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Abstract

To measure the activity of neurons using whole-brain activity imaging, precise detection of
each neuron or its nucleus is required. In the head region of the nematode C. elegans, the
neuronal cell bodies are distributed densely in three-dimensional (3D) space. However, no
existing computational methods of image analysis can separate them with sufficient accu-
racy. Here we propose a highly accurate segmentation method based on the curvatures of
the iso-intensity surfaces. To obtain accurate positions of nuclei, we also developed a new
procedure for least squares fitting with a Gaussian mixture model. Combining these meth-
ods enables accurate detection of densely distributed cell nuclei in a 3D space. The pro-
posed method was implemented as a graphical user interface program that allows
visualization and correction of the results of automatic detection. Additionally, the proposed
method was applied to time-lapse 3D calcium imaging data, and most of the nuclei in the
images were successfully tracked and measured.

Author Summary

To reach the ultimate goal of neuroscience to understanding how each neuron functions
in the brain, whole-brain activity imaging techniques with single-cell resolution have been
intensively developed. There are many neurons in the whole-brain images and manual
detection of the neurons is very time-consuming. However, the neurons are often packed
densely in the 3D space and existing automatic methods fail to correctly split the clumps.
In fact, in previous reports of whole-brain activity imaging of C. elegans, the number of
detected neurons were less than expected. Such scarcity may be a cause of measurement
errors and misidentification of neuron classes. Here we developed a highly accurate auto-
matic cell detection method for densely-packed cells. The proposed method successfully
detected almost all neurons in whole-brain images of the nematode. Our method can be
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used to track multi-objects and enables automatic measurements of the neuronal activities
from whole-brain activity imaging data. We also developed a visualization and correction
tool that is helpful for experimenters. Additionally, the proposed method can be a funda-
mental technique for other applications such as making wiring diagram of neurons or
establishing a cell lineage in embryonic development. Thus our framework supports effec-
tive and accurate bio-image analyses.

Introduction

The animal brain is the most complex information processing system in living organisms. To
elucidate how real nervous systems perform computations is one of the fundamental goals of
neuroscience and systems biology. The wiring information for neural circuits and visualization
of their activity at cellular resolution are required for achieving this goal. Advances in micros-
copy techniques in recent years have enabled whole-brain activity imaging of small animals at
cellular resolution [1-4]. The wiring information of all the neurons in the mouse brain can be
obtained using recently developed brain-transparentization techniques [5-9].

Detection of neurons from microscopy images is necessary for optical measurements of
neuronal activity or for obtaining wiring information. Because there are many neurons in the
images, methods of automatic neuron detection, rather than manual selection of ROIs (regions
of interest), are required and several such methods have been proposed [10,11]. Detection of
cells that are distributed in three-dimensional (3D) space is also important in other fields of
biology such as embryonic development studies [12-17].

In these methods, cell nuclei are often labeled by fluorescent probes and used as a marker of
a cell. To identify nuclei in such images, the basic method is blob detection, which for example
consists of local peak detection followed by watershed segmentation. If the cells are sparsely
distributed, blob detection methods are powerful techniques for nucleus detection. However, if
two or more cells are close to each other, the blobs are fused, and some cells will be overlooked.
These false negatives may be trivial for the statistics of the cells but may strongly affect individ-
ual measurements such as those of neuronal activity. Overlooking some nuclei should be
avoided when subsequent analyses assume that all the cells were detected, for example, when
making wiring diagram of neurons or establishing a cell lineage in embryonic development.
Therefore, correct detection of all nuclei from images without false negatives is a fundamental
problem in the field of bio-image informatics.

Although many efforts have been made to develop methods that avoid such false negatives,
these methods seem to insufficiently overcome the problem. In the head region of Caenorhab-
ditis elegans, for example, the neuronal nuclei are densely packed and existing methods pro-
duce many false negatives, as shown below. Actually, in the studies of whole-brain activity
imaging of C. elegans reported so far, the local peak detection method that can overlook many
nuclei was employed [3,18], or the nuclei were manually detected [19,20]. Highly accurate
automatic nucleus detection methods should be developed in order to improve the efficiency
and accuracy of such image analysis.

Here we propose a highly accurate automatic nucleus detection method for densely distrib-
uted cell nuclei in 3D space. The proposed method is based on newly developed clump splitting
method suitable for 3D images and improves the detection of all nuclei in 3D images of neu-
rons of nematodes. A combination of this approach with a Gaussian mixture fitting algorithm
yields highly accurate locations of densely packed nuclei and enables automatic tracking and
measuring of these nuclei. The performance of the proposed method is demonstrated by using
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various images of densely-packed head neurons of nematodes which was obtained by various
types of microscopes.

Results
Overlooking of nuclei by blob detection

In this study, we focused on the head neurons of the soil nematode C. elegans, which constitute
the major neuronal ensemble of this animal [21]. All the neuronal nuclei in a worm of strain
JN2100 were visualized by the red fluorescent protein mCherry. The head region of the worm
was imaged by a confocal microscope, and we obtained 3D images of 12 animals (Data 1, Fig
1A). The shape of the nuclei was roughly ellipsoidal (Fig 1B). The fluorescence intensity
increased toward the centers of the nuclei (Fig 1D). The typical half-radius of the nuclei was
about 1.10 um (S1 Fig). The distance to the nearest neighboring nucleus was 4.30 + 2.13 ym
(mean and standard deviation, S1 Fig), suggesting that the neurons are densely distributed in
3D space. The mean fluorescence intensities differed among neurons by one order of magni-
tude (S1 Fig), making it difficult to detect a darker nucleus near a bright nucleus.

We first applied conventional blob detection techniques to the 3D image (Fig 1C-1E). Salt-
and-pepper noise and background intensities were removed from the image. The image was
smoothed to avoid over-segmentation (Fig 1C and 1D). Local intensity peaks in the prepro-
cessed image were detected and used as seeds for 3D seeded grayscale watershed segmentation.
Each segmented region was regarded as a nucleus (Fig 1E). We found that dark nuclei in high-
density regions often escaped detection. If the dark nucleus was adjacent to a bright nucleus,
the fluorescence of the bright nucleus overlapped that of the dark one, and the local intensity
peak in the dark nucleus was masked (Fig 1D). As a result, the seed for the dark nucleus was
lost, and the dark nucleus fused with the bright nucleus (Fig 1E). The rate of false-negative
nuclei was 18.9%. In contrast, our proposed method successfully detected and segmented the
dark nuclei (Fig 1F).

Using areas of negative curvature of iso-intensity surfaces for clump
splitting in 3D images

The shapes of the nuclei are roughly ellipsoidal, and the fluorescence intensity increased
toward the centers of the nuclei, suggesting that the intensity of nuclei can be approximated by
a mixture of trivariate Gaussian distributions. The intensities f; of the k-th Gaussian distribu-
tion gy at voxel position x € R® can be written as

Fils) = m s g 20) = mexp (5 v ) 5 m) ).

where yy and X are the mean vector and covariance matrix of g, respectively, and 7 is an
intensity scaling factor. To explain the effect on the curvature, typical bright and dark nuclei
were approximated by the Gaussian distribution and are shown in Fig 2 as iso-intensity con-
tour lines (Fig 2A, 2C and 2E) and plots of the intensity along the cross section (Fig 2B, 2D and
2F). When a bright nucleus was near a dark nucleus, the peak intensity of the dark nucleus
merged with the tail of the fluorescence intensity distribution of the bright nucleus and no lon-
ger formed a peak.

These false negatives can be avoided by using methods for dividing a close pair of objects, or
clump splitting. Such methods have been developed for correct detection of objects in two-
dimensional (2D) images [22-26]. These methods focus on the concavity of the outline of a
blob. The concavity was calculated based on one of or a combination of various measurements
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Fig 1. Overlooking of nuclei by conventional blob detection. (A) Example of 3D image of neuronal nuclei in the head region of a worm (Data 1, see
Methods). Image is displayed as max projection along x5 axis. Note that all of the raw images in this paper is displayed in logarithmic scale in order to
visualize dark nuclei. (B) Enlarged view of green box in (A). A particular slice along the x5 axis is displayed. (C) Preprocessed image of the image in (B).
(D) Intensities on the dotted lines in (B) and (C). (E) Results of watershed segmentation (step 2 of the proposed method). The region of the brighter
nucleus is shown in cyan. (F) Results of segmentation by the proposed method (step 3 of the proposed method). The region of the darker nucleus is
shown in magenta.

doi:10.1371/journal.pcbi.1004970.g001
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Fig 2. Fluorescence intensity distribution of nuclei approximated by Gaussian distribution. (A, B) Example of fluorescence intensity distribution of a
bright nucleus approximated by Gaussian distribution f. 77y = 120, u; = (-1,0,0), Z; = (diag(1.10,0.89,1.35))?. (C, D) Example of fluorescence intensity
distribution of a dark nucleus approximated by Gaussian distribution f,. i, = 40, i = (2,0,0), 2, = (diag(1.10,0.89,1.35) x 0.9)2. (E, F) Fluorescence intensity
distribution when a dark nucleus is near a bright nucleus, approximated by a mixture of distributions f; and f,. Area enclosed by black broken lines in E
displays an area of negative curvature. (A, C, E) Iso-intensity contour lines of trivariate Gaussian distribution at x3 = 1. (B, D, F) Plot of intensity at (x2,x3) =
(0,1). Black crosses indicate peak positions. (G) Outline of the fused blob and typical result of 2D clump splitting method. Red points indicate concave points.

Red dashed line indicates the border line.

doi:10.1371/journal.pcbi.1004970.9002

such as angle [25], area [27], curvature [26], and distance measurements [24] of the outline. In
these methods, after binarization of the image, concavity was obtained for each point on the
outline. Then the concave points were determined as the local peaks of the concavity. After
determination of concave points, a line connecting a pair of concave points is regarded as the
boundary between the objects. When we regard the outermost contour line in Fig 2E as the
outline of the fused blob (Fig 2G), the conventional 2D clump splitting method can be easily
applied and two concave points are detected from the fused blob (Fig 2G, red circles). The blob
was divided into two parts by a border line connecting the two points, and the dark nucleus

was detected.

In the ideal case in Fig 2E, we obtained necessary and sufficient number of concave points.
In real images, however, we might obtain too many concave points because outlines often con-
tain noise and are not smooth. However, the number of concave points to choose is unknown
because it is hard to know how many nuclei are included in a blob in a real image. Further, it is
not obvious how to find the correct combinations of concave points to be linked if a blob con-
tains three or more objects. In addition, for 3D images, the concepts of border lines that con-
nect two concave points cannot be naturally expanded to three dimensions, because now we
need some extra processes such as connecting groups of concave points in order to form border
surfaces. Even if we regard a 3D image as a stack of 2D images, it is hard to split objects fused
in the z direction (direction of the stacks) [11,27].

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004970 June 6,2016
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Here we introduce a concept of areas of concavity instead of concave points (i.e. local peak
of concavity). Hereafter we use curvature as a measure of concavity and focus on areas of nega-
tive curvature for simplicity and clarity, but other measures such as angle, area, and distance
from convex hull may be applicable. Furthermore we used the iso-intensity contour lines inside
the object in addition to the outline of the object. Near the concave points in Fig 2E, the iso-
intensity contour lines have negative curvature; i.e., they curve in the direction of low intensi-
ties. Negative curvature may be a landmark of the border line because a single Gaussian distri-
bution has positive curvature everywhere. Actually, the voxels at which an iso-intensity
contour line has negative curvature were between two Gaussian distributions (Fig 2E, area
between the broken lines). Once these voxels are removed from the blob, detection of two
nuclei should be straightforward.

This approach is different from the classic clump splitting methods in two respects; focusing
on area rather than local peak of concavity (concave points), and using iso-intensity contour
lines in addition to the outline. These differences eliminate the need for determining how
many concave points should be chosen and for obtaining correct combinations of the concave
points because the area of negative curvature will cover the border lines. Therefore we can use
the approach even if a blob contains three or more objects. In addition, this approach is robust
to noise because it does not depend on a single contour line. Furthermore, this approach can be
expanded to 3D images naturally because the 3D area (i.e. voxels) of negative curvatures will
cover the border surfaces of the 3D objects. Iso-intensity contour lines in 2D images are parts
of iso-intensity contour surfaces in three dimensions. A point on an iso-intensity surface has
two principal curvatures, which can be calculated from the intensities of surrounding voxels
(52 Text) [28]. The smaller of the two principal curvatures is positive at any point in a single
Gaussian distribution but is negative around the border of two Gaussian distributions. There-
fore, once voxels that have negative curvature are removed from the blob, two or more nuclei
should be detected easily in 3D images. Thus our approach solves the above problems of the
classic clump splitting methods.

Clump splitting in real 3D images

We applied the above approach to real 3D images (Fig 3). The original images were processed
by denoising, background removal, and smoothing to obtain the preprocessed images. The
peak detection algorithm could find only a peak from the bright nucleus, and the blob obtained
by watershed segmentation contained both nuclei. The principal curvatures of the iso-intensity
surface were calculated from the preprocessed image. There were voxels of negative curvature
in the area between two nuclei, but the area did not divide the two nuclei completely. The vox-
els of negative curvature were removed from the blob, and the blob was distance-transformed;
these procedures were followed by 3D watershed segmentation. Thus, the two nuclei were sep-
arated, and the dark nucleus was successfully detected.

After voxels of negative curvature were removed from the blobs, the size of blobs obtained
by the second watershed segmentation tended to be smaller than real nuclei, and the distances
between the blobs tended to be larger. To obtain the precise positions and sizes of the nuclei,
least squares fitting with a Gaussian mixture was applied to the entire 3D image using a newly
developed method (see Methods). The number of Gaussian distributions and the initial values
of the centers of the distributions were derived from the above results.

Repeated application of watershed segmentation may increase over-segmentation. If the dis-
tance between two fitted Gaussian distributions is too small, the two distributions may repre-
sent the same nuclei. In this case, one of the two distributions was removed to avoid over-
segmentation, and the fitting procedure was repeated with a single Gaussian distribution.

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004970 June 6,2016 6/20
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Fig 3. lllustration of the proposed method. Results of each process are shown in each row. Columns show
images at different x3 positions (focal planes).

doi:10.1371/journal.pcbi.1004970.9003

The proposed method detected 194 out of 198 nuclei in the 3D image (Fig 4). Among the
four overlooked nuclei, the intensities of two of them were too low to be detected. The other
two had moderate intensities but were adjacent to brighter nuclei. In these cases, curvature-
based clump splitting successfully split the two nuclei. However, deviations of the brighter
nuclei from Gaussian distributions disrupted the fitting of the Gaussian distributions and
resulted in misplacement of the Gaussian distributions for the darker nuclei, which were
instead fitted to the brighter nuclei. On the other hand, the proposed method returned 11 false
positives. Two of them resulted from the misplacement of the Gaussian distribution for the
darker nuclei described above. Four of them were not neuronal nuclei but were fluorescence
foci intrinsic to the gut. Three of them were the result of over-segmentation of complex-shaped
non-neuronal nuclei. One of them was mislocalized fluorescence in the cytosol. The last one
was the result of over-segmentation of a large nucleus that was fitted with two Gaussian distri-
butions separated by a distance larger than the cutoff distance.

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004970 June 6,2016 7/20
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Fig 4. Nuclei detected by the proposed method. True positives, false positives, and false negatives are shown as red, cyan, and yellow ellipses,
respectively. Original image is the same as Fig 1A.

doi:10.1371/journal.pcbi.1004970.9004

Comparison with other segmentation methods

We compared the performance of the proposed method with five previously published meth-
ods for nucleus segmentation (Fig 5 and Table 1). Ilastik [29] is based on machine learning
techniques and uses image features such as Laplacian of Gaussian. FARSight [30] is based on
graph cut techniques. RPHC [1] was designed for multi-object tracking problems such as
whole-brain activity imaging of C. elegans and uses a numerical optimization-based peak detec-
tion technique for object detection. 3D watershed plugin in Image] [31] consists of local peak
detection and seeded watershed. This method is almost the same as the conventional blob
detection method used in our proposed method. CellSegmentation3D [32] uses gradient flow
tracking techniques and was developed for clump splitting. This method has been used in the
study of automated nucleus detection and annotation in 3D images of adult C. elegans [33]. We
applied these six methods to 12 animals in Data 1 (Fig 5) and obtained the performance indices
(Table 1, see Methods). The parameters of each method were optimized for the dataset.

The 3D images in the dataset contains 190.92 nuclei on average, based on manual counting.
The proposed method found 96.9% of the nuclei and the false negative rate was 3.1%, whereas
the false negative rate of the other methods were 11.2% or more. The false positive rate of the
proposed method was 4.9% and that of the other methods ranged from 2.1% to 21.2%. The
proposed method shows the best performance with both of the well-established indices, F-mea-
sure [12] and Accuracy [34], because of the very low false negative rate and modest false posi-
tive rate.

It should be noted that all of the compared methods overlooked more than 10% of nuclei in
our dataset. The reason for this was suggested by the segmentation results, in which almost all
of these methods failed to detect the dark nuclei near the bright nuclei and fused them (Fig 5,
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Fig 5. Segmentation results of proposed and previously published methods. Each row shows the original image or the segmentation result of
the indicated method. Left column shows the three dimensional projection of the result. Middle column shows the two-dimensional section of the
result. Right column shows the enlarged view of the image in the middle column. Each segmented region is assigned a different color.

doi:10.1371/journal.pcbi.1004970.9005

right column). These results suggest that all the compared methods have difficulty in handling
3D images with either large variance of object intensity or dense packing of objects, or both (S1
Fig).

These results clearly indicate that our proposed method detects densely distributed cell
nuclei in 3D space with highest accuracy. Very low false negative rate is the most significant
improvement of the proposed method from the other methods, suggesting that the proposed
method will improve efficiency and accuracy of image analysis steps drastically.

GUI for visualization and error correction

Because none of the computational image analysis methods is perfect, experimenters should be
able to correct any errors they find. Therefore, a user-friendly graphical user interface (GUI)
for visualization and correction of the results is required. We developed a GUI called RoiE-
dit3D for visualizing the result of the proposed method and correcting it manually (S2 Fig).
Because RoiEdit3D is based on Image]/Fiji [35,36] in MATLAB through Miji [37], experiment-
ers can use the familiar interface and tools of Image] directly. Developers can extend the func-
tionality using a favorite framework chosen from various options such as ImageJ macros, Java,
MATLAB scripts, and C++ languages. Interface with downstream analyses should be straight-
forward because the corrected results are saved in the standard MATLAB data format and can
be exported to Microsoft Excel.

Three-dimensional images are shown as trihedral figures using the customized Orthogonal
View plugin in Image] (S2 Fig). Fitted Gaussian distributions are shown as ellipsoidal regions
of interest (ROIs) in each view. The parameters of the Gaussian distributions are shown in the
Customized ROI Manager window in tabular form. The Customized ROI Manager and trihe-
dral figures are linked, and selected ROIs are highlighted in both windows. When the parame-
ters of the distributions or the names of nuclei are changed in the Customized ROI Manager
window, the corresponding ROISs in the trihedral figures are updated immediately. Least
squares fitting with a Gaussian mixture can be applied after ROIs are manually removed or
added.

Table 1. Performance of proposed and the state-of-the-art methods.

TP

FP

FN

Found

TP rate
FP rate
FN rate
F-measure
Accuracy
Time (sec)

Proposed

184.92
9.42
6.00

194.33

0.9686

0.0493

0.0314

0.9602

0.9239

202.60

llastik FARSight RPHC 3D watershed CellSegmentation3D
169.67 155.25 141.67 161.17 152.33
5.08 3.92 11.50 22.08 40.33
21.25 35.67 49.25 29.75 38.58
174.75 159.17 153.17 183.25 192.67
0.8885 0.8133 0.7419 0.8440 0.7981
0.0265 0.0205 0.0602 0.1158 0.2115
0.1115 0.1867 0.2581 0.1560 0.2019
0.9277 0.8865 0.8232 0.8615 0.7943
0.8657 0.7969 0.7001 0.7572 0.6597
240.75 14.73 537.41 40.98 352.70

The means of 12 animals are shown. TP, FP and FN mean True Positive, False Positive and False Negative, respectively. The mean of the Grand Truth
(GT) is 190.92. The details of performance indices are described in Methods section.

doi:10.1371/journal.pcbi.1004970.t001
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Application for whole-brain activity imaging

RoiEdit3D can be used for multi-object tracking. The fitted Gaussian mixture at a time point is
used as an initial value for the mixture at the next time point, and a fitting procedure is exe-
cuted (Fig 6A). Additionally, the intensities of nuclei can be obtained as parameters of the fitted
Gaussian distributions.

We tried to track and measure the fluorescence intensity of nuclei in real time-lapse 3D
images (Data2). The animal in the image expressed a calcium indicator, so neural activity dur-
ing stimulation with the sensory stimulus, sodium chloride, could be measured as changes in
the fluorescent intensity. The proposed nucleus detection method was applied to the first time
point in the image and found 194 nuclei out of 198 nuclei. Seventeen false positives and four
false negatives were corrected manually using RoiEdit3D. Then the nuclei in the time-lapse 3D
image were tracked by the proposed method. Most of the nuclei were successfully tracked. One
or more tracking errors occurred in 27 nuclei during 591 frames, and the success rate was

ol
m Automatic detectlon 187
— | Copy ellipsoids
Ellipsoid ﬁttlng» 1.2 el T
1 . . . .

A Tracking by ellipsoid fitting C 227
16 [
14 ¢

0 20 40 60 80 100 120 140

Time (sec)

CFP/YFP ratio

Fig 6. Methods and results of tracking using RoiEdit3D. (A) Schematic illustration of the tracking method. (B) Part of the data used for tracking (Data
2). Three-dimensional image of the first time point is shown as the max projected image of the right half of the animal. Neuronal nucleus marker is shown
in red, and calcium indicator is shown in light blue. ROl of ASER is shown as a yellow ellipse. Other ROIs appear as blue ellipses. (C) Time course of
ASER response obtained by the calcium indicator. Gray area indicates the stimulation period.

doi:10.1371/journal.pcbi.1004970.9006
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86.4%, which is comparable to that in the previous work [1]. The tracking process takes 19.83
sec per frame (total 3.25 hr).

The ASER gustatory neuron was successfully identified and tracked in the time-lapse 3D
image by the proposed method (Fig 6B). The ASER neuron reportedly responds to changes in
the sodium chloride concentration [38,39]. We identified a similar response of the ASER neu-
ron using the proposed method (Fig 6C). This result indicates that the proposed method can
be used for multi-object tracking and measuring, which is an essential function for whole-brain
activity imaging.

Furthermore the proposed method was utilized to measure the fluorescence intensity of
nuclei in time-lapse 2D images (Data 3). The proposed nucleus detection method was applied
to the image for the first time point (S3 Fig). Data 3 does not contain images of a highly-local-
ized nuclear marker, and therefore the images of calcium indicator that was weakly localized to
the nuclei were used instead. The proposed method found 7 nuclei out of 9 nuclei. Six false pos-
itives and two false negatives were corrected manually using RoiEdit3D. Then the nuclei were
tracked by the proposed method. All of the nuclei were successfully tracked during 241 time
frames. The ASER neuron was successfully identified and tracked in the 2D images. The
response of the ASER neuron in the 2D images (S3 Fig) is similar to that in the 3D images. This
result indicates that the proposed method can be used for multi-object tracking and measuring
of 2D images as well as 3D images.

Discussion

In this article, we proposed a method that accurately detects neuronal nuclei densely distrib-
uted in 3D space. Our GUI enables visualization and manual correction of the results of auto-
matic detection of nuclei from 3D images as well as 2D images. Additionally, our GUI
successfully tracked and measured multiple objects in time-lapse 2D and 3D images. Thus, the
proposed method can be used as a comprehensive tool for analysis of neuronal activity, includ-
ing whole-brain activity imaging.

Although the microscopy methods for whole-brain activity imaging of C. elegans have been
intensively developed in recent years [3,18-20], computational image analysis methods were
underdeveloped. In these works, the neuronal nuclei in the whole-brain activity imaging data
were detected either manually or automatically by peak detection. Manual detection is most
reliable but time- and labor-consuming, whereas the accuracy of the automatic peak detection
is relatively low because of overlooking dark nuclei near bright nuclei. Our proposed method
will reduce the difficulty and improve the accuracy. Furthermore, the numbers of the neuronal
nuclei found or tracked in these four works were less than the real number of neuronal nuclei
[3,18-21]. The scarcity may be due not only to the experimental limitations such as fluctuation
of fluorescent protein expression or low image resolution, but also to the limitations of the
image analysis methods that may overlook nuclei. The proposed method can detect almost all
the nuclei in our whole-brain activity imaging data (Fig 6), suggesting that the proposed
method can avoid errors that may be caused by overlooking nuclei, such as erroneous measure-
ments of neural activities and misidentifications of neuron classes. Thus, our method will be
highly useful for the purpose.

Peng and colleagues have intensively developed the computational methods for automatic
annotation of cell nuclei in C. elegans [33,40,41]. Although their methods successfully annotate
cells in many tissue such as body wall muscles and intestine, the methods seem not to be appli-
cable to annotations of head neurons in adult worms, which is highly desired in the field of
whole-brain activity imaging [20]. They pointed out that the positions of neuronal nuclei in
adult worms are highly variable [33] and this may be one of the reasons for the difficulty. The
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accuracy of detection and segmentation of neuronal nuclei may be another reasons because
CellSegmentation3D that was incorporated in their latest annotation framework [33] shows
compromised performance in our dataset (Table 1, Fig 5). Our proposed method improves the
accuracy of neuronal nucleus detection and will promote developing the automatic annotation
methods for the neurons. It is noteworthy that the method of simultaneous detection and
annotation of cells [41] is unique and useful in the studies of C. elegans. Because the method
assigns the positions of reference to the sample image directly and avoid the detection step, the
method find cells without overlooking under some conditions, but would not work correctly
under the large variation of the numbers or the relative positions of the nuclei, both of which
are observed in our dataset.

The optimal method for accurate detection of nuclei will vary depending on the characteris-
tics of the nuclei. Many conditions such as the visualization method, shape, and distribution of
nuclei will affect these characteristics. In our case, the distributions of the fluorescence intensity
of nuclei were similar to Gaussian distributions; thus, we developed an optimal method for
such cases. Even if an original image does not have these characteristics, some preprocessing
steps such as applying a Gaussian smoothing filter may enable application of our method to
the image.

Although choosing the optimal method and tuning its parameters might be more work than
manual identification, the automatic detection method would improve subjectivity and effec-
tivity. In the field of biology, it is often the case that hundreds or thousands of animals should
be analyzed equally well. In such case, manual detection would be time-consuming and the
automatic detection method would be required.

For tracking the nuclei in time lapse images, we can apply the detection method to each
time frame separately and then link the detected nuclei between frames. In this case, some false
negatives and false positives would be separately produced for each frame, and they might dis-
rupt the link step, resulting in increase of tracking errors. On the other hand, in the proposed
method, the result of the automatic detection could be corrected manually, resulting in
decrease of tracking errors.

The proposed tracking method is a simplistic approach. Combination with existing excel-
lent tracking methods will likely improve tracking performance of the proposed method. Cell
division and cell death did not occur in our data, but they are fundamental problems in the
analysis of embryonic development. It may be important to improve our method if it is to be
applied to these problems so that the method handles such phenomena appropriately.

Methods
Strains and cultures

C. elegans strains JN2100 and JN2101 were used in this study. Animals were raised on nema-
tode growth medium at 20°C. E. coli strain OP50 was used as a food source.

JN2100. The genotype of the strain JN2100 is Is[H20p::NLS4::mCherry]. In this strain, the
nuclei of all neurons are marked by the red fluorescent protein mCherry [42]. The H20 pro-
moter (H20p) is a 2479 bp DNA fragment derived from an upstream region of the rimb-1 gene
of C. elegans and drives gene expression in a pan-neuronal manner. mCherry was fused with
four tandem repeats of nuclear localization signal (NLS) peptides and localized to the nuclei.
The strain was generated by injection of an expression vector containing H20p::NLS4::mCherry
to the Bristol N2 strain (wild type), integration of the transgene into the genome by UV irradia-
tion, and outcrossing with N2 three times.

JN2101. The genotype of the strain JN2101 is Is/H20p::NLS4::mCherry]; Ex [tax-4p:nls-
YC2.60, lin-44p::GFP]. In this strain, a genetically encoded calcium indicator (GECI) is
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expressed in some sensory neurons and reports the activity of these neurons. The tax-4 pro-
moter (tax-4p) is a 3132 bp DNA fragment derived from the upstream region of the tax-4 gene
of C. elegans and drives gene expression in a subset of sensory neurons including the ASER gus-
tatory neuron [43]. Yellow-Cameleon 2.60 (YC2.60) is a type of GECI and reports the Ca** con-
centration, which changes with neuronal activity, as the ratio of the fluorescence intensity of
yellow fluorescent protein (YFP) to that of cyan fluorescent protein (CFP) [44]. YC2.60 was
fused with an NLS peptide and localized mainly to the nuclei. The strain was generated by
injection of an expression vector containing tax-4p::nis-YC2.60 with a transformation marker
(lin-44p::GFP, expressed in tail hypodermis cells) to JN2100.

Datasets

We used three datasets in this study. Datal and 2 contain ~200 neuronal nuclei, and Data3
contains 9 nuclei. The positions of the centers of the nuclei were manually corrected by experi-
mental specialists using the proposed GUI.

Data 1. A set of static 3D single-channel images of strain JN2100 was used to test the
nucleus detection performance of the proposed method. Day 1 adult animals were mounted on
a 2% agar pad and paralyzed by sodium azide. The fluorescence of mCherry was observed
using laser scanning confocal microscopy (Leica SP5 with 63x water immersion lens and 2x
zoom). The sizes of the images along the x; and x, axes were 512 and 256 voxels, respectively,
and the size along the x; axis varied from 142 to 175 voxels depending on the diameter of the
animal. The sizes of a voxel along the x;, x,, and x; axes were 0.240, 0.240, and 0.252 um,
respectively.

Data 2. A time series of 3D multichannel images of strain JN2101 was used to test the track-
ing performance of the proposed method. A day 1 adult animal was introduced and held in a
microfluidic device called olfactory chip [45]. The animal and its head neurons moved to some
extent in the device because the animal was not paralyzed. The animal was stimulated from 50 to
100 s after initiation of each experiment with a down-step concentration of sodium chloride [39],
and the fluorescence in the CFP, YFP, and mCherry channels was observed simultaneously using
customized spinning disk confocal microscopy. The sizes of the image along the xy, x,, and x5
axes were 512, 256, and 20 voxels, respectively. The sizes of a voxel along the x;, x,, and x5 axes
were 0.33, 0.33, and 1.40 pum, respectively. The volumetric frame rate was 4.75 per second (95 pla-
nar frame rate), and 591 3D frames were recorded (about 124 s).

Data 3. A time series of 2D multichannel images of strain JN2101 was used to test the
detection and the tracking performance of the proposed method for 2D time lapse images. The
experimental conditions for sample preparation and stimulation are same as Data 2 except
stimulation period (51 to 151 frames after initiation of the experiment). The fluorescence in
the CFP and YFP channels was observed simultaneously using DMI6000B inverted microscope
with HCX PL APO 63x (NA 1.40) objective lens (Leica), a dual-view FRET imaging system
DV2 (Photometrics) and an ImageEM EM-CCD camera (Hamamatsu Photonics) [46]. The
sizes of the image along the x; and x, axes were 512 and 256, respectively. The sizes of a voxel
along the x; and x, axes were 0.254 and 0.254 pm, respectively. The frame rate was 1.83 per sec-
ond, and 241 2D frames were recorded (about 131 s).

Outline of the proposed method

The blobs of the nuclei were detected by the conventional method (Steps 1 & 2). Under-seg-
mented blobs were detected and split in Step 3. The precise positions and sizes of the nuclei
were obtained in Step 4. The names and parameter values of the filters used in the proposed
method are shown in S1 Table.

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004970 June 6,2016 14/20



©PLOS

COMPUTATIONAL

BIOLOGY

Accurate Detection of Densely Packed Nuclei in 3D

Step 1: Preprocessing. Parallel displacement along the x; and x, axes between images with
different x; or time axes was corrected on the basis of cross-correlation using the dftregistration
function [47] implemented in MATLAB. If the data contained multiple channels or multiple
time points, the images in one channel or one time point were extracted for nucleus detection.
Next, the images were processed by a denoising filter (“Median 3D. . .” for Data 1), background
subtraction (“Subtract Background. . .” for Data 1), and Gaussian blurring (“Gaussian Blur
3D...” for Data 1) using appropriate methods implemented in Fiji.

Step 2: Segmentation. Obvious background voxels in the images were removed by thresh-
olding using an appropriate method implemented in Fiji. Local intensity peaks of the 3D image
were detected using the 3D maximum filter implemented in MATLAB. If there were two or
more peaks within the radius of the 3D maximum filter, only the brightest one was regarded as
alocal peak, and the others were discarded. The local peaks were used as seeds for 3D seeded
grayscale watershed segmentation implemented as “Marker-controlled Watershed” in the
MorphoLib] plugin in Fiji. Too-small objects were regarded as background noise and removed.
Background voxels in each segmented subimage were removed by thresholding [48] imple-
mented in MATLAB.

Step 3: Clump splitting based on negative curvature. The curvature of the iso-intensity
surface was calculated at each voxel (S2 Text) [28]. A segmented subimage was marked as
under-segmented if the number of voxels having negative curvature in the subimage exceeded
a threshold. If the voxels of negative curvature were not connected to the border of the sub-
image, they were regarded as noise and not counted. Voxels of negative curvature near the bor-
der of the subimage were regarded as part of a correct segmentation and not counted. If the
subimages were marked as under-segmented, the voxels of negative curvature were removed,
and the subimage was distance-transformed and segmented by the 3D seeded watershed
algorithm.

Step 4: Least squares fitting with a Gaussian mixture. The positions, shapes, and intensi-
ties of detected nuclei were obtained by fitting with a Gaussian mixture. The least squares fit-
ting procedure is described in detail in S1 Text and S4 Fig. The number of Gaussian
distributions and the initial values of the centers of the distributions were derived from the
results of clump splitting (previous step). The initial values of the covariance matrices of the
distributions were fixed at a predefined default value. If the distance between the centers of two
distributions was too small after fitting, either of the two distributions was removed, and the
fitting procedure was repeated. After convergence, the scaling factors of the Gaussian distribu-
tions were estimated in other channels to obtain the intensities of the nuclei in these channels.

If the data contained multiple time points, the fitting procedure enabled tracking of the
nuclei. The Gaussian mixture at the current time point was used as an initial value for the
Gaussian mixture at the next time point, and the fitting procedure was executed without
changing the eigenvalues of the covariance matrices (i.e., the size of the nuclei) [49]. This step
was repeated for all the time points.

The proposed method was implemented as C, Java, and Matlab, then integrated as Matlab
codes. In this study, the proposed method was tested on a desktop PC (3.2GHz 6-core Intel
Core 17-3930K with 16GB memory, Windows 7 64bit). In order to confirm the portability of
our method to Linux and cluster environment, the proposed method was tested on Shirokane3
supercomputing system (Human Genome Center, the University of Tokyo).

Performance comparison

The performance of proposed method for cell detection was compared with five state-of-the-
art methods: Ilastik, FARSight, RPHC, 3D watershed plugin in Image]J, and
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CellSegmentation3D. Ilastik is machine learning-based method and required a training data
that was created manually. The parameters of RPHC was the same as the literature [1]. The
parameters of the other methods were optimized based on F-measure and accuracy. The paral-
lel displacements of the raw 3D images of 12 animals in Data 1 was corrected, and the methods
were applied to the images. Because FARSight crashed during processing, its command line
version (segment_nuclei.exe) was used [50]. The input images for FARSight and CellSegmenta-
tion3D were converted to 8-bit images because they could not operate with 32-bit grayscale
images. For CellSegmentation3D, because it could not operate with our whole 3D image, the
input images were divided and processed separately. The comparison was performed and the
processing time was measured on the same PC as that used for the proposed method. All the
methods other than CellSegmentation3D might be able to utilize multi-threading.

The centroids of the segmented regions obtained by each program were used as the repre-
sentative points of the objects. For the proposed method, the means of the fitted Gaussian dis-
tributions (y) were used as the representative points. The Euclid distances of the
representative points and manually pointed Ground Truth were obtained. If a representative
point was nearest-neighbor of a point of Ground Truth and vice versa, the object was regarded
as a True Positive. If only the former condition was met, the Ground Truth was regarded as a
False Negative. If only the latter condition was met, the object was regarded as a False Positive.

We obtained the indices of the performance [12,34,50] as follows:

True positive rate =

_GT)

False positi te = —
alse positive rate

GT’

Fal ti te = —N
alse negative rate

GT’

2 x TP

F — measure = ,
2 x TP + FN + FP

TP
Accuraty = I T EN § FP’

where

GT = TP + FN.

GT, TP, FP and FN mean Ground Truth, True Positive, False Positive and False Negative,
respectively.

Supporting Information

S1 Fig. Shape and spatial distribution of nuclei obtained by the proposed method. (A-C)
Radius of the nuclei in Data 1. The half-radii of fitted ellipsoids are obtained as the square
roots of the eigenvalues of the covariance matrices of the fitted Gaussian distributions. (D)
Shape of the nuclei measured as a ratio of maximum and minimum lengths of axes of the ellip-
soids. (E) Distances to nearest neighbors of nuclei obtained as minimum distance between cen-
ters of the fitted Gaussian distributions. (F) Fluorescence intensities of nuclei obtained as the
scaling parameters 7 of the fitted Gaussian distributions.

(EPS)
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S2 Fig. Screenshot of RoiEdit3D.
(EPS)

S3 Fig. A tracking result for 2-dimensional time series images. (A) The image at the first
time point of Data 3 (2-dimsnional time series images) is shown. For presentation, only the
CFP channel of the calcium indicator Yellow Cameleon is shown in light blue. ROI of ASER is
shown as a yellow ellipse. Other ROIs appear as blue ellipses. (B) Time course of ASER
response obtained by the calcium indicator. Gray area indicates the stimulation period.

(EPS)

$4 Fig. Verification of proposed alternate optimization procedure. Time courses indicate
the progress of the optimization procedures for the 3D images of 12 animals in Data 1.

Table shows fitness scores of procedures for each animal and the number of trials having scores
within 110% of the best score.

(EPS)

S1 Table. Names and parameter values of filters used in the proposed method.
(DOCX)

S1 Text. Procedure for least squares fitting with a Gaussian mixture.
(DOCX)

S2 Text. Procedure for calculation of principal curvatures of iso-intensity surfaces.
(DOCX)

Acknowledgments

A part of the computing resources was provided by the Shirokane3 supercomputing system of
the Human Genome Center (the University of Tokyo). We thank Y. Satoh and other members
of our laboratories for helpful discussions and technical assistance with the experiments.

Author Contributions

Performed the experiments: MK MS] TTe YT. Analyzed the data: YT YI TTo OH RY TTe MK
MSJ SK TI. Wrote the paper: YT YI. Conceived the project: YT YI. Developed the method of
image anlaysis: YT YI. Supported the development: TTo OH RY MK TI. Developed the cus-
tomized microscope: TTe TI. Designed the experiments: YT YI TTe MK MS]J SK TL

References

1. Tokunaga T, Hirose O, Kawaguchi S, Toyoshima Y, Teramoto T, Ikebata H, et al. Automated detection
and tracking of many cells by using 4D live-cell imaging data. Bioinformatics. 2014; 30: i43—-i51. doi: 10.
10983/bioinformatics/btu271 PMID: 24932004

2. Ahrens MB, Orger MB, Robson DN, Li JM, Keller PJ. Whole-brain functional imaging at cellular resolu-
tion using light-sheet microscopy. Nat Methods. 2013; 10: 413-420. doi: 10.1038/nmeth.2434 PMID:
23524393

3. Prevedel R, Yoon Y-G, Hoffmann M, Pak N, Wetzstein G, Kato S, et al. Simultaneous whole-animal 3D
imaging of neuronal activity using light-field microscopy. Nat Methods. 2014; 11: 727-730. doi: 10.
1038/nmeth.2964 PMID: 24836920

4. Lemon WC, Pulver SR, Héckendorf B, McDole K, Branson K, Freeman J, et al. Whole-central nervous
system functional imaging in larval Drosophila. Nat Commun. 2015; 6: 7924. doi: 10.1038/
ncomms8924 PMID: 26263051

5. Tainaka K, Kubota SI, Suyama TQ, Susaki E a, Perrin D, Ukai-Tadenuma M, et al. Whole-body imaging
with single-cell resolution by tissue decolorization. Cell. Elsevier Inc.; 2014; 159: 911-24. doi: 10.1016/
j-cell.2014.10.034 PMID: 25417165

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004970 June 6,2016 17/20


http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1004970.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1004970.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1004970.s004
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1004970.s005
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1004970.s006
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1004970.s007
http://dx.doi.org/10.1093/bioinformatics/btu271
http://dx.doi.org/10.1093/bioinformatics/btu271
http://www.ncbi.nlm.nih.gov/pubmed/24932004
http://dx.doi.org/10.1038/nmeth.2434
http://www.ncbi.nlm.nih.gov/pubmed/23524393
http://dx.doi.org/10.1038/nmeth.2964
http://dx.doi.org/10.1038/nmeth.2964
http://www.ncbi.nlm.nih.gov/pubmed/24836920
http://dx.doi.org/10.1038/ncomms8924
http://dx.doi.org/10.1038/ncomms8924
http://www.ncbi.nlm.nih.gov/pubmed/26263051
http://dx.doi.org/10.1016/j.cell.2014.10.034
http://dx.doi.org/10.1016/j.cell.2014.10.034
http://www.ncbi.nlm.nih.gov/pubmed/25417165

B PLOS | Suryanonat

Accurate Detection of Densely Packed Nuclei in 3D

10.

11.

12

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24,

25.

Susaki E a., Tainaka K, Perrin D, Kishino F, Tawara T, Watanabe TM, et al. Whole-brain imaging with
single-cell resolution using chemical cocktails and computational analysis. Cell. Elsevier; 2014; 157:
726-739. doi: 10.1016/j.cell.2014.03.042 PMID: 24746791

Hama H, Kurokawa H, Kawano H, Ando R, Shimogori T, Noda H, et al. Scale: a chemical approach for
fluorescence imaging and reconstruction of transparent mouse brain [Internet]. Nature Neuroscience.
Nature Publishing Group; 2011. pp. 1481-1488. doi: 10.1038/nn.2928 PMID: 21878933

Ke M-T, Fujimoto S, Imai T. SeeDB: a simple and morphology-preserving optical clearing agent for neu-
ronal circuit reconstruction. Nat Neurosci. Nature Publishing Group; 2013; 16: 1154—61. doi: 10.1038/
nn.3447 PMID: 23792946

Chung K, Wallace J, Kim S-Y, Kalyanasundaram S, Andalman AS, Davidson TJ, et al. Structural and
molecular interrogation of intact biological systems. Nature. Nature Publishing Group; 2013; 497: 332—
337. doi: 10.1038/nature12107 PMID: 23575631

Oberlaender M, Dercksen VJ, Egger R, Gensel M, Sakmann B, Hege HC. Automated three-dimen-
sional detection and counting of neuron somata. J Neurosci Methods. 2009; 180: 147—-160. doi: 10.
1016/j.jneumeth.2009.03.008 PMID: 19427542

Latorre A, Alonso-Nanclares L, Muelas S, Pefia J-M, Defelipe J. 3D segmentations of neuronal nuclei
from confocal microscope image stacks. Front Neuroanat. 2013; 7: 49. doi: 10.3389/fnana.2013.00049
PMID: 24409123

Bashar MK, Yamagata K, Kobayashi TJ. Improved and robust detection of cell nuclei from four dimen-
sional fluorescence images. PLoS One. 2014; 9: e101891. doi: 10.1371/journal.pone.0101891 PMID:
25020042

Bashar MK, Komatsu K, Fujimori T, Kobayashi TJ. Automatic extraction of nuclei centroids of mouse
embryonic cells from fluorescence microscopy images. PLoS One. 2012; 7: €35550. doi: 10.1371/
journal.pone.0035550 PMID: 22590505

Azuma Y, Onami S. Evaluation of the effectiveness of simple nuclei-segmentation methods on Caenor-
habditis elegans embryogenesis images. BMC Bioinformatics. BMC Bioinformatics; 2013; 14: 295. doi:
10.1186/1471-2105-14-295 PMID: 24090283

Bao Z, Murray JI, Boyle T, Ooi SL, Sandel MJ, Waterston RH. Automated cell lineage tracing in Caenor-
habditis elegans. Proc Natl Acad Sci U S A. 2006; 103: 2707—12. doi: 10.1073/pnas.0511111103
PMID: 16477039

Meijering E, Dzyubachyk O, Smal |. Methods for cell and particle tracking. Methods Enzymol. 2012;
504: 183—-200. doi: 10.1016/B978-0-12-391857-4.00009-4 PMID: 22264535

Stegmaier J, Amat F, Lemon WC, Teodoro G, Mikut R, Keller PJ, et al. Real-Time Three-Dimensional
Cell Segmentation in Large-Scale Microscopy Data of Developing Technology Real-Time Three-
Dimensional Cell Segmentation in Large-Scale Microscopy Data of Developing Embryos. Dev Cell.
Elsevier Inc.; 2016; 36: 225—240. doi: 10.1016/j.devcel.2015.12.028 PMID: 26812020

Kato S, Kaplan HS, Schrddel T, Skora S, Lindsay TH, Yemini E, et al. Global Brain Dynamics Embed
the Motor Command Sequence of Caenorhabditis elegans. Cell. 2015; 163: 656—69. doi: 10.1016/j.cell.
2015.09.034 PMID: 26478179

Schrédel T, Prevedel R, Aumayr K, Zimmer M, Vaziri A. Brain-wide 3D imaging of neuronal activity in
Caenorhabditis elegans with sculpted light. Nat Methods. 2013; 10: 1013-20. doi: 10.1038/nmeth.2637
PMID: 24013820

Nguyen JP, Shipley FB, Linder AN, Plummer GS, Liu M, Setru SU, et al. Whole-brain calcium imaging
with cellular resolution in freely behaving Caenorhabditis elegans. Proc Natl Acad Sci U S A. 2016;
113: E1074-81. doi: 10.1073/pnas.1507110112 PMID: 26712014

White JG, Southgate E, Thomson JN, Brenner S. The Structure of the Nervous System of the Nema-
tode Caenorhabditis elegans [Internet]. Philosophical Transactions of the Royal Society B: Biological
Sciences. 1986. pp. 1-340. doi: 10.1098/rsth.1986.0056

Ong SH, Jayasooriah, Yeow HH, Sinniah R. Decomposition of digital clumps into convex parts by con-
tour tracing and labelling. Pattern Recognit Lett. 1992; 13: 789-795. doi: 10.1016/0167-8655(92)
90129-N

Yeo T, Jin X, Ong S, Jayasooriah, Sinniah R. Clump splitting through concavity analysis. Pattern
Recognit Lett. 1994; 15: 1013—-1018. doi: 10.1016/0167-8655(94)90033-7

LaTorre A., Alonso-Nanclares L, Muelas S, Pefia JM, DeFelipe J. Segmentation of neuronal nuclei
based on clump splitting and a two-step binarization of images. Expert Syst Appl. Elsevier Ltd; 2013;
40: 6521-6530. doi: 10.1016/j.eswa.2013.06.010

Bai X, Sun C, Zhou F. Splitting touching cells based on concave points and ellipse fitting. Pattern
Recognit. Elsevier; 2009; 42: 2434-2446. doi: 10.1016/j.patcog.2009.04.003

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004970 June 6,2016 18/20


http://dx.doi.org/10.1016/j.cell.2014.03.042
http://www.ncbi.nlm.nih.gov/pubmed/24746791
http://dx.doi.org/10.1038/nn.2928
http://www.ncbi.nlm.nih.gov/pubmed/21878933
http://dx.doi.org/10.1038/nn.3447
http://dx.doi.org/10.1038/nn.3447
http://www.ncbi.nlm.nih.gov/pubmed/23792946
http://dx.doi.org/10.1038/nature12107
http://www.ncbi.nlm.nih.gov/pubmed/23575631
http://dx.doi.org/10.1016/j.jneumeth.2009.03.008
http://dx.doi.org/10.1016/j.jneumeth.2009.03.008
http://www.ncbi.nlm.nih.gov/pubmed/19427542
http://dx.doi.org/10.3389/fnana.2013.00049
http://www.ncbi.nlm.nih.gov/pubmed/24409123
http://dx.doi.org/10.1371/journal.pone.0101891
http://www.ncbi.nlm.nih.gov/pubmed/25020042
http://dx.doi.org/10.1371/journal.pone.0035550
http://dx.doi.org/10.1371/journal.pone.0035550
http://www.ncbi.nlm.nih.gov/pubmed/22590505
http://dx.doi.org/10.1186/1471-2105-14-295
http://www.ncbi.nlm.nih.gov/pubmed/24090283
http://dx.doi.org/10.1073/pnas.0511111103
http://www.ncbi.nlm.nih.gov/pubmed/16477039
http://dx.doi.org/10.1016/B978-0-12-391857-4.00009-4
http://www.ncbi.nlm.nih.gov/pubmed/22264535
http://dx.doi.org/10.1016/j.devcel.2015.12.028
http://www.ncbi.nlm.nih.gov/pubmed/26812020
http://dx.doi.org/10.1016/j.cell.2015.09.034
http://dx.doi.org/10.1016/j.cell.2015.09.034
http://www.ncbi.nlm.nih.gov/pubmed/26478179
http://dx.doi.org/10.1038/nmeth.2637
http://www.ncbi.nlm.nih.gov/pubmed/24013820
http://dx.doi.org/10.1073/pnas.1507110112
http://www.ncbi.nlm.nih.gov/pubmed/26712014
http://dx.doi.org/10.1098/rstb.1986.0056
http://dx.doi.org/10.1016/0167-8655(92)90129-N
http://dx.doi.org/10.1016/0167-8655(92)90129-N
http://dx.doi.org/10.1016/0167-8655(94)90033-7
http://dx.doi.org/10.1016/j.eswa.2013.06.010
http://dx.doi.org/10.1016/j.patcog.2009.04.003

B PLOS | Suryanonat

Accurate Detection of Densely Packed Nuclei in 3D

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

4.

42.

43.

44.

45.

46.

Zhang C, Sun C, Su R, Pham TD. Segmentation of clustered nuclei based on curvature weighting. Pro-
ceedings of the 27th Conference on Image and Vision Computing New Zealand—IVCNZ ‘12. New
York, New York, USA: ACM Press; 2012. p. 49. doi: 10.1145/2425836.2425848

Indhumathi C, Cai YY, Guan YQ, Opas M. An automatic segmentation algorithm for 3D cell cluster split-
ting using volumetric confocal images. J Microsc. 2011; 243: 60-76. doi: 10.1111/j.1365-2818.2010.
03482.x PMID: 21288236

Thirion J-P, Gourdon A. Computing the Differential Characteristics of Isointensity Surfaces. Comput Vis
Image Underst. 1995; 61: 190-202.doi: 10.1006/cviu.1995.1015

Sommer C, Straehle C, Kothe U, Hamprecht F a. llastik: Interactive learning and segmentation toolkit.
2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro. IEEE; 2011. pp.
230-233.doi: 10.1109/ISBI.2011.5872394

Al-Kofahi Y, Lassoued W, Lee W, Roysam B. Improved automatic detection and segmentation of cell
nuclei in histopathology images. IEEE Trans Biomed Eng. 2010; 57: 841-852. doi: 10.1109/TBME.
2009.2035102 PMID: 19884070

Ollion J, Cochennec J, Loll F, Escudé C, Boudier T. TANGO: A generic tool for high-throughput 3D
image analysis for studying nuclear organization. Bioinformatics. 2013; 29: 1840—1841. doi: 10.1093/
bioinformatics/btt276 PMID: 23681123

Li G, Liu T, Tarokh A, Nie J, Guo L, Mara A, et al. 3D cell nuclei segmentation based on gradient flow
tracking. BMC Cell Biol. 2007; 8: 40. doi: 10.1186/1471-2121-8-40 PMID: 17784958

Aemni SJ, Liu X, Do CB, Gross SS, Nguyen A, Guo SD, et al. Automated cellular annotation for high-res-
olution images of adult Caenorhabditis elegans. Bioinformatics. 2013; 29: i18—26. doi: 10.1093/
bioinformatics/btt223 PMID: 23812982

Song Y, Cai W, Huang H, Wang Y, Feng DD, Chen M. Region-based progressive localization of cell
nuclei in microscopic images with data adaptive modeling. BMC Bioinformatics. 2013; 14: 173. doi: 10.
1186/1471-2105-14-173 PMID: 23725412

Schneider C a, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nature
Methods. Nature Publishing Group; 2012. pp. 671-675. doi: 10.1038/nmeth.2089 PMID: 22930834

Schindelin J, Arganda-Carreras |, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source
platform for biological-image analysis. Nat Methods. 2012; 9: 676-682. doi: 10.1038/nmeth.2019
PMID: 22743772

Sage D, Prodanov D, Tinevez J-Y, Schindelin J. MIJ: Making Interoperablility between ImagedJ and
Matlab Possible. ImageJ User Dev Conf Poster. 2012; 4. Available: http:/bigwww.epfl.ch/sage/soft/
mij/Poster-MIJ-Daniel-Sage.pdf

Suzuki H, Thiele TR, Faumont S, Ezcurra M, Lockery SR, Schafer WR. Functional asymmetry in Cae-
norhabditis elegans taste neurons and its computational role in chemotaxis. Nature. 2008; 454: 114—7.
doi: 10.1038/nature06927 PMID: 18596810

Kunitomo H, Sato H, Iwata R, Satoh Y, Ohno H, Yamada K, et al. Concentration memory-dependent
synaptic plasticity of a taste circuit regulates salt concentration chemotaxis in Caenorhabditis elegans.
Nat Commun. Nature Publishing Group; 2013; 4: 2210. doi: 10.1038/ncomms3210 PMID: 23887678

Long F, Peng H, Liu X, Kim SK, Myers E. A 3D digital atlas of C. elegans and its application to single-
cell analyses. Nat Methods. Nature Publishing Group; 2009; 6: 667—72. doi: 10.1038/nmeth.1366
PMID: 19684595

QuL, LongF, Liu X, Kim S, Myers E, Peng H. Simultaneous recognition and segmentation of cells:
application in C.elegans. Bioinformatics. 2011; 27: 2895-902. doi: 10.1093/bioinformatics/btr480
PMID: 21849395

Shaner NC, Campbell RE, Steinbach P a, Giepmans BNG, Palmer AE, Tsien RY. Improved monomeric
red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat
Biotechnol. 2004; 22: 1567—1572. doi: 10.1038/nbt1037 PMID: 15558047

Komatsu H, Mori |, Rhee JS, Akaike N, Ohshima Y. Mutations in a cyclic nucleotide-gated channel lead
to abnormal thermosensation and chemosensation in C. elegans. Neuron. 1996; 17: 707-18. Available:
http://www.ncbi.nim.nih.gov/pubmed/8893027 PMID: 8893027

Nagai T, Yamada S, Tominaga T, Ichikawa M, Miyawaki A. Expanded dynamic range of fluorescent
indicators for Ca(2+) by circularly permuted yellow fluorescent proteins. Proc Natl Acad Sci U S A.
2004; 101: 10554—-10559. doi: 10.1073/pnas.0400417101 PMID: 15247428

Chronis N, Zimmer M, Bargmann CI. Microfluidics for in vivo imaging of neuronal and behavioral activity
in Caenorhabditis elegans. Nat Methods. 2007; 4: 727-731. doi: 10.1038/nmeth1075 PMID: 17704783

Tomida T, Oda S, Takekawa M, lino Y, Saito H. The Temporal Pattern of Stimulation Determines the
Extent and Duration of MAPK Activation in a Caenorhabditis elegans Sensory Neuron. Sci Signal.
2012; 5: ra76. doi: 10.1126/scisignal.2002983 PMID: 23074267

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004970 June 6,2016 19/20


http://dx.doi.org/10.1145/2425836.2425848
http://dx.doi.org/10.1111/j.1365-2818.2010.03482.x
http://dx.doi.org/10.1111/j.1365-2818.2010.03482.x
http://www.ncbi.nlm.nih.gov/pubmed/21288236
http://dx.doi.org/10.1006/cviu.1995.1015
http://dx.doi.org/10.1109/ISBI.2011.5872394
http://dx.doi.org/10.1109/TBME.2009.2035102
http://dx.doi.org/10.1109/TBME.2009.2035102
http://www.ncbi.nlm.nih.gov/pubmed/19884070
http://dx.doi.org/10.1093/bioinformatics/btt276
http://dx.doi.org/10.1093/bioinformatics/btt276
http://www.ncbi.nlm.nih.gov/pubmed/23681123
http://dx.doi.org/10.1186/1471-2121-8-40
http://www.ncbi.nlm.nih.gov/pubmed/17784958
http://dx.doi.org/10.1093/bioinformatics/btt223
http://dx.doi.org/10.1093/bioinformatics/btt223
http://www.ncbi.nlm.nih.gov/pubmed/23812982
http://dx.doi.org/10.1186/1471-2105-14-173
http://dx.doi.org/10.1186/1471-2105-14-173
http://www.ncbi.nlm.nih.gov/pubmed/23725412
http://dx.doi.org/10.1038/nmeth.2089
http://www.ncbi.nlm.nih.gov/pubmed/22930834
http://dx.doi.org/10.1038/nmeth.2019
http://www.ncbi.nlm.nih.gov/pubmed/22743772
http://bigwww.epfl.ch/sage/soft/mij/Poster-MIJ-Daniel-Sage.pdf
http://bigwww.epfl.ch/sage/soft/mij/Poster-MIJ-Daniel-Sage.pdf
http://dx.doi.org/10.1038/nature06927
http://www.ncbi.nlm.nih.gov/pubmed/18596810
http://dx.doi.org/10.1038/ncomms3210
http://www.ncbi.nlm.nih.gov/pubmed/23887678
http://dx.doi.org/10.1038/nmeth.1366
http://www.ncbi.nlm.nih.gov/pubmed/19684595
http://dx.doi.org/10.1093/bioinformatics/btr480
http://www.ncbi.nlm.nih.gov/pubmed/21849395
http://dx.doi.org/10.1038/nbt1037
http://www.ncbi.nlm.nih.gov/pubmed/15558047
http://www.ncbi.nlm.nih.gov/pubmed/8893027
http://www.ncbi.nlm.nih.gov/pubmed/8893027
http://dx.doi.org/10.1073/pnas.0400417101
http://www.ncbi.nlm.nih.gov/pubmed/15247428
http://dx.doi.org/10.1038/nmeth1075
http://www.ncbi.nlm.nih.gov/pubmed/17704783
http://dx.doi.org/10.1126/scisignal.2002983
http://www.ncbi.nlm.nih.gov/pubmed/23074267

B PLOS | Suryanonat

Accurate Detection of Densely Packed Nuclei in 3D

47.

48.

49.

50.

Guizar-Sicairos M, Thurman ST, Fienup JR. Efficient subpixel image registration algorithms. Opt Lett.
2008; 33: 156—158. doi: 10.1364/0L.33.000156 PMID: 18197224

Otsu N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans Syst Man Cybern.
1979; 9: 62-66. doi: 10.1109/TSMC.1979.4310076

Fukunaga T, Kubota S, Oda S, Iwasaki W. GroupTracker: Video tracking system for multiple animals
under severe occlusion. Comput Biol Chem. Elsevier Ltd; 2015; 57: 39—45. doi: 10.1016/j.
compbiolchem.2015.02.006 PMID: 25736254

Mathew B, Schmitz A, Mufioz-Descalzo S, Ansari N, Pampaloni F, Stelzer EHK, et al. Robust and auto-
mated three-dimensional segmentation of densely packed cell nuclei in different biological specimens
with Lines-of-Sight decomposition. BMC Bioinformatics. BMC Bioinformatics; 2015; 16: 187. doi: 10.
1186/s12859-015-0617-x PMID: 26049713

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004970 June 6,2016 20/20


http://dx.doi.org/10.1364/OL.33.000156
http://www.ncbi.nlm.nih.gov/pubmed/18197224
http://dx.doi.org/10.1109/TSMC.1979.4310076
http://dx.doi.org/10.1016/j.compbiolchem.2015.02.006
http://dx.doi.org/10.1016/j.compbiolchem.2015.02.006
http://www.ncbi.nlm.nih.gov/pubmed/25736254
http://dx.doi.org/10.1186/s12859-015-0617-x
http://dx.doi.org/10.1186/s12859-015-0617-x
http://www.ncbi.nlm.nih.gov/pubmed/26049713

