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Abstract

 Purpose—To examine heterogeneous breast cancer through intravoxel incoherent motion 

(IVIM) histogram analysis.

 Materials and methods—This HIPAA-compliant, IRB-approved retrospective study 

included 62 patients (age 48.44±11.14 years, 50 malignant lesions and 12 benign) who underwent 

contrast-enhanced 3 T breast MRI and diffusion-weighted imaging. Apparent diffusion coefficient 

(ADC) and IVIM biomarkers of tissue diffusivity (Dt), perfusion fraction (fp), and pseudo-

diffusivity (Dp) were calculated using voxel-based analysis for the whole lesion volume. 

Histogram analysis was performed to quantify tumour heterogeneity. Comparisons were made 

using Mann–Whitney tests between benign/malignant status, histological subtype, and molecular 

prognostic factor status while Spearman’s rank correlation was used to characterize the association 

between imaging biomarkers and prognostic factor expression.

 Results—The average values of the ADC and IVIM biomarkers, Dt and fp, showed significant 

differences between benign and malignant lesions. Additional significant differences were found 

in the histogram parameters among tumour subtypes and molecular prognostic factor status. IVIM 

histogram metrics, particularly fp and Dp, showed significant correlation with hormonal factor 

expression.

 Conclusion—Advanced diffusion imaging biomarkers show relationships with molecular 

prognostic factors and breast cancer malignancy. This analysis reveals novel diagnostic metrics 

that may explain some of the observed variability in treatment response among breast cancer 

patients.
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 Introduction

Heterogeneity is a known hallmark of cancer [1–3], and confounds treatment planning and 

prevents effective drug delivery. Breast cancer is a prime example in which such 

heterogeneity can be clearly observed [4].

To quantitatively analyze this heterogeneous tumour microenvironment, an improved 

understanding of the connections between imaging markers and molecular markers is 

required. Recent studies have shown that magnetic resonance imaging (MRI) biomarkers 

such as apparent diffusion coefficient (ADC) correlate with prognostic factors of breast 

cancer [5–8]. Diffusion-weighted imaging (DWI) characterizes cancerous tissue cellularity 

[9, 10], particularly in breast cancer [11–15]. Through DWI, biomarkers have been 

developed that are sensitive to microvascular flow via the intravoxel incoherent motion 

(IVIM) effect [16]. Using IVIM, first proposed by LeBihan [16], one can quantify tumour 

hypervascularity and hypercellularity, and these IVIM markers have been shown in a range 

of studies [17–21], including breast cancer in preclinical [22, 23] and clinical settings [15, 

24–28].

However, most studies have focused on average values of IVIM parameters. More 

information can be parsed from a histogram analysis of the spatial distribution of IVIM 

parameters [19]. Histogram analysis can provide information beyond the mean values, such 

as the skewness, and kurtosis of the parameter distributions [22, 29–32]. This additional 

analysis can potentially provide metrics for additional information on the heterogeneous 

tumour composition.

In this study, we calculate advanced diffusion MRI metrics from histogram analysis 

[average, extrema (maximum and minimum), and heterogeneity (kurtosis, skewness, 

standard deviation [SD])]. While it has been shown in previous studies that IVIM metrics 

can distinguish between benign and malignant lesions [15, 26, 28], we hypothesize that 

advanced metrics using histogram analysis can also potentially distinguish between tumour 

subtypes as well as better differentiate between tumours based on prognostic factors.

 Materials and methods

 Patients

In this Health Insurance Portability and Accountability Act of 1996 (HIPAA)-compliant, 

local institutional review board (IRB)-approved retrospective study, 62 patients underwent 

standard breast MR evaluation for staging of local disease between 1/7/2009 and 2/27/2013. 

Of these, 50 patients had confirmed malignant lesions and 12 patients had benign lesions 

(Table 1). Benign lesion classifications included fibrocystic change (n=4), cyst (n=1), 

atypical ductal hyperplasia (n=1), intraductal papilloma (n=2), fibroadenomas (n=2), and 
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other benign (n=2). All patients were newly diagnosed breast cancer patients and selected 

based on having unifocal disease. The mean age of all patients was 48.4±11.1 years 

(malignant lesion: 50.2±10.5 years; benign lesion: 46.3±11.7 years) with a range of 25–80 

years. Patients were diagnosed with breast cancer either through stereotactic core biopsy, 

ultrasound (US)-guided fine needle aspirations (FNA), or MRI-guided core biopsy. Final 

histopathology diagnosis was confirmed through histology, surgery, and clinical follow-up. 

No new malignancies were found in either group within the follow-up periods (average 2.6 

years; range: 1 month to 4.8 years). One patient, however, received treatment elsewhere after 

initial examinations; no follow-up results were recorded.

 MRI scans

Patients underwent a bilateral MRI breast examination in a full body Siemens Tim Trio 3 T 

MRI scanner (Siemens Medical Solutions, Erlangen, Germany) using a seven-element breast 

coil array (Invivo Corp., Gainesville, FL, USA). Anatomical imaging was performed using a 

T1-weighted, volume-interpolated breath hold examination (VIBE) sequence with and 

without fat saturation [saturation time/echo time (TR/TE)=3.66/1.1 ms, matrix 384×384, 288 

slices, resolution 1.2×0.9×1.5 mm3 and scan time 1:10 each]. Total scan time was 2.3 min.

DWI protocol was collected using a twice refocused, bipolar gradient single-shot centric-

ordered turbo-spin echo (TSE) sequence (TR/TE=2000/103 ms, 108*×128 matrix, 12 axial 

slices, 2.7×2.7×4.0 mm voxel, parallel imaging [generalized auto-calibrating partially 

parallel acquisition (GRAPPA)] acceleration factor (iPat)=2, 24 reference lines; *Note: 8 

patients used a phase matrix of 128 rather than 108). Axial TSE–DWI images with bilateral 

breast coverage were collected with frequency-selective fat suppression and diffusion 

sensitization in the anterior–posterior direction applied with weighting factors (b-values) of 

0, 30, 70, 100, 150, 200, 300, 400, 500, 800 s/mm2 (total scan time=4 minutes). A TSE 

diffusion-weighted (DW) sequence was used instead of echo planar imaging to avoid 

susceptibility artifacts [33, 34]. The slices measured in the TSE–DWI scan covered the 

lesion as identified in the anatomical scan. A fat-saturated sagittal T2-weighted TSE scan 

(TR/TE=6070/84 ms, matrix 384 × 336, 88 slices, iPat = 2, resolution 1.0 × 1.0 × 5.0 mm3) 

was performed pre-contrast for a total scan time of 4.5 min. Patients also underwent 

dynamic contrast-enhanced (DCE) MRI. Contrast-enhanced scans consisted of three-

dimensional (3D), T1-weighted, sagittal fat-saturated VIBE images (TR/TE=4.23/1.55 ms, 

matrix 384 × 336, 224 slices, iPat = 2, resolution 0.7 × 0.7 × 1.5 mm3) and collected one 

pre-contrast and 4 consecutive time points after administration of gadolinium (Gd–DTPA) 

contrast agent (Magnevist, dosage 0.1 mM/kg body weight; average 14.6±5.1 cc). Scan 

duration was 1:13 for each, and total scan time lasted around 6 minutes. An axial 3D VIBE 

scan was collected post-contrast (TR/TE=4.23/1.55 ms, matrix 384×384, 224 slices, 

resolution 1.3×1.1×1.5 mm3) with a total scan time of 2.5 min. The images from this scan 

were used for guidance of region of interest (ROI) selection during analysis of the DW 

images. IVIM and contrast-enhanced data from 36 (out of 62) subjects were previously 

reported [25, 27], but without parametric map analysis or comparison with molecular 

prognostic factors.
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 Data analysis

The image processing workflow for this study is illustrated in Fig. 1. Two breast radiologists 

with over 5 years of experience independently identified lesions on anatomical images based 

on the hyperintense signals from post-contrast axial and sagittal T1 VIBE images. Lesion 

characteristics were recorded according to the American College of Radiology breast 

imaging-reporting and data system (ACR BI-RADS) MR lexicon [35]. The lesions were 

located in the TSE-DWI images using methods similar to previous studies [11, 27, 36]. 

Quantitative DWI analysis was performed with custom code (Igor Pro 6, WaveMetrics, Inc., 

Portland, OR, USA). Images were first analyzed voxel-by-voxel using a mono-exponential 

decay model with all b-values to produce ADC maps for all slices:

(1)

Here, M is the DW magnetization and M0 is the total reference magnetization. ADC maps, 

weighted and unweighted diffusion images, and post-contrast VIBE images guided lesion 

segmentation. An ROI was drawn by a single operator (based on consensus of the two breast 

radiologists) on the whole lesion volume for each slice, excluding normal fibroglandular 

tissue (FGT) and adipose tissue.

 IVIM analysis

Bi-exponential analysis is used to quantify biomarkers of the IVIM model [16]. The signal 

decay curve as a function of increasing b-value is fitted to a bi-exponential equation:

(2)

where fp is perfusion fraction, Dp is pseudo-diffusivity, and Dt is tissue diffusivity. For all 

analyses, a “segmented” approach was employed to extract the IVIM parameters [17, 37–

43]. The first step is to fit all b-values>200 s/mm2 data mono-exponentially to obtain Dt, on 

the assumption that the pseudo-diffusion is negligible in this regime, and then extrapolate 

the mono-exponential fit to b=0 to estimate fp. The second step is to constrain Dt and fp in 

the bi-exponential fit for Eq. (2) to obtain Dp.

Parametric maps and voxel-based analysis for IVIM parameters (Dt, fp, and Dp) were 

derived within the tumour ROI described above. Within the voxel-based analysis, an 

additional filter was generated to only select voxels of highly vascular tumour tissue (VTT) 

[44]. Specifically, the residuals of the mono-exponential and bi-exponential fit from Eqs. (1) 

and (2), respectively, were used to calculate the Bayesian information criterion (BIC); the fit 

(mono-exponential or bi-exponential) with the lower BIC value is validated for that voxel. A 

vascular tumour tissue (VTT) mask was then generated from all voxels with (a) lower bi-

exponential than mono-exponential BIC and (b) ADC<2 μm2/ms to exclude necrotic or 

normal tissue regions. This VTT filter was used to compute the percentage of VTT voxels 

from total voxels analyzed in each lesion (labelled as VTT%).
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 Histogram analysis

Histogram analysis was performed to extract mean, extrema, and heterogeneity metrics. 

Following manual lesion segmentation, histograms were generated from each parameter 

using the following standardized parameter ranges: 0.01 μm2/ms<ADC, 0.01<Dt<3 μm2/ms; 

0.01<Dp<100 μm2/ms; 0<fp<100 %. Voxels for which fits generated unphysical values (<0) 

were nulled (set to zero) for outlier rejection. Percentages of excluded voxels outside these 

ranges were computed for each parameter. Maximum and minimum values were extracted 

from the distribution. Given the outlier rejection scheme, the minimum value fp was often 

zero; and given its equal value amongst all lesions, the fp minimum was excluded from 

statistical analysis. Higher order moment calculations were performed in a standard method 

[19, 22, 29–32] to compute SDs, kurtosis, and skewness values from each lesion’s histogram 

and its distribution.

 Histopathological data analysis

Immunohistochemistry data were collected from 45 out of the 50 patients with malignancies 

(Table 1), who underwent an imaging-guided biopsy. In addition, not all histological data 

was available for each patient, as indicated in Table 1 (e.g. hormonal tests were available for 

a given patient, but not Her2/neu). Histological subtype was determined for all lesions. 

Using percentage expression of molecular prognostic factors, positive expression for 

hormonal receptors [HR; specifically, oestrogen receptor (ER) and progesterone receptor 

(PR)] were defined as ≥10 %; for cellular proliferation stain Ki-67 also ≥10 %; and for 

Her2/neu expression, scores higher than +1 [45]. Table 1 shows the number of patients for 

which prognostic factor data was available. Treatment paradigm categories were defined 

based on recent consensus [46]: ER-positive and Her2-negative (ER+HER2−), ER-positive 

and Her2-positive (ER+HER2+), ER-negative and Her2-positive (ER-HER2+), and ER-

negative and Her2-negative (ER-HER2− or TN).

 Statistical analysis

Each subject contributed to exactly one value of each imaging measure to the analyses. 

Exact Mann–Whitney (MW) tests were used to compare subject groups defined in terms of 

tumour type (benign versus malignant), histological subtype, or marker status (positive 

versus negative) with respect to each imaging measure. Kruskal–Wallis tests were used to 

compare subject groups that had more than two groupings. We also used MW tests to 

compare IVIM parameters between groups defined by treatment paradigms (ER+HER2−, 

ER+HER2+, ER-HER2+, and TN). Due to our small sample size, we limited analyses to 

comparing a specific group to all others, e.g. TN (n=15) versus all other patients. The 

Spearman rank correlation was used to characterize the correlation of imaging measures 

with expression level of each marker. Binary logistic regression and region of concern 

(ROC) analyses were used to assess the diagnostic utility of the imaging measures, alone 

and in combination, for the detection of malignant lesions or lesions characterized as 

positive for a given marker or constellation of markers. The area under the ROC curve 

(AUC) and p values from logistic regression were used to assess the diagnostic utility of 

each imaging measure for the detection of lesions characterized as positive for a given 

constellation of markers. Sensitivity, specificity, and overall accuracy were computed at the 
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threshold value of each numeric measure that maximized the Youden index in an ROC 

analysis. All statistical tests were conducted at the two-sided 5 % significance level using 

SAS 9.3 (SAS Institute, Cary, NC).

 Results

 MRI data

From the total number of malignant lesions (n=50), 35 masses and 15 non-mass 

enhancements were identified. The mean size of the largest axis of malignant lesions from 

histopathology data was 3.25±2.72 cm (range 1.2 to 12.7 cm) and that from MR contrast-

enhanced data was 3.69±2.71 cm (range 1.2 to 12.9 cm). Average total ROI size for the 

whole lesion on DWI was 15.38 cm3 (range 0.28 to 164.16 cm3) for breast cancer patients 

and 1.84 cm3 (range 0.28 to 3.57 cm3) for benign cases. The percentage of excluded voxels 

represented a minority fraction for all parameters (Dt: 9.19±16.81 %; fp: 5.67±9.85 %; Dp: 

17.61±34.02 %). Figure 2 shows parametric map results from three patients with different 

tumour subtypes: (i) DCIS (Fig. 2a–e), (ii) invasive lobular carcinoma (Fig. 2f–j), and (iii) 

invasive ductal carcinoma (Fig. 2k–o). The histogram results for the patient with invasive 

ductal carcinoma are shown below each of the patient’s parameter maps.

 Benign versus malignant

Using MW tests, average ADC values were significantly lower for patients with malignant 

lesions (p=0.040; Fig. 3a). These patients also had significantly lower Dt (p=0.003) and 

higher fp (p=0.019) than those with benign lesions (Fig. 3b–c). Histogram analysis also 

revealed other significant differentiators between benign and malignant with a majority of 

these findings coming from extrema or heterogeneity markers of fp or Dp with two examples 

(maximum fp and Dp kurtosis) shown in Fig. 3d and e. VTT% was also found to be 

significantly different between benign and malignant groups (p=0.040; Fig. 3f).

The ROC analyses to assess diagnostic utility for the detection of malignant lesions (Table 

2) reveals that the average Dt and fp values had higher AUC values (0.77 and 0.72, 

respectively) and accuracy percentages (71.0 % and 72.6 %, respectively) than ADC 

(AUC=0.69, accuracy=62.9 %). Regarding parameter combinations, malignancy was 

independently predicted by the combination of minimum Dt (p=0.004), Dp skewness (p = 

0.017), Dt skewness (p = 0.036), and minimum ADC (p=0.011), which together achieved an 

AUC of 0.917.

 Subtype comparison

Using MW tests, significant differences among tumour subtypes were only found when 

comparing ADC and Dt metrics (Tables 3 and 4). Average ADC and Dt values were 

significantly lower in the invasive or mixed groups than in the DCIS groups (Table 3). 

Comparisons of IVIM histogram parameters between lesions of histological subtypes 

showed all but one of the significant differences (maximum fp) came from extrema or 

heterogeneity parameters of ADC and Dt (Table 4). Results from a Kruskal–Wallis test also 

indicated significance for comparing subtypes for average and histogram parameters of ADC 

and Dt.
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 Molecular prognostic factor comparisons and correlations

As shown in Table 5 and Fig. 4, when using MW tests, many significant differences among 

groups defined by hormonal status involved the heterogeneity metrics from fp and Dp. The 

heterogeneity metrics of the vascular-based IVIM parameters showed significant differences 

between groups with hormonal positive and negative status (Fig. 4a–b). In addition, fp and 

Dp heterogeneity metrics also differentiated between Ki-67-positive and Ki-67-negative 

status (Fig. 4c), and average Dp values significantly differentiated Her2/Neu status (Fig. 4d).

Regarding Spearman correlations of IVIM parameters with expression levels of prognostic 

factors, significant correlations were mostly observed between hormonal expression (ER, 

PR) and vascular parameters (fp, Dp), largely involving the heterogeneity metrics (kurtosis 

and skewness). Figure 5 shows the significant correlation coefficients (R) connecting 

imaging parameters and prognostic factors. When including all parameters, a total of 18 

different correlations out of a possible 92 (~20 %) were significant between IVIM 

parameters and the molecular prognostic factors (Fig. 5). Of these, 12 heterogeneity metrics 

showed an average R of 0.40, 5 extrema values showed an average R of 0.41, and 1 average 

value from fp (%) showed an R of 0.33.

Table 6a shows the IVIM histogram parameters showing significant differentiation of lesion 

subtype groupings (ER+HER2−, ER+HER2+, and TN) by either MW group comparison or 

logistic regression. Dp showed the most significant differentiators for the IVIM histogram 

parameters. For ER+HER2− and ER+HER2+ groups, Dp average, skewness, and kurtosis 

values were significant differentiators, with ADC average also differentiating the ER

+HER2+ group. Similarly, for the TN group, maximum Dp and fp skewness showed 

significant differentiation by MW testing.

Table 6b shows the results from analyses to identify combinations of metrics that 

independently predict prognostic factor status (e.g. discriminate ER+ from ER−) or group 

membership defined by multiple prognostic factors (e.g. TN cancers). There was no set of 

two or more measures that were independent predictors of ER only, Her2/Neu only, Ki67, 

hybrid, or TN status. Cases with at least one hormonal positive expression were 

independently predicted by the set of measures Dt standard deviation, fp kurtosis, and Dp 

skewness; or ADC standard deviation, fp skewness, and Dp skewness. PR positivity was 

independently predicted by the set of measures Dt standard deviation, fp kurtosis, and Dp 

skewness as well as fp skewness and Dp skewness. Finally, ER+HER2− patients were 

independently predicted by the combination of Dp average and Dp skewness.

 Discussion

This study illustrates the spatial heterogeneity found in cellularity and angiogenesis through 

IVIM biomarkers. Histogram analysis helps distinguish between tumour subtypes and 

reveals correlations with prognostic factors. In combination with guidance from contrast-

enhanced imaging, the image quality of the TSE-DWI results collected was sufficient to 

delineate and segment each lesion for whole-volume histogram analysis.
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Recent studies of IVIM in breast cancer [15, 26–28], demonstrated that fp significantly 

differentiates malignant from benign lesions, as shown in the present study. Malignant 

lesions are more cellular and vascular than benign entities; the IVIM approach can separate 

these effects to avoid conflicting contrast. The results from the ROC analysis show that 

significant malignant/benign differentiation was provided via both Dt and fp, with stronger 

accuracy than with ADC alone.

IVIM analysis also shows significant differences between different tumour subtypes. 

Invasive breast and lung cancers (IDCs and ILCs, respectively) displayed lower ADC and Dt 

values. These are more aggressive cancers, with generally higher cell density. In addition, 

IVIM histogram analysis may have the ability to potentially separate the heterogeneous 

mixed tumour type, which contains both DCIS and invasive cancer cells. Likewise, 

histogram analysis has merits when comparing between molecular prognostic factors. This 

correlation with prognostic factors evidently involves both the magnitude and the spatial 

distribution of blood volume.

Several studies have considered the relationship of ADC with prognostic factors in breast 

cancer [5, 8, 14]. A key finding in these reports is a significantly lower ADC value in ER+ 

tumours, which is speculated to be related to a lower perfusion contribution. While 

relationships between ER status and vascularity are not uniform [47, 48], the present study 

seems to confirm that the ADC versus ER findings in human breast tumours are indeed 

vascular, based on the significantly lower Dp kurtosis and skewness in ER+ tumours and the 

significant negative correlations between fp kurtosis and skewness and Dp kurtosis and 

skewness with ER expression. Interestingly, mean fp values correlated positively with PR 

expression. Similarities in hormone receptor effects would suggest a negative correlation, as 

with ER expression; however, PR+ expression tumours may increase tumour growth by 

angiogenesis through the normalization of tumour vasculature, which would allow for 

proper blood flow. In fact, studies have shown that progesterone may increase angiogenesis 

through regulation of VEGF in breast cancer cells [49]. Moreover, tamoxifen treatment has 

been shown to be more effective in patients with higher PR+ expression [50]. However, a 

more extensive observation of this relationship is needed to confirm these findings.

ER expression showed the most significant correlations with the diffusion parameters (Fig. 

5). This may indicate the potential to provide a surrogate measure of ER expression through 

noninvasive imaging tools. Within the IVIM parameter set, the biggest contributing 

predictive factors were fp and Dp, and IVIM parameters showed more significant 

correlations with prognostic factors than ADC alone. IVIM analysis, therefore, appears to 

provide a more nuanced representation of the microenvironment, with connection to 

hormonal expression levels. A combination analysis using the most promising parameters 

showed improvement in accuracy in discriminating between different prognostic factors or 

treatment paradigms. It is noteworthy that several such predictive sets involved heterogeneity 

metrics of all three IVIM parameters, showing the benefit of extending beyond both the 

ADC parameter and mean value descriptions.

This study was limited by a relatively small sample size and did not employ multiple 

comparison corrections. The tumour segmentation workflow was performed by a single 
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reader who was not blinded to malignancy status. Neither age nor menstrual cycle were 

controlled for in the enrolment. Also, the bi-exponential IVIM fitting model can be 

problematic, with the estimation of vascular diffusion effects at lower b-values (b<200 s/

mm2) being most challenging. A variety of methods have been employed to address this 

challenging quantification; fitting methods including optimized sampling patterns [25, 51, 

52], fitting algorithms [24, 53–57], or fit models [58, 59] can improve the precision of IVIM 

parameters. Others have also employed maximum likelihood (ML) estimation [60, 61] or 

used “fusion bootstrap moves” [62]. The segmented approach taken in the current study was 

adopted as a compromise between precision, accuracy, and practicality; future studies may 

invoke more advanced strategies. Additionally, the standardized parameter ranges for 

histogram calculation excluded differing lesion fractions for each parameter (such as from fit 

non-convergence, failure of the fit algorithm approximation, or macroscopic flow effects) 

and may have induced biases.

Heterogeneity could also exist in tumour subtype and prognostic factor expression. 

Classification schemes based on biopsy sampling can be approximate representations of the 

tumour aggressiveness. Thus, while the imaging/prognostic factor correlations observed here 

increase experimental understanding of tumour biology, imaging surrogates of the molecular 

prognostic factors need not be the only predictive route. Rather, the prognostic value of the 

IVIM biomarkers should be evaluated in longitudinal breast cancer treatment studies.

Understanding the full lesion characterization through imaging biomarkers and observing 

their utility in treatment monitoring for neoadjuvant therapies can vastly change the clinical 

landscape. This not only lessens the need for invasive biopsy procedures, but it can also give 

clinicians abilities to strategize the timing of drug deliveries as they quickly interpret the 

patient’s response to treatment. The prediction of treatment response in the neoadjuvant 

setting is a significant opportunity to apply quantitative imaging to breast cancer; studies 

have been performed using either ADC, DCE biomarkers, or both (see meta-analyses: [63, 

64]). Future studies will explore whether the combination of advanced IVIM modelling and 

spatial histogram analysis can advance predictive ability in the neoadjuvant setting. This 

study suggests that a comprehensive evaluation of breast cancer patients using advanced 

imaging may increase insight into tumour physiology, and potentially contribute to 

individualized treatment plans for high-risk women.
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Key Points

• Novel IVIM biomarkers characterize heterogeneous breast cancer.

• Histogram analysis enables quantification of tumour heterogeneity.

• IVIM biomarkers show relationships with breast cancer malignancy and 

molecular prognostic factors.
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Fig. 1. 
General schematic diagram of the DWI and IVIM analyses showing voxel-wise analysis. 

Note: The DWI images are from b=0 and 800 s/mm2
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Fig. 2. 
ADC and IVIM parameter maps (fp, Dp, Dt) superimposed on contrast-enhanced T1-

weighted MRI within ROIs containing breast tumours. Patient 1 (a–e) is a DCIS 53-year-old 

patient. Patient 2 (f–j) is a 59-year-old ILC patient. Patient 3 (k–o) is an IDC 62-year-old 

patient, with the corresponding whole-volume histograms below each of Patient 3’s 

parameter map
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Fig. 3. 
Box plot illustration of benign/malignant lesion differentiation from IVIM parameters and 

histogram analysis. Significant findings (p<0.05) are marked with * and their corresponding 

p value. Refer to Table 2. The lines in the box plot indicate the median value and the 

interquartile range (IQR)
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Fig. 4. 
Comparison of different vascular IVIM extrema and heterogeneity metrics with hormonal 

status: (a) ER status vs. Dp skewness, (b) PR status vs. fp kurtosis, (c) Ki-67 status vs. fp 

skewness, and (d) Her2/Neu vs. average value of Dp. All comparisons shown here were 

significant (p<0.05). The lines in the box plot indicate the median value and the IQR
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Fig. 5. 
Matrix plot of the significant correlation coefficients between IVIM histogram parameters 

and prognostic factors. Coloured entries indicate significant correlations (p<0.05) with 

positive (blue) or negative (red) Pearson correlation coefficients R (see colour scale)
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Table 1

Clinical data for patients enrolled in this study, including benign/malignant status, histological subtype, 

molecular prognostic status, and treatment paradigm. Note: Certain histological data was not available for each 

patient

Number of patients

Benign 12

Malignant Invasive 31

Mixed 12

DCIS 7

Total 50

TOTAL 62

Molecular prognostic factors

ER − 16

+ 29

PR − 23

+ 22

Ki-67 − 12

+ 25

Her2/neu − 28

+ 13

Lesion subtyping groups

ER+HER2− 22

ER+HER2+ 7

ER-HER2+ 6

ER-HER2− (TN) 15
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Table 2

The median and interquartile range (IQR) of each average IVIM value among patients with malignant and 

benign tumour types. Thep value results are shown between each mean value comparison along with 

sensitivity, specificity, and accuracy. Significant differences (p<0.05, MW) are marked with an *. Refer to Fig. 

3

Median IQR P value AUC Sensitivity (%) Specificity (%) Accuracy (%)

ADC (μm2/ms) Benign 1.82 0.67 0.040* 0.69 58.0 83.3 62.9

Malignant 1.46 0.68

Dt (μm2/ms) Benign 1.89 0.70 0.003* 0.77 66.0 91.7 71.0

Malignant 1.32 0.65

fp (%) Benign 5.0 % 3.0 % 0.019* 0.72 72.0 83.3 72.6

Malignant 9.1 % 5.1 %

Dp (μm2/ms) Benign 18.03 16.50 0.10 0.500 100 25.0 85.5

Malignant 17.73 4.45
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Table 3

The median and IQR of each average IVIM value among patients with different tumour subtypes. The p value 

of each IVIM mean value comparison is shown on the far right column with significant differences (p<0.05, 

MW) marked with an *. † indicates significance using Kruskal–Wallis

Type Median IQR Comparisons P value

ADC† (μm2/ms) Invasive 1.40 0.42 Invasive vs mixed 0.581

DCIS 2.28 0.57 Invasive vs DCIS 0.008*

Mixed 1.38 0.55 Mixed vs DCIS 0.025*

Dt † (μm2/ms) Invasive 1.27 0.51 Invasive vs mixed 0.884

DCIS 1.75 0.85 Invasive vs DCIS 0.009*

Mixed 1.30 0.66 Mixed vs DCIS 0.051

fp (%) Invasive 9.53 4.21 Invasive vs mixed 0.247

DCIS 7.88 5.15 Invasive vs DCIS 0.435

Mixed 7.46 3.85 Mixed vs DCIS 0.966

Dp (μm2/ms) Invasive 17.93 4.02 Invasive vs mixed 0.387

DCIS 19.79 3.85 Invasive vs DCIS 0.374

Mixed 16.30 4.14 Mixed vs DCIS 0.225
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Table 6

(a) Significant discrimination of treatment paradigm groups by IVIM histogram parameters by Mann–Whitney 

group comparisons and by logistic regression. Median values are given with IQR values in parentheses. (b) 

Significant group predictors of prognostic factor status or treatment paradigm. The significance of including 

each parameter in the combined set along with the combined AUC value for target predication is shown for 

each target group. SD standard deviation

a

Group Parameter Mann–Whitney group comparisons Logistic regression

Group Value Others p p AUC

ER+HER2− Dp Avg. 19.15 (5.81) 17.47 (3.56) 0.024* 0.017* 0.69

Dp Kurt. 2.15 (3.93) 6.14 (5.84) 0.004* 0.012* 0.75

Dp Skew. 1.62 (1.10) 2.32 (0.91) 0.004* 0.008* 0.74

ER+HER2+ ADC Kurt. −0.56 (0.83) −0.04 (1.91) 0.027* 0.059 0.77

Dp Avg. 15.36 (6.47) 18.19 (4.48) 0.034* 0.073 0.75

Dp Kurt. 6.41 (14.05) 4.29 (6.22) 0.050* 0.038* 0.73

Dp Skew. 2.38 (2.07) 1.97 (1.28) 0.023* 0.017* 0.76

TN Dt Max. 2.97 (0.76) 2.31 (0.71) 0.004* 0.26 0.70

fp Skew. 0.88 (1.98) 1.02 (0.98) 0.16 0.037* 0.63

b

Target Set of measures AUC

ER+ or PR+ Dt SD (0.008) fp Kurt. (0.0023) Dp Skew. (0.024) 0.867

ADC SD (0.025) fp Skew. (0.049) Dp Skew. (0.024) 0.829

PR+ DtSD (0.018) fp Kurt. (0.018) Dp Skew. (0.026) 0.857

fp Skew. (0.023) Dp Skew. (0.023) 0.783

ER+HER2− Dp Skew. (0.011) Dp Avg. (0.026) 0.800
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