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Abstract

Motivations—Protein function prediction is an important and challenging problem in 

bioinformatics and computational biology. Functionally relevant biological information such as 

protein sequences, gene expression, and protein–protein interactions has been used mostly 

separately for protein function prediction. One of the major challenges is how to effectively 

integrate multiple sources of both traditional and new information such as spatial gene–gene 

interaction networks generated from chromosomal conformation data together to improve protein 

function prediction.

Results—In this work, we developed three different probabilistic scores (MIS, SEQ, and NET 

score) to combine protein sequence, function associations, and protein–protein interaction and 

spatial gene–gene interaction networks for protein function prediction. The MIS score is mainly 

generated from homologous proteins found by PSI-BLAST search, and also association rules 

between Gene Ontology terms, which are learned by mining the Swiss-Prot database. The SEQ 

score is generated from protein sequences. The NET score is generated from protein–protein 

interaction and spatial gene–gene interaction networks. These three scores were combined in a 

new Statistical Multiple Integrative Scoring System (SMISS) to predict protein function. We tested 

SMISS on the data set of 2011 Critical Assessment of Function Annotation (CAFA). The method 

performed substantially better than three base-line methods and an advanced method based on 

protein profile–sequence comparison, profile–profile comparison, and domain co-occurrence 

networks according to the maximum F-measure.
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1. Introduction

Protein function prediction is important for understanding life at the molecular level and 

therefore is highly demanded by biomedical research and pharmaceutical applications [1]. 

There are a large amount of sequence data generated by next generation sequencing every 

day. However, the annotation of the function of these sequences by experimental is still a big 

challenge because of the inherent difficulty and considerable expense [2]. In addition, some 

experiments in vitro may not faithfully reflect a protein’s activity in vivo [3]. Therefore, 

accurately predicting protein function from sequence using computational methods is a 

useful way to solve the problem at large scale and low cost.

A number of computational protein function prediction methods had been developed in the 

last few decades [4–11]. The most commonly used method is to use the tool Basic Local 

Alignment Search Tool (BLAST) [12] to search a query sequence against protein databases 

containing experimentally determined function annotations to retrieve the hits based on the 

sequence homology. The function of homologous hits is used as the prediction of the query 

sequence. Some of this kind of methods are GOtch [13], OntoBlast [14], and Goblet [15]. 

However, the prediction coverage of BLAST based methods may be low because BLAST is 

not sensitive enough to find many remote homologous hits. Some other methods such as 

PFP [16] use profile–sequence alignment tool PSI-BLAST [12] to get more sensitive 

predictions.

In addition to sequence homology, some methods use other information to predict protein 

function. In order to incorporate the prediction of functional residues into the prediction of 

protein function at the whole molecular level [17,18], some methods predict protein function 

based on amino acid sequences [19,20]. Some other methods make function prediction 

based on protein–protein interaction networks [9,21–25] assuming that interacted proteins 

may share the similar function. Others make function prediction by using protein structure 

data [18,26,27], microarray gene expression data [28], or combination of several sources of 

information [29–32]. One of the biggest challenges of protein function prediction is how to 

obtain diverse relevant biological data, such as protein amino acid sequence, gene–gene 

interaction data, protein–protein interaction data, protein structure from multiple reliable 

sources efficiently, and how to integrate these biological data to make protein function 

prediction [33].

Besides the development of function prediction methods, unbiased benchmarking of 

different method is also very important for the community to identify the strengths and 

weaknesses of different methods in order to develop more accurate function prediction 

methods. The Critical Assessment of Function Annotation (CAFA, http://

biofunctionprediction.org/) is an experiment designed to provide such a large-scale 

assessment of protein function prediction methods, and it has benefited the whole 

community by involving a significant number of groups to blindly test their function 

prediction methods on the same set of proteins within a specific time frame [1], which also 

provide a test ground for benchmarking new methods including our method developed in 

this work. During CAFA in 2011, 30 teams associated with 23 research groups participated 

in the effort, and several new methods have been developed to achieve high accuracy of 
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protein function prediction [1]. For example, sequence-based function prediction methods 

PFP [16,34] and ESG [35] from professor Kihara’s lab use PSI-BLAST one time and 

recursively against the target sequence to get the hits for protein function prediction [36,37], 

the method from the team Jones-UCL integrates a wide variety of biological information 

sources into a framework for protein function prediction [38], Argot2 annotates protein 

sequence with GO terms from the UniProtKB-GOA database weighted by their semantic 

relationship for protein function prediction [39,40], GOstruct uses co-mention and bag-of-

words features mined from the biomedical literature for protein structure prediction [41], 

PANNZER uses weighted k-nearest neighbor methods with statistical testing to maximize 

the reliability of a functional annotation [42], and MS-kNN method finds k-nearest 

neighbors of a query protein based on different types of similarity measures and predicts its 

function by weighted averaging of its neighbors’ functions [43].

In this work, we develop a novel Statistical Multiple Integrative Scoring System (SMISS) for 

protein function prediction. SMISS integrates the information from homologs found by PSI-

BLAST, protein–protein interaction networks, spatial gene–gene interaction networks 

derived from chromosomal conformation capturing data, and amino acid sequence 

information, and calculates three different probability scores (MIS score, NET score, and 

SEQ score) for each GO term based on these information, and makes function prediction 

based on the combination of these three scores. SMISS is a very open system, which can be 

easily expanded to include more biological information to enhance the accuracy of protein 

function prediction.

The rest of the paper is organized as follows. In Section 2, we describe how to calculate 

three different scores and integrate them to make protein function prediction. In Section 3, 

we blindly test our method and compare it with three base-line methods and three network-

based protein function prediction methods. In Section 4, we summarize the work and discuss 

the direction of future work.

2. Methods

The SMISS (Statistical multiple integrative scoring system for protein function prediction) 

method uses three different scores: the MIS score (Multiple Integrated Score) which is 

calculated based on the PSI-BLAST hits and their GO terms inferred from the Swiss-Prot 

database by data mining techniques, the NET score (Network score) which is calculated 

from spatial gene–gene interaction networks and protein–protein interaction networks, and 

the SEQ score (Sequence score) which is calculated from the amino acid sequence of a 

query protein. We test three different predictors by combining these three scores in different 

ways. The first one is SMISS-predictor, which combines all three scores. The second one is 

MIS-predictor, which only use the MIS score. The third one is MIS–NET-predictor, which 

combines the MIS score and the NET score. Fig. 1 shows the overall flowchart of our three 

predictors. We introduce the method to calculate each score in the following section.

2.1. MIS score

The calculation of MIS score is different for two types of GO functions. For the first type, 

the MIS score is calculated from the PSI-BLAST results while searching against Swiss-Prot 
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[44] database. The default setting of PSI-BLAST has been used with 3 iterations on Swiss-

Prot databased released on Jul. 2010 for benchmark on CAFA1, the default e-value threshold 

(i.e. 10) is applied for prediction, and the predictions with e-value larger than 0.01 are 

ignored since their confidence score is 0 based on formula (1). All the potential distantly 

homologous protein hits and their e-values are retrieved and stored. The e-value of each 

protein hit is converted into a probabilistic confidence score using the following formula:

(1)

In this formula, t is the e-value of the protein, and S is the probabilistic confidence score. We 

constrain the confidence score to be in the range of 0 and 1. That is, the confidence score is 

set to 0 for all hits with e-value (t) larger than 0.01, and all hits with e-value less than e-202 

have confidence score 1. Assuming that N protein hits have confidence score larger than 0, 

and Pi is the number i protein (i ϵ [1;N]), we can get all gene ontology (GO) terms from the 

Swiss-Prot database for each Pi. The ni GO terms for Pi are denoted as . 

By applying formula (1), we can calculate the confidence score P(Pi ) of each GO term 

associated with Pi. The same confidence score is assigned to each GO term of Pi , such that 

, where j ϵ [1; ni]. Given the GO terms lists  with the probabilistic 

confidence scores , we combine them to generate a list of unique GO terms 

and calculate the confidence scores , while i ϵ [1; N], j ϵ [1; ni], and k ≥ 0 as 

follows. Assuming the same GO term Gx appears in the GO term lists of two different 

proteins i and j with confidence scores Pi (Gx) and Pj (Gx), respectively, the following 

formula is used to update the combined confidence score of the GO term Gx :

(2)

We continuously update the confidence score of any two same GO terms existing in different 

proteins by formula (2), and it can be proved (details omitted) that the final confidence score 

for each GO term Gx is:  where Pi (Gx) is the confidence 

score of the GO term Gx in the ith protein (Pi). After applying formula (2), we can finally 

get a list of unique GO terms  with the calculated confidence score .

For the second type of GO terms, the MIS score is assigned as 1. The GO terms are inferred 

from the protein hits with confidence score 1. To infer the unobserved GO terms, we first 

apply Apriori algorithm [45] to mine the association rules from Swiss-Prot database. Apriori 

algorithm is used for association rule mining in transaction database, and here we apply it to 

get the association rules for protein function prediction. First, we extract the GO function 

from the Swiss-Prot database for each protein sequence. Assuming there are N different GO 

terms, G1, ..., GN, N is the total number of GO terms in the database, and each protein’s GO 
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functions are considered as a transaction. Secondly, the Apriori algorithm is used to generate 

the association rules, Gi, ..., Gj → Gk, i, j, and k are all integers equal or less than N. In our 

case, that is the association rules between different GO terms. There are two parameters for 

Apriori algorithm for us to tune: the minimum support and minimum confidence. To decide 

these two parameters, five cross validation techniques are used, while dividing all GO 

function transactions into five folds, four of them are used for training, and the other one for 

testing. The precision and recall are used to evaluate the performance. The minimum support 

is set to 0.05, and minimum confidence is set to 90 based on the five cross validation result, 

while 51,512 association rules are generated. More details of tuning the parameters are 

included in Section 3. Finally, after generating the association rules by data mining 

technique, we check all combination of GO terms with confidence 1, and apply the 

association rules mined from Swiss-Prot database to infer more GO terms. The MIS score of 

all inferred GO terms are set as 1. In summary, the MIS score is calculated from PSI-

BLAST results by formula (2), and is set as 1 for GO terms inferred by Apriori algorithm.

2.2. NET score

Protein–protein interaction networks and spatial gene–gene interaction networks have been 

used for generating the NET score, irefindex network [46] is used for generating 23 protein–

protein interaction networks of multiple species. irefindex provides an index of protein 

interactions available in a number of primary interaction databases, and we parse it for 22 

different species to get 22 protein–protein interaction networks, and another network for 

remaining proteins. The gene–gene interaction network [47] is generated from Hi-C contact 

data of the normal B-cell [48]. We consider two genes are interacting when the total number 

of Hi-C contact between them is more than a contact threshold [48]. We want to mention 

that this gene–gene interaction network is used for proteins in Homo sapiens that can be 

mapped to it. Otherwise, the 23 protein–protein interaction networks are used. Here, if two 

genes/proteins are connected in a network, their GO terms are assumed to interact. For any 

two interacted GO terms Gi and Gj from gene–gene/protein–protein interaction networks, we 

calculate the probability score between them for statistical analysis as follows:

(3)

In formula (3), F(Gi|Gj) is the total number of interactions for the GO term Gj interacting 

with GO term Gi. N is the total number of GO terms interacting with GO term Gi. We 

calculate the scores by this formula for all neighboring GO terms of each 23 protein– protein 

interaction networks and gene–gene interaction network, and store them for protein function 

prediction. Given a query sequence, first, we retrieve the protein hits lists with e-values by 

PSI-BLAST for it. Second, we search each protein from the protein hits lists starting from 

lowest e-value until we find one which has GO functions. To predict the GO functions, we 

map the protein to our generated gene–gene interaction/protein–protein interaction 

networks. Given that this protein is in H. sapiens and the gene encoding it exists in our 

generated gene–gene interaction network, we use the gene–gene interaction network to 
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predict the GO functions, otherwise, the protein–protein interaction network for species of 

this protein is used for the function prediction. We store the MIS score of the selected 

mapped gene/protein as M_map. Thirdly, we obtain the neighbors of the mapped gene/

protein in the networks, and get all GO terms (Gk) from each neighbor gene/protein, while k 
ϵ [1; N], and N is the total number of GO terms from all neighbors. Finally, we generate all 

possible GO term neighbors GNl for each GO term from the statistics calculated on the 

gene–gene interaction network/protein–protein interaction network. The probability score 

for each GO term neighbor GNl is calculated as M_map times the score generated by 

applying formula (3) to the whole gene–gene/protein–protein interaction network between 

GNl and Gk. We combine all GO term neighbors GNl by formula (2), and generate the final 

GO term list. The final probability score for each GO term is the NET score. Here, l ϵ [1; 

NN], and NN is the total number of GO term neighbors.

2.3. SEQ score

We calculate the SEQ score from the protein sequence itself. We retrieve all protein 

sequences and the protein function GO terms in the Swiss-Prot database. We use a 5-residue 

sliding window technique to divide each sequence into sequence fragment with a length of 5. 

The reason to use a length of 5 is because we want to include more GO terms and fragments 

smaller than or equal to 4 cannot represent the structural information accurately [49]. So 

given the protein sequence with length N, there are in total (N-5) sequence fragments. Let’s 

assume a protein has a number of GO function terms Gi , while i ϵ [1; M], and M is the total 

number of GO terms. The sequence of that protein can be divided into (N-5) sequence 

fragments, and for one specific sequence fragment Sj, the conditional probability of GO term 

Gi inferred from it can be calculated in the following formula:

(4)

N is the sequence length, and F(Sj) is the frequency of the sequence fragment Sj extracted 

from the sequence by the 5-residue sliding window technique. The frequency could be more 

than one since one sequence fragment may exist more than one time in the protein sequence. 

Secondly, we calculate the probability of GO term Gi inferred from sequence fragment Sj for 

each sequence by applying formula (4). Thirdly, we combine all GO terms with the 

following formula when the same GO term Gi inferred from the same sequence fragment Sj 

in different sequence:

(5)

P1 (Gi|Sj) and P2 (Gi|Sj) are the probability from the two different sequences. In the 

prediction phase, for each query protein sequence, we divide it into sequence fragment with 

5-residue sliding window technique, and for each sequence fragment, we search against the 

sequence fragment database built from the Swiss-Prot database by formula (5), and get all 

possible GO terms Gi with the probability score P(Gi). The formula (2) is used to combine 
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all same GO terms from different sequence fragment. Finally, we generate a GO term list for 

the query protein sequence and the SEQ probability score for each GO term.

2.4. Score combination

We develop three different predictors with different combination of these three scores. The 

first predictor is SMISS-predictor that combines all three different GO term lists calculated 

from MIS, NET and SEQ scores, respectively. The following formula is used to calculate the 

finally combined score for each GO term Gi :

(6)

pMIS(Gx)is the MIS score of this GO term, PNET (Gx) is the NET score of this GO term, 

PSEQ (Gx) is the SEQ score of this GO term, WMIS is the weight for MIS score, WNET is the 

weight for NET score, and WSEQ is the weight for SEQ score. We set the weight 0.5 for MIS 

score, 0.22 for NET score, and 0.28 for SEQ score empirically, which is based on their 

accuracy on our local benchmark for each score. The second predictor is MIS-predictor, 

which only uses the GO term list calculated by the MIS score. And the third predictor is 

MIS–NET-predictor, which generate two different GO term lists by calculating the MIS 

score and NET score, and finally combines these two GO term lists for the final prediction. 

The formula (6) is used to combine them while the PSEQ (Gx) is set to 0 for MIS– NET-

predictor.

2.5. Score scaling

The combined scores may be hard to analyze and evaluate when several GO term predictions 

have very similar scores close to 1 or when there are no predictions with relatively high 

confidence score. In order to avoid the problem, the combined scores are rescaled. For all 

predicted GO terms of a query sequence, we rank them based on the confidence score. Each 

prediction gets a ranking Ri. A new score (S + 0:01 - 0:01 * Ri) is assigned to all predictions. 

S is the initial score, S can be set as 1 or the max confidence score. In our method, we set it 

to 1. Two predictions with the same confidence score have the same ranking. For the 

predictions with the non-positive scaled score, we reset the score to 0.01.

3. Results and discussion

3.1. Parameters in Apriori algorithm for calculating MIS score

We apply data mining technique Apriori algorithm to obtain more GO terms as the 

predictions. There are two parameters for the Apriori algorithm: minimum support and 

minimum confidence. Given a rule X ⇒ Y regarding two GO terms X and Y, the minimum 

support is the minimum probability of an arbitrary transaction (e.g. the set of GO terms of a 

protein) contains both X and Y, and the minimum confidence is a conditional probability 

that a transaction having X also contains Y. We use the fivefold cross-validation on the GO 

terms in the Swiss-Prot database to optimize the two parameters. The performance of using 

different values of minimum support and minimum confidence is shown in Table 1. We first 
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fix the minimum confidence at 60, and try different minimum support, and the multiplication 

of precision and recall is maximized when minimum support is 0.1, and it decreases as the 

minimum support increases. Then we increase the minimum confidence to 70, and try 

minimum support values less than 0.1, and the multiplication of precision and recall 

decreases as the minimum support increases. Another finding is that the minimum 

confidence actually does not influence the multiplication of precision and recall too much. 

For the same minimum support 0.1, with minimum confidence 60 and 70, the multiplication 

of precision and recall is 0.079669 and 0.079751, respectively. So we decide to try larger 

minimum confidence score, such as 90, and the result shows smaller minimum support has 

better performance. The number of rules generating for different minimum support values 

such as 0.02, 0.03, 0.04 is 171,817, 120,114, 62,707, 51,356, respectively. Considering the 

computation complexity related to the number of rules and their similar performance, we 

finally decide to set minimum support as 0.05 and minimum confidence as 90.

3.2. Prediction performance

We evaluate the performance of our method on CAFA1 datasets. CAFA released 48,298 

protein targets in total, and 436 of them whose function deposited in Swiss-Prot database are 

used for our evaluation. Different threshold from 1 to 0.01 decreased by 0.01 is used as 

thresholds on predicted GO term scores. The predictions with confidence score higher than 

the threshold will be selected to compare with the true GO terms (threshold metric). Based 

on this metric, we evaluate the performance of MIS score and how the score scaling 

technique influences the performance. The precision and recall metrics are used to evaluate 

the performance of the prediction. Here, in evaluating the performance of our methods on 

CAFA1 datasets, all predicted and actual GO terms are propagated to the root of the Gene 

Ontology Directed Acyclic Graph (DAG). All the GO terms in the paths of predicted GO 

terms toward the root were considered as predicted GO terms, and all the GO terms present 

in the paths of the actual GO terms toward the root were considered as true GO terms. The 

overlapping GO terms between predicted and true GO terms are considered as correct 

predictions. The precision is calculated by the total number of correct predictions divided by 

the total number of predicted GO terms, and the recall is calculated by the total number of 

correction predictions divided by the total number of true GO terms [10]. These two metrics 

are complementary to evaluate the performance of a method from different perspective. The 

result is shown in Fig. 2A. We test two different score scaling techniques. One is scaled from 

1, which sets the starting score to 1. Another is scaled from max, which sets the starting 

score to the maximum score among all predictions. Fig. 2A shows that the MIS score gets 

similar precision for the recalls in the range of 0.5 and 0.75, but the precision drops 

drastically when the recall is larger than 0.75. That is because a lot of false-positive 

predictions are made at a low threshold. Comparing the two score scaling techniques, 

scaling from 1 has better performance with higher precision, and finally they both can reach 

a similar high recall 0.85. Comparing the MIS score with and without score scaling, they 

both can reach a high recall, but the one with score scaling can reach a higher precision, and 

the precision decreases more smoothly as recall increases. We calculate the maximum 

multiplication of precision and recall. MIS score with and without score scaling get 0.239 

and 0.231, respectively, suggesting applying score scaling technique slightly improve the 

performance.
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It is interesting to compare the performance of the MIS score and the SEQ score. Fig. 2B 

demonstrates the performance difference of between the two scores. The SEQ score has 

relatively low precision because it usually makes more predictions and at the same time it 

can reach a relatively high recall for the same reason. And the SEQ scores with and without 

scaling techniques have similar performance. Fig. 2C illustrates the performance of 

combining all three different scores by the SMISS predictor. The SMISS predictor 

outperforms the MIS predictor in both recall and precision. The SMISS can reach a very 

high recall probably because of the contribution of the SEQ score.

Moreover, we compare the SMISS predictor with three standard baseline methods 

(Prediction 57, Prediction 58, and Prediction 59) and three predictors (Prediction 1, 

Prediction 2, and Prediction 3) that integrates profile–sequence homology search, profile–

profile homology search and domain co-occurrence network [10]. Prior method is used for 

Prediction 57, which selects 836 most frequent GO terms counted from the Swiss-Prot 

database for each target as prediction [10]. Prediction 58 is based on BLAST method, which 

uses the tool BLAST [12] to search the target protein against groups of proteins for 

predictions [10]. The third baseline method for Prediction 59 is GOtcha method [13], which 

generates the sum of the negative logarithm of the e-values resulted from the BLAST search 

(GOtcha I-Scores) as the confidence score for GO terms selection [10]. The result is shown 

in Fig. 2B. The three predictors (Prediction 1, Prediction 2, and Prediction 3) perform better 

mostly than the standard baseline methods (Prediction 57, Prediction 58, and Prediction 59). 

Although the precision of the SMISS predictor is not as high as other methods, it can reach a 

higher recall than other methods because it can make more GO term predictions. In order to 

balance both precision and recall, we use F-measure to compare these methods. The 

maximum F-measure of our SMISS predictor is 0.500, much higher than 0.269, 0.211, and 

0.289 of Prediction 57, Prediction 58, and Prediction 59. In addition, it is also higher than 

0.347, 0.302, and 0.310 of Prediction 1, Prediction 2, and Prediction 3 (see Fig. 3).

3.3. Case study

We randomly select few proteins whose function is released recently, and submit the query 

protein sequence in our protein function prediction website to test the usefulness of our 

method. We only keep the predictions which have confidence score more than 0.9, so that 

our prediction is not influenced by some random predictions which has low confidence 

score. Table 2 shows the summary of PDB ids with their true functions and the protein 

function predictions made by our methods in the case study. The first case is 4OPY, which is 

released at 05/20/2015, and the UniProtKB id is Q9AGJ5. This protein has four GO 

functions: GO:0030655, GO:0046677, GO:0008800, and GO:0016787. Our SMISS 

predictor successfully predict three of them (GO:0030655, GO:0046677, and GO:0008800), 

so that the precision is 1, and recall is 0.75. In addition to the three GO function predicted by 

SMISS predictor, the MIS predictor also predicts the function GO:0033251, which is 

considered as true while propagating the function GO:0016787 to the root. The MIS 

predictor predicts 12 functions in total for this protein, so that the precision is 0.33, and 

recall is 1. The MIS–NET predictor only predicts 8 functions, including all true prediction 

by MIS predictor, so the precision is 0.5, and recall is 1. The SMISS predictor actually 

makes more function predictions, but only few of them could have confidence score more 
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than 0.9, since our combination process finally assigns high confidence score to the 

predictions which are predicted from different sources on consensus. The defect for SMISS 

predictor is that it sometimes misses few true predictions because of its high standard, for 

example, the function GO:0033251 is not assigned as confidence score more than 0.9 for 

SMISS predictor, but it is predicted by MIS and MIS–NET predictor. The second case is 

4O7V, which is released at 12/31/2014, and the UniProtKB is O57978. There are five GO 

functions: GO:0006164, GO:0006189, GO:0000166, GO:0004639, and GO:0005524. The 

MIS predictor successfully predicts four of them (GO:0006164, GO:0006189, GO:0004639, 

and GO:0005524), missing the function GO:0000166. It makes 15 function predictions, so 

the precision is 0.27, and recall is 0.80. The MIS–NET predictor has 14 function predictions 

for this protein, and three of them (GO:0006189, GO:0004639, and GO:0005524) are 

correct. The confidence score of GO:0006164 by MIS–NET predictor is not more than 0.9 

since it is not found from the network, making the precision as 0.6, and recall as 0.21. The 

SMISS predictor combines the prediction from three different sources, so it also misses the 

function GO:0006164. It only makes three function predictions with confidence score more 

than 0.9, and successfully predicts the function GO:0006189, GO:0004639, and GO:

0005524. The precision for SMISS predictor is 1, and recall is 0.60. Once we consider the F-

measure, which is the multiplication of precision and recall, we can see that the F-measure 

for MIS, MIS–NET, and SMISS predictor is 0.22, 0.13, and 0.6, respectively. As is shown, 

the SMISS predictor combines different sources, even though it may miss some true 

functions, it is still very useful considering both precision and recall. The MIS and MIS–

NET predict more functions with high confidence score, so that it can cover more true GO 

functions.

4. Conclusion

In this work, we develop a novel protein function prediction system – SMISS. SMISS 

integrates information from different sources to improve protein function prediction. Given a 

protein sequence, it generates a list of Gene Ontology (GO) function terms based on the 

known function annotations of the homologous proteins found by PSI-BLAST. The set of 

GO terms is then expanded according to the association rules between GO terms learned by 

mining the Swiss-Prot database, and then the GO terms are further augmented by the 

function annotations of the neighboring proteins or genes found in protein–protein 

interaction networks and the novel spatial gene–gene interaction networks of the human 

genome constructed from the Hi-C chromosomal conformation data of the genome. Finally, 

the protein sequence is cut into sequence fragments with a length of 5, and more GO terms 

are predicted from these fragments. The information is measured by three different 

probabilistic scores (MIS, SEQ, and NET score), respectively and is combined by SMISS 

for protein function prediction. Based on the test on the protein targets in the 2011 Critical 

Assessment of Function Annotation (CAFA), SMISS performs better than the baseline 

methods and other methods of combining profile–sequence search, profile–profile search, 

and domain co-occurrence networks. SMISS is an open system, which can combine the 

information from other sources not used in this work. Our future direction is to expand our 

current system to include other information such as gene expression and genomic location 

information, and also improve the current method, for example, control potential 
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degeneration of created profiles in PSI-BLAST to improve the MIS score (we randomly 

select 225 sequences inserting into the database, and 98 of them keeps e-value 0 when 

search against itself, and the maximum e-value for the rest is e-12), and search better weight 

to combine different scores to improve the method.
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Fig. 1. 
The overall flowchart of our method.
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Fig. 2. 
The performance comparison for MIS, SEQ, and SMISS using scaled technique 

benchmarked on CAFA1. X-axis shows the recall of the prediction, and y-axis shows the 

precision of the prediction. (A) The performance of original MIS score and the score with 

score scaling technique start from 1 or max. (B) The performance of MIS score, original 

SEQ score, and the scaled SEQ score. (C) The comparison between MIS predictor and 

SMISS predictor.
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Fig. 3. 
The performance of our SMISS with three standard baseline method and three predictors 

from an automated three-level method. Prediction 57, 58, 59 is the standard baseline 

method, and Predictors 1, 2, 3 is three predictors from an automated three-level method. X-

axis shows the recall for each predictor, and y-axis shows the precision for each predictor.
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Table 1

The precision, recall, and multiplication of precision and recall for different values of minimum support and 

confidence according to fivefold cross validation.

Min support Min confidence Precision Recall Multiplication

0.1 60 0.175247 0.454611 0.079669

0.2 60 0.175762 0.294839 0.051821

0.3 60 0.178529 0.240628 0.042959

0.4 60 0.178 0.217349 0.038688

0.5 60 0.180751 0.203954 0.036865

0.6 60 0.184234 0.194982 0.035922

0.7 60 0.185663 0.179099 0.033252

0.8 60 0.187923 0.176552 0.033178

0.9 60 0.191136 0.166148 0.031757

1 60 0.193348 0.155527 0.030071

0.02 70 0.189585 0.575122 0.109035

0.03 70 0.19235 0.552382 0.10625

0.05 70 0.19523 0.504344 0.098463

0.1 70 0.193433 0.41229 0.079751

0.15 70 0.19347 0.296692 0.057401

0.1 80 0.205309 0.357896 0.073479

0.15 80 0.206317 0.242143 0.049958

0.02 90 0.218213 0.48637 0.106133

0.03 90 0.219549 0.461519 0.101326

0.04 90 0.220407 0.4356 0.096009

0.05 90 0.221515 0.415496 0.092039

0.06 90 0.221194 0.392394 0.086795

0.07 90 0.221575 0.378077 0.083773

0.08 90 0.22069 0.361477 0.079774

0.09 90 0.219519 0.339378 0.0745

0.1 90 0.219174 0.320815 0.070314

0.15 90 0.223325 0.207827 0.046413
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Table 2

Summary of PDB ids with their true functions and the protein function predictions made by our methods in the 

case study.

PDB
id

True functions (GO ID: description) SMISS prediction/
score

MIS prediction/
score

MIS–NET prediction/
score

4OPY GO:0030655: beta-lactam antibiotic catabolic process GO:0030655/1.00 GO:0030655/1.00 GO:0030655/1.00

GO:0046677: response to antibiotic GO:0046677/1.00 GO:0046677/1.00 GO:0046677/1.00

GO:0008800: beta-lactamase activity GO:0008800/1.00 GO:0008800/0.99 GO:0008800/1.00

GO:0016787: hydrolase activity GO:0005886/0.98 GO:0005886/0.99

GO:0005576/0.97 GO:0005576/0.98

GO:0042597/0.96 GO:0042597/0.97

GO:0033251/0.95 GO:0033251/0.96

GO:0033250/0.95 GO:0033250/0.96

GO:0008360/0.94

GO:0009252/0.94

GO:0006508/0.94

GO:0009002/0.94

4O7V GO:0006164: purine nucleotide biosynthetic process GO:0006189/1.00 GO:0006189/1.00 GO:0006189/1.00

GO:0006189: ’de novo’ IMP biosynthetic process GO:0004639/1.00 GO:0004639/1.00 GO:0004639/1.00

GO:0000166: nucleotide binding GO:0005524/1.00 GO:0005524/1.00 GO:0005524/1.00

GO:0004639: Phosphoribosylaminoimidazolesu-
ccinocarboxamide synthase
activity

GO:0004638/0.99 GO:0005737/0.99

GO:0005524: ATP binding GO:0034023/0.99 GO:0005829/0.98

GO:0005829/0.98 GO:0016020/0.97

GO:0006144/0.97 GO:0003735/0.96

GO:0006164/0.96 GO:0006412/0.96

GO:0009113/0.95 GO:0005886/0.95

GO:0005737/0.94 GO:0003677/0.94

GO:0004357/0.93 GO:0006351/0.93

GO:0006163/0.93 GO:0019843/0.92

GO:0005634/0.92 GO:0008270/0.91

GO:0016020/0.91 GO:0046872/0.90

GO:0000082/0.90
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