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Abstract

Gene regulatory networks depict the interactions between genes, proteins, and other components 

of the cell. These interactions often are stochastic that can influence behavior of the cells. Discrete 

Chemical Master Equation (dCME) provides a general framework for understanding the stochastic 

nature of these networks. However solving dCME is challenging due to the enormous state space, 

one effective approach is to study the behavior of individual modules of the stochastic network. 

Here we used the finite buffer dCME method and directly calculated the exact steady state 

probability landscape for the two stochastic networks of Single Input and Coupled Toggle Switch 

Modules. The first example is a switch network consisting of three genes, and the second example 

is a double switching network consisting of four coupled genes. Our results show complex 

switching behavior of these networks can be quantified.

I. INTRODUCTION

Gene regulatory circuits control essential cellular processes including cellular fate. A well 

known example is stochastic switch between the lysogenic state and the lytic state in phage 

lambda [1]. Another example is the transition into and from competence in the Bacillus 
subtilis [2].

Studying stochastic gene regulatory networks is challenging, as reactions often involve low 

copy number of molecules and may have large separation in time scale. The discrete 

Chemical Master Equation (dCME) provides a general framework for modeling of stochastic 

gene networks. However solution of the dCME remains difficult, as analytical solution is 

generally not possible. Computational methods, on the other hand, encounter the problem of 

enormous state space. For example for the system with 15 molecular species, each of which 

has 10 molecules at most, the state space size is 1015, and correspondingly the system of 

1015 ordinary differential equations has to be solved. Therefore it is necessary to truncate the 

state space with the hope of maintaining sufficient accuracy. The finite state projection 

provides a method for directly solving the time evolution, however it cannot be used to 
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calculate steady state distribution because of the introduction of the absorbing state, whose 

probability increases with time [3].

Here we apply the previously described Finite Buffer method, which allows efficiently 

enumerating state space according to predefined error tolerance, to directly calculate the 

steady state solution of dCME for two modules of gene regulatory networks. The first 

example is the single input module, consisting of three genes in which the product of the 

first gene inhibits the expression of the two other genes. At the same time the inhibiting gene 

is activated by these two other genes it inhibits. Another example is that of two coupled 

toggle switch. The four genes in the system are connected pairwise, so protein product can 

be produced when corresponding pairs of genes are inhibited. The first model consists of 7 

molecular species, and the second system 12 species. Both systems are general network 

motifs widely found in biological systems. Our results show that the exact steady state 

probability landscape of two these networks can be obtained using Finite Buffer method.

II. Models and Methods

A. Discrete Chemical Master Equation

Consider a well-mixed biochemical system with constant volume and temperature. Assume 

this system contains n molecular species Xi which participate in m reactions Rk with 

reaction rate constants rk. The microstate of the system at time t is represented by the non-

negative integer column vector of copy numbers of each molecular species: x(t) = (x1(t), 
x2(t), ⋯, xn(t))T, where T denotes the transpose. An arbitrary reaction Rk (k = 1, 2, ⋯, m) 

with intrinsic rate rk takes the general form:

which brings the system from a microstate xi to xj. The difference between xi and xj is the 

stoichiometry vector sk of the reaction 

. The 

stoichiometry matrix S for the reaction network is defined as: S = (s1, s2, ⋯, sm) ∈ ℤn × m; 

where each column represents a single reaction. The rate Ak(xi, xj) of reaction Rk that 

transforms microstate from xi to xj is determined by the intrinsic rate constant rk and the 

combination number of relevant reactants in the current microstate 

.

All possible microstates that the system can visit from a given initial condition over time t 
form the state space:  = {x(t)|x(0), t ∈ (0, θ)}. We denote the probability of each microstate 

at time t as p(x(t)), and the probability distribution at time t over the whole state space as p(t) 
= {(p(x(t))|x(t) ∈ )}: And, p(t) is also called the probability landscape of the network [1].

Discrete chemical master equation (dCME) is a set of linear ordinary differential equations 

describing the probability changes of each discrete microstate of the system over time. The 

dCME of an arbitrary microstate x = x(t) is:
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(1)

where x′ ≠ x.

The Eqn. (1) can be further represented in matrix form:

For any xi, xj ∈ , where A ∈ ℝ| | × | | is called the transition rate matrix formed by the 

collection of all A(xi, xj):

B. Finite Buffer State Space Enumeration Method with Multiple Buffers

We have developed an algorithm previously to optimally enumerate state space of arbitrary 

biological network, and solve the steady state probability landscape of the dCME, when an 

initial state is given [1], [4]. When the network is an open system, i.e., containing synthesis 

and degradation reactions, one finite buffer of virtual molecules is assigned to the network to 

limit the total copy number of species that can be synthesized.

However, to more efficiently enumerate the state space our finite buffer method can be 

further improved by using multiple buffers and empirically estimating the error of state 

space truncation for each individual buffer. This novel method has been developed in [5]. 

Briefly, we can partition reactions into different independent reaction groups (IRG), each of 

which contains reactions sharing the common species participating in synthesis and 

degradation type processes. We then assign different buffers to each different IRG. We can 

estimate the error of the dCME solution due to the finite buffer size by calculating the total 

probability of boundary states, which are microstates with at least one buffer depleted. 

Therefore, each IRG can be bounded by a separate buffer, and the minimal buffer size can be 

determined by comparing the error estimate of the buffer to the desired error tolerance. If the 

estimated error is larger that the error tolerance, the buffer size needs to be increased. 

Otherwise, the buffer size can be reduced to save memory space.

The error of each buffer is related to the ratio between synthesis and degradation reaction 

rate constants in the corresponding IRG. When the ratio is larger, the IRG has larger error 

with the same buffer size, or equivalently, a larger buffer is required for the IRG to achieve 

the same error. We develop an approach to estimate the size of each buffer a priori as 2 × s/d, 

where s and d are the synthesis and degradation rate constants in the IRG. We then 

iteratively adjust the buffer size until the pre-defined error tolerance is reached.
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In the Results section, we study two important gene regulatory networks using this improved 

finite buffer method. We show the estimation of buffer sizes based on synthesis/ degradation 

ratio in each IRG, as well as the steady state probability landscapes of the dCME.

III. Results

A. Single Input Network module

Single input network motif can be found in many biological networks, in which multiple 

genes are regulated by the expression of a single transcription factor [7]. Here we study a 

simple network of three genes with two of them controlled by a master gene (Fig. 1). The 

molecular species, reactions and their rate constants are shown below:
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This model consists of three genes GeneA, GeneB, and GeneC, expressing protein products 

A, B and C, respectively. Protein monomer A can bind to promoter sites of GeneB and 

GeneC to form protein-DNA complexes BGeneB and BGeneC, respectively, to turn off the 

expression of the other gene. At the same time, both genes GeneB and GeneC activate the 

expression of GeneA, so protein A can be synthesized if the binding sites of both GeneB and 

GeneC are not occupied. We take the parameters as: k1 = k3 = 0.005/s, k2 = k4 = 0.1/s, k5 = 

20/s, k7 = 10/s, k9 = 11/s, k6 = k8 = k10 = 1/s.

Three IRGs are identified for this model as , and 

. Each is assigned a separate buffer.

We predefine the error tolerance for all of the buffers to be 1 × 10−5. When estimating the 

error for , we consider the extreme cases in which protein A is synthesized at the 

maximum rate, but degraded at the minimum rate. This corresponds to the case in which 

GeneB and GeneC are constantly turned off. We pre-estimate the buffer size of  as 2 × 

k5/k6 = 40. We further reduce the error by increasing the buffer size by 1 at a time, if the 

boundary probability is larger than the tolerance 1 × 10−5. Otherwise, if the boundary 

probability is smaller than the tolerance, we decrease the buffer size by 1 at a time to achieve 

further saves on memory space. We obtain the final minimal buffer size for  to be 44. 

Similarly we obtain the minimal buffer sizes for the other two IRGs  and  to be 

27 and 28, respectively. The enumerated state space consists of 142, 912 states. The sparse 

transition rate matrix contains a total of 1, 016, 135 non-zero elements.

For this switch network, the steady state probability was computed and shown on Fig. 2, 3, 

with errors for each IRG as:  and 

, which are all smaller than the predefined error tolerance 1 × 10−5.

The computed steady state probability landscape of species B and C is plotted on Fig. 2, in 

which the switch between proteins B and C can be seen. When GeneB (GeneC) is bound, 

protein A synthesis is suppressed, which leads to the reduction of its concentration. The 

probability of GeneC (GeneB) to be repressed decreases, and the number of molecules of 

protein C (B) increases. Fig. 3 shows the expression level of GeneA versus the total 

expression level of GeneB and GeneC. Oscillating behaviors can be inferred of this network. 

Probability of the expression of GeneB and GeneC is high, when the concentration of the 

protein A is low. When both genes GeneB and GeneC are unbound, the concentration of the 

protein A increases. We can therefore infer the following scenario: the increase of the 

protein A leads to the increase of the probability of GeneB or GeneC to be bound, but once 

one of them is inhibited, it leads to the immediate reduction of the amount of molecules of 

the protein A.

B. Two coupled toggle switch network

Toggle switches are an important class of biological networks playing critical roles in many 

biological processes, such as cell fate determination [4]. Here we studied the behavior of a 
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biological network consisting of two coupled toggle switches (Fig. 4). The molecular 

species, reactions and their rate constants are shown below:
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This model consists of four genes GeneA, GeneB, GeneC, and GeneD, expressing protein 

products A, B, C, and D, respectively, in the way that GeneA and GeneC, GeneB and GeneD 
repress each other pairwise. Namely GeneA (GeneB) product monomer A (B) turns off the 

expression of GeneC (GeneD), when forming protein-DNA complex BGeneC (BGeneD), 

analogously GeneC (GeneD) product monomer C (D) turns off the expression of GeneA 
(GeneB), when forming protein-DNA complex BGeneA (BGeneB). In the same time protein 

A can be synthesized, if the binding sites of both GeneA and GeneD are not occupied, 

protein B can be synthesized if the binding sites of both GeneA and GeneB are not occupied, 

protein C can be synthesized if the binding sites of both GeneC and GeneB are not occupied, 

protein D can be synthesized if the binding sites of both GeneD and GeneA are not 

occupied. We take the parameters as: k1 = k3 = k5 = k7 = 0.006/s, k2 = k4 = k6 = 0.1/s, k9 = 

k13 = 3/s, k11 = k15 = 4/s, k10 = k12 = k14 = k16 = 1/s. Four IRGs are identified for this 

model: 

, and each is assigned a separate buffer.

We predefine the error threshold for all of the buffers to be equal 1 × 10−5. When estimating 

the error for , we consider the extreme cases in which A is synthesized at the 

maximum rate, but degraded at the minimum rate. This corresponds to the GeneB is 

constantly turned off. Following the same approach as in the first example, we determine the 

minimal buffer sizes that can satisfy the predefined error tolerance ε = 10−5 for all four IRGs 

, and  to be 15, 17, 15, and 17, respectively. The enumerated state 

space consists of 1, 177, 225 states. The sparse transition rate matrix contains a total of 11, 

339, 253 non-zero elements.

For this switch network, the steady state probability was found and shown on Fig. 5, 6 with 

errors for each IRG: , 

and  which are smaller than the predefined error tolerance 10−5.

The steady state probability landscape of species A and C is plotted on Fig. 5. The steady 

state probability landscape of species B and D is plotted on Fig. 6. Switching behavior of 
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each gene pairs is shown in both plots. For example, for the pair of proteins A and C (Fig. 

5), we can observe that the increase of the concentration of the protein C leads to the 

increase of the probability of GeneA to be bound, as well as the reduction of the 

concentration of the protein A. There is an opposite effect as well: the increase of the 

concentration of protein A leads to the decrease of the concentration of the protein C.

IV. Conclusion

Here we present results of exact calculation of steady state probability landscape of two 

stochastic network modules that are widely found in biological circuits [7]. Our results show 

that their probability landscape can be studied in details using the Finite Buffer dCME 

Method.
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Fig. 1. 
Single Input Network module
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Fig. 2. 
Steady state probability landscape for proteins B and C
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Fig. 3. 
Steady state probability landscape for proteins A and B+C
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Fig. 4. 
Two coupled toggle switch network
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Fig. 5. 
Steady state probability landscape for proteins A and C
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Fig. 6. 
Steady state probability landscape for proteins B and D
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