the time to 

contractile failure is prolonged but the time to onset of rigor contracture is reduced
117

. 

Diastolic Ca2+ overload, myocardial damage, and increased mortality are also observed in 

isoproterenol-challenged Kir6.2−/− myocytes
118

. In addition to highlighting the acute 

protective effect of KATP activation, Kir6.2−/− animals show increased mortality and 

exaggerated hypertrophy in response to pressure overload 
119,120

, and to mineralocorticoid/

salt challenge
121

. Together, these studies suggest that decreased KATP, by stopping the 

protective ‘unloading’ that KATP activation leads to, should tend to cause Ca overload and 

perhaps hasten the transition to heart failure under stressed conditions. However, other 

studies seem to contradict a cardioprotective role. Both SUR2- (SUR2−/−) and SUR1-

knockout (SUR1−/−) mice were found to be more tolerant of global ischemia-reperfusion 

than control mice, with reduced infarct sizes
122,123

. Since the SUR2−/− mice have a marked 

reduction of ventricular sarcolemmal KATP channels, the enhanced cardioprotection is 

opposite the expected phenotype (i.e. impaired protection). Cardioprotection in SUR2−/− 

mice might conceivably be due to concomitant loss of the SUR2B component of vascular 

KATP channels, but similar cardioprotection in SUR1−/− mice
123

 could not be explained by 

such a mechanism.

Potential for therapeutic modulation of cardiovascular KATP activity

There is tremendous potential for modulation of KATP channel activity in general and more 

importantly perhaps, in a tissue-specific manner, since there is already a rich pharmacology, 

not only of channel inhibitors but also channel openers (KCOs). KCOs have been used in 

two major clinical settings: (1) to block insulin secretion in conditions of hyperinsulinema, 

and (2) as antihypertensives.

Sulfonylureas have seen widespread use as glucose lowering agents in type 2 diabetes. KATP 

channel inhibitory drugs have not reached clinical acceptance in the cardiovascular arena, 
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the expectation being that blockade of cardiac KATP channels may be detrimental in 

conditions of myocardial ischemia, during which these channels can open and are presumed 

to be protective, as discussed above. This debate is still not resolved
124,125

. The association 

of Cantu Syndrome with KATP GOF holds the promise that sulfonylureas or other blockers 

should be an effective therapy. It is generally accepted that most sulfonylureas are 

physiologically more potent inhibitors of SUR1-dependent KATP than SUR2A-dependent 

channels, although there has been little careful comparison of effect on SUR1- versus 

SUR2B-dependent channels. There has been a long-standing dogma that the drug HMR1098 

is a cardiac specific KATP blocker, although direct head-to-head comparison confirms that it 

is also a more effective blocker of SUR1-dependent than SUR2A-dependent KATP 

channels
31,32,126

. Relative efficacies of HMR1098 versus other sulfonylureas in specific 

physiological conditions may be important to understand, since it is conceivable that specific 

KATP inhibitors could successfully counteract the symptoms of Cantu syndrome, without 

significantly affecting blood glucose control, a key issue if KATP channel inhibition is to be a 

viable treatment for the disease.

Further implications and future prospects

It is now recognized that the subunit make-up of the family of KATP channels is more 

complex and labile than originally thought
15,127

. The growing association of Kir6.1 and 

SUR2 variants with specific cardiovascular electrical and contractile derangements and the 

clear association with Cantu syndrome firmly establish the importance of appropriate 

activity in normal function of the heart and vasculature. Further studies of patients with 

some or all symptoms of Cantu syndrome will reveal new mutations in KATP subunits and 

perhaps in proteins that regulate KATP synthesis, trafficking, or location, all of which may 

ultimately benefit therapeutically from the unique pharmacology of KATP channels.
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Figure 1. Cardiovascular KATP channel distribution
Schematic representation of KATP channel subunit distribution in the cardiovascular system. 

SUR2A and to a lesser extent SUR1 are prominent in ventricular chambers (LV, RV), 

whereas SUR1 is more prominent in atrial chambers (LA, RA), and SUR2B is prominent 

throughout the vasculature. Kir6.2 is found throughout the myocardium, with Kir6.1 more 

prominent in conducting tissue and in the vasculature.
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Table 1

REPORTED ASSOCIATION OF DISEASE WITH KATP CHANNEL MUTATIONS

Gene Clinical condition Features # of reported 
affected 

individuals

Refs

KCNJ8 (Kir6.1) J-wave syndrome S422L mutation. Reportedly gain-of- function (GOF). 
Abnormalities in the J- point of the ECG, and including 
Brugada syndrome (BrS) and early repolarization 
syndrome (ERS), including VF and AF

9 81–83

SIDS In-frame deletion (E332del) and loss- of-function 
mutation (V346I), through as yet unexplained 
mechanisms.

2 78

Cantu Syndrome GOF mutations associated with complex multi-organ 
disease (See Table 2)

2 89,90

KCNJ11 (Kir6.2) Neonatal diabetes Multiple GOF mutations cause inhibition of insulin 
secretion. No cardiovascular phenotype

>100 128

Congenital hyperinsulinism LOF mutations cause hypersecretion of insulin. No 
cardiovascular phenotype

>10 77,128

ABCC8 (SUR1) Neonatal diabetes Multiple GOF mutations cause inhibition of insulin 
secretion. No cardiovascular phenotype

>100 128

Congenital hyperinsulinism Multiple LOF mutations cause hypersecretion of insulin. 
No cardiovascular phenotype

>100 77,128

ABCC9 (SUR2) AF Isolated case of LOF mutation assicated with AF 
originating in the vein of Marshal

1 80

Idiopathic dilated cardiomyopathy Two cases with distinct LOF mutations associated with 
heart failure due to idiopathic dilated cardiomyopathy

2 79

Cantu syndrome GOF mutations associated with complex multi-organ 
disease (See Table 2)

>25 87,88

Data from Refs 77–83,87–90,128.
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Table 2

MAJOR CLINICAL FEATURES OF CANTU SYNDROME

Neonatal Features

 Neonatal macrosomia

 Maternal polyhydramnios

 Macrocephaly

Craniofacial dysmorphology

 Coarse facial appearance (can be confused with a storage disoder)

 Epicanthal folds

 Broad nasal bridge

 Anteverted nostrils

 Long philtrum

 Wide mouth with full lips

 Macroglossia

 High or narrow palate

 Gingival hyperplasia

Hair

 Congenital generalized hirsutism

 Thick scalp hair

 Thick and/or curly eyelashes

 Excessive hair growth on forehead, face, back and limbs

Cardiovascular

 Cardiomegaly

 Concentric hypertrophy of the ventricles

 Normal ventricular contractility

 Pericardial effusion

 Pulmonary hypertension

 Partial pulmonary venous obstruction

 Mitral valve regurgitation

 Congenital anomalies

  Patent ductus arteriosus

  Bicuspid and/or stenotic aortic valve

Skeletal abnormalities

 Thickened calvarium

 Narrow shoulders and thorax

 Pectus carinatum

 Broad ribs

 Platyspondyly and ovoid vertebral bodies

 Hypoplastic ischium and pubic bones

 Erlenmeyer-flask-like long bones with metaphyseal flaring
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 Delayed bone age

Skin and joints

 Loose and/or wrinkled skin, especially in neonates

 Deep palmar and plantar creases

 Persistent fingertip pads

 Hyperextensibility of joints

Lymphatic system

 Lymphedema, onset usually in adolescence or adulthood

Gastrointestinal

 Pyloric stenosis

 Increased risk for upper gastrointestinal bleeding
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