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Abstract

In the field of computational structural proteomics, contact predictions have shown new prospects 

of solving the longstanding problem of ab initio protein structure prediction. In the last few years, 

application of deep learning algorithms and availability of large protein sequence databases, 

combined with improvement in methods that derive contacts from multiple sequence alignments, 

have shown a huge increase in the precision of contact prediction. In addition, these predicted 

contacts have also been used to build three-dimensional models from scratch.

In this chapter, we briefly discuss many elements of protein residue–residue contacts and the 

methods available for prediction, focusing on a state-of-the-art contact prediction tool, DNcon. 

Illustrating with a case study, we describe how DNcon can be used to make ab initio contact 

predictions for a given protein sequence and discuss how the predicted contacts may be analyzed 

and evaluated.
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1. Introduction

For protein structure prediction, ab initio methods are gaining importance because the well-

established traditional method of template-based modeling is limited by the number of 

structural templates available in the Protein Data Bank [1]. Initially, fragment-based ab initio 

structure prediction tools like Rosetta [2] and FRAGFOLD [3] demonstrated great success. 

However, recent residue contact-based methods like EVFOLD [4] and CONFOLD [5] have 

shown a promising new direction for contact-guided ab initio protein structure prediction. 

Although the idea of predicting residue–residue contact maps and using them to predict 

three-dimensional (3-D) models was introduced around two decades ago [6, 7], the 

realization of that idea has only recently come into practice as many authors have shown 

how residue contacts can be predicted with reasonable accuracy [8, 9]. The primary interest 

in predicting residue–residue contacts has always been to use them to reconstruct 3-D 

models, although residue contacts are useful in drug design [10] and model ranking, 

selection and evaluation [11, 12] as well. In 2011, Debora et al. predicted the correct folds 
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for 15 proteins using predicted contacts and secondary structures, and in 2014, Jones et al. 

reconstructed 150 globular proteins with a mean TM-score of 0.54 [4, 9]. Currently, the 

problem of correctly predicting contacts and using them to build 3-D models is largely 

unsolved, but the field of contact-based structure prediction is rapidly moving forward.

1.1. Definition of Contacts

Residue–residue contacts (or simply “contacts”) in protein 3-D structures are pairs of 

spatially close residues. A 3-D structure of a protein is expressed as x, y, and z coordinates 

of the amino acids’ atoms in the form of a pdb file,1 and hence, contacts can be defined 

using a distance threshold. A pair of amino acids are in contact if the distance between their 

specific atoms (mostly carbon-alpha or carbon-beta) is less than a distance threshold (usually 

8Å), see Fig. 1. In addition, a minimum sequence separation in the corresponding protein 

sequence is also usually defined so that sequentially close residues, which are spatially close 

as well, are excluded. Although proteins can be better reconstructed with carbon-beta (Cβ) 

atoms [13], carbon-alpha (Cα), being a backbone atom, is still widely used. The choice of 

distance threshold and sequence separation threshold also defines the number of contacts in 

a protein. At lower distance thresholds, a protein has fewer number of contacts and at a 

smaller sequence separation threshold, the protein has many local contacts. In the Critical 

Assessment of Techniques for Protein Structure Prediction (CASP) competition, a pair of 

residues are defined as a contact if the distance between their Cβ atoms is less than or equal 

to 8Å, provided they are separated by at least five residues in the sequence. In recent works 

by Jones et al., a pair of residues are said to be in contact if their Cα atoms are separated by 

at least 7Å with no minimum sequence separation distance defined [14].

1.2. Contact Evaluation

Realizing that the contacting residues which are far apart in the protein sequence but close 

together in the 3-D space are important for protein folding [15], contacts are widely 

categorized as short-range, medium-range, and long-range. Short-range contacts are those 

separated by 6–11 residues in the sequence; medium-range contacts are those separated by 

12–23 residues, and long-range contacts are those separated by at least 24 residues. Most 

contact prediction assessment methods evaluate long-range contacts separately as they are 

the most important of the three and also the hardest to predict [16–18]. Depending upon the 

3-D shape (fold), some proteins have a lot of short-range contacts while others have more 

long-range contacts, as shown in Fig. 1. Besides the three categories of contacts, the total 

number of contacts in a protein is also important if we are to utilize the contacts to 

reconstruct 3-D models for the protein. Certain proteins, such as those having long tail-like 

structures, have fewer contacts and are difficult to reconstruct even using true contacts while 

others, for example compact globular proteins, have a lot of contacts and can be 

reconstructed with high accuracy. Another important element of predicted contacts is the 

coverage of contacts, i.e., how well the contacts are distributed over the structure of a 

protein. A set of contacts having low coverage will have most of the contacts clustered in a 

specific region of the structure, which means that even if all predicted contacts are correct, 

we may still need additional information to reconstruct the protein with high accuracy.

1http://www.wwpdb.org/documentation/file-format
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Predicted contacts are evaluated using precision, i.e., the number of contacts that are correct 

out of all predicted contacts. For a lot of proteins, as few as 8 % of native contacts are 

sufficient to reconstruct the fold of proteins [19]. Moreover, all proteins do not have their 

number of contacts proportional to the sequence length. Hence, it is common to evaluate the 

top L/2 or just the top L/5 predicted contacts using precision, with L being the sequence 

length of the protein. Since short/medium-range contacts are relatively easier to predict 

(especially for proteins having beta-sheets), the CASP competition focuses on evaluating 

predicted long-range contacts. The evaluation of contact prediction using precision is simple 

and is currently being used widely, but it does not cover two important aspects: number of 

contacts and coverage. Regarding the number of contacts needed for accurate folding, the 

top 1 L contacts have shown to produce good results [5, 20], but the authors have suggested 

that the number of contacts needed can be specific to prediction methods. Moreover, 

predicted top L/5 contacts may be highly precise and sufficient in number, but can have a 

low coverage, such that they only cover a part of the protein and, thus, cannot capture the 

overall fold of the protein. Debora et al. attempted to qualitatively assess the coverage of 

contacts and Eickholt et al. discussed evaluating coverage using the idea of omitting 

neighboring contacts [4, 18], and yet, the question of how to decide coverage and number of 

predicted contacts to fold a protein remains unanswered.

1.3. Contact Evaluation in CASP Competition

In the contact prediction category of recent CASP competitions, where predictors are 

evaluated based on blind predictions, machine learning approaches and coevolution-derived 

approaches have shown the best performance. Among the target proteins, free-modeling 

(FM) category proteins are the hardest of all to predict because no tertiary structure 

templates are available for them, and CASP focuses on evaluating participating methods 

based on FM protein performance. The best contact prediction methods in CASP10 and 

CASP12, DNcon [21] and CONSIP2/metaPSICOV [22], have shown a precision of 20 and 

27 %, respectively, for top L/5 long-range contact predictions on FM targets. Both of these 

sequence-based methods, DNcon and CONSIP2, rely on neural networks to make contact 

predictions. The improvement in CONSIP2 is observed because of the integration of 

correlated mutation-based features with other ab initio features.

2. Materials

Existing methods for residue contact prediction can be broadly classified into five categories 

based on the type of information they use to make predictions: (1) coevolution-derived 

information-based, (2) machine learning methods-based, (3) template-based, (4) 

physiochemical information-based, and (5) hybrid methods [23]. Other authors, however, 

have suggested different classifications. Di Lena et al. classify contact prediction approaches 

into four groups: (a) machine learning, (b) template-based, (c) correlated mutations, and (d) 

3-D model-based [24]. Björkholm et al., on the other hand, suggest dividing classification 

into three categories: (a) machine learning, (b) template-based, and (c) statistical methods 

[25]. All suggested classifications take into account the two largest groups of contact 

prediction methods—machine learning-based and correlated mutation-based. Currently, 

methods that integrate these two approaches, like PconsC2 [26], CONSIP2 [27], and EPC-
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map [23], are being developed, and because of their integrated approach, it is difficult to 

distinguish them as machine learning-based or coevolution-based.

2.1. Machine Learning-Based Methods

Many machine learning algorithms have been applied to predict protein residue contacts, and 

the most recent ones based on deep learning methods have shown the best results. Early 

approaches to ab initio contact prediction used artificial neural networks [28–32], genetic 

algorithm [33, 34], random forest [35], hidden Markov model [25, 36], and support vector 

machines [37, 38]. Most recent approaches, however, focus on using deep learning 

architectures with and without including correlated mutation information [18, 24, 26]. Many 

of these methods, available online as web servers or downloadable, are listed in Table 1. 

These machine learning-based methods use a wide range of features as input including 

features related to local window of the residues, information about the residue type, and the 

protein itself. This includes features like secondary structure, sequence profiles, solvent 

accessibility, mutual information of sequence profiles, residue type information (polarity and 

acidic properties), sequence separation length between the residues under consideration, and 

pairwise information between all the residues involved.

2.2. Coevolution-Derived Methods

Coevolution-derived methods are based on the principle of “correlated mutation,” which 

suggests that mutations are usually accompanied by joint mutation of other residues around 

the local structure in order to maintain the overall structure of the protein [39–41]. Early 

attempts to identify structural contacts from sequences performed poorly mainly because of 

(1) insufficient sequences in input multiple sequence alignments, (2) the issue of 

phylogenetic bias, and (3) indirect couplings mixed with direct couplings [42–44]. However, 

recently, methods based on direct coupling analysis (DCA) have been able to disentangle 

direct couplings and have shown considerable success by addressing the problem of 

correlation chaining, i.e., causation versus correlation issue. Some recent methods use 

message passing-based DCA (mpDCA [43]) and mean-field DCA (mfDCA [45]), while 

others use sparse inverse covariance methods (PSICOV [14]) and some more recent 

approaches use pseudo-likelihood-based optimization (plmDCA [46, 47]/gplmDCA [48] and 

GREMLIN [49]). In addition to the DCA methods, another set of methods based on mutual 

information (MI) have revived recently with new developments of their global statistical 

versions [50]. Some of these recent methods are summarized in Table 2. Most of these 

coevolution-derived methods accept multiple sequence alignment as input, which can be 

generated using methods like PSI-Blast at http://blast.ncbi.nlm.nih.gov/Blast.cgi, HHblits at 

http://toolkit.tuebingen.mpg.de/hhblits, or Jackhmmer at http://www.ebi.ac.uk/Tools/hmmer/

search/jackhmmer.

2.3. Brief Overview of DNcon

Taking help of graphics processing units (GPUs) and CUDA parallel computing technology, 

DNcon [21], predicts residue–residue contacts using deep networks and boosting techniques. 

DNcon was trained and tested using 1426 proteins of which 1230 were used for training and 

196 for testing. Multiple ensembles of deep networks were trained using several pairwise 

potentials, global features, and values characterizing the sequence between contact pairs for 
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predicting medium/long-range contacts. Recently, DNcon’s performance was evaluated in 

various neighborhood sizes to find that it performs particularly well achieving an accuracy 

of 66 % for the top L/10 long-range contacts [18]. DNcon showed the best performance 

among the sequence-based contact predictors in the CASP9 experiment for top L/5 long-

range contacts in the free-modeling category, which is the most difficult [17].

3. Methods

The overall steps for using a contact prediction web server (or a downloadable tool) are 

shown in Fig. 2. The first step in predicting contacts of a protein sequence is to search the 

input sequence against existing sequence databases and template databases. This is done to 

check if there are homologous templates and/or other sequences available. If we are really 

lucky, which is not usually the case, we will find that at least one good homologous template 

and many predictions about our input sequence can be derived from the template. If we are 

less lucky, we will find many homologous sequences, if not structural templates, suggesting 

that we can rely on coevolution-based tools based on the size of the multiple sequence 

alignment. However, many times the sequence becomes an ab initio target suggesting that 

we should focus on using sequence-based contact prediction tools. An appropriate contact 

prediction tool may be selected based on this analysis on availability of homologous 

sequences and structures. A contact prediction tool predicts contacts with a confidence score 

associated with each pair, and the predicted contacts are usually ranked according to this 

confidence score. Depending upon requirement, an appropriate number of contacts need to 

be selected, for example the top L/5 or top L/2 or top L. Below, we outline the steps that 

need to be executed to predict residue contacts using DNcon.

1 Analyze the input sequence against template databases and 

sequence databases (for example at http://toolkit.tuebingen.mpg.de/

hhpred and http://blast.ncbi.nlm.nih.gov/Blast.cgi) to check if any 

closely homologous template structures exist. If any such 

homologous templates are found, template-based contact prediction 

can generate better results [38, 51]. Instead, if a lot of homologous 

sequences are found (at least a few hundred), coevolution-derived 

methods can utilize the homologous sequences’ alignments to make 

accurate predictions.

2 Supply the input sequence to DNcon at http://iris.rnet.missouri.edu/

dncon/filling the email address field as well (see Fig. 3). The 

generated results are sent through an email, and the contents of the 

email may be saved to a text file. Many other contact prediction 

servers, however, produce the results in RR format; the description 

of RR format is at http://predictioncenter.org/casprol/index.cgi?

page=format#RR. The contacts predicted by DNcon web server 

(sent in email) are in a three-column format and the results are 

sorted according to the prediction confidence score. In each contact 

row, the first two numbers are residue numbers of the pair of 

residues predicted as a contact, and the last number is the 
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confidence score of prediction with a score of 1.0 being the most 

confident prediction.

3 Decide the minimum sequence separation and calculate the number 

of contacts required (top L/5, top L, etc.) and filter out all other 

contacts in the rank below.

4 In the case that contacts are being predicted to evaluate the contact 

prediction server, precision may be calculated for the selected top 

contacts. For each predicted contact in the list, the user needs to 

check if the true distance between the two residues is less than the 

contact threshold. Specifically, for the contacts predicted by DNcon, 

the Euclidean distance between the two Cβ atoms of the two 

residues needs to be computed (also see Notes 1 and 2).

5 The selected contacts may be further visualized within the native 

structure to observe the coverage of the predicted contacts. In USEF 

Chimera [52], this can be accomplished using the following steps:

a. Convert the predicted text file’s contact rows into Chimera’s 

distance calculation commands, ignoring everything but the 

first two numbers. For example, “2 50 0.85” will become 

“distance :10@ca :11@ca”. For precise distance 

computations “ca” must be replaced by “cb” but since it is 

convenient to visualize using “ca” (carbon alpha) atoms, 

using ca atoms is perfectly fine if we only care about 

visualizing the coverage. Save these distance command rows 

in a text file, for example, “commands.txt”.

b. Open the true structure (pdb file) in Chimera.

c. Open the command line in Chimera from the Tools menu.

d. Load the distance commands file, commands.txt, using the 

command “read full_path_to_comands.txt”.

4. Case Study

As a case study for using DNcon, consider a small globular protein “1wvn” of 74 residues 

(accessible at http://www.rcsb.org/pdb/explore/explore.do?structureId=1wvn), which is 

considered as one of the data sets in EVFOLD [4]. We supplied the sequence to DNcon and 

1When evaluating predicted contacts against native structure, we must make sure that the residue sequence contained in the structure 
file exactly matches the sequence used to make contact predictions. Usually “pdb” files have gaps, alternate residues and inserted 
residues, and reindexing the residue numbers is the best way to create a clean pdb file to evaluate the predicted contacts.
2When analyzing or evaluating predicted contacts, it is important to consider contact coverage or contact distribution over the 
sequence/structure. When we select very few contacts, like top L/10, it is very likely that the contacts will only cover a part of the 3-D 
structure suggesting that we need to pick more contacts from the predicted rank in order to have a better coverage.
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saved the contents received in email to the file: 1wvn.txt. It took about 45 min for the web 

server to send the results. For analysis, we evaluated top L/10 long-range contacts and top 

L/10 medium-range contacts, i.e., 74/10=7 contacts for each group. First we filtered out all 

contacts that have sequence separation less than 24 residues, and then we kept only the top 

seven contacts, to get the long-range contacts. Similarly, for medium-range contacts, we 

filtered out all contacts with sequence separation of less than 12 residues. In order to 

evaluate these top seven long- and top seven medium-range contacts, we computed the true 

distances between the Cβ atoms for each contact in the native structure. From Table 3, we 

find that the precision of top L/10 long-range contacts is 0.14 and the precision of top L/10 

medium-range contacts is 0.86. Furthermore, to visualize how these contacts are distributed 

over the structure we converted this contact information into the Chimera’s distance 

command format (for example, “distance :10@ca :39@ca”) and wrote to a text file 

chimera.txt. After opening the native “pdb” in Chimera, we read the file from command line 

using the “read” command. Visualization (see Fig. 4) shows that most contacts are clustered 

around the beta sheet region of the protein.
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Fig. 1. 
Two globular proteins with some contacts in them shown in black dotted lines along with the 

contact distance in Armstrong. The alpha helical protein 1bkr (left) has many long-range 

contacts and the beta sheet protein 1c9o (right) has more short- and medium-range contacts
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Fig. 2. 
The process in predicting protein residue contacts
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Fig. 3. 
A screenshot of DNcon web server at http://iris.rnet.missouri.edu/dncon/. By default, top L 

contacts are predicted
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Fig. 4. 
Predicted top 14 long- and medium-range contacts highlighted in the native structure. The 

lines were shown using distance commands in USEF Chimera
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Table 1

Machine learning-based contact prediction methods

Method summary Availability Published

PconsC2 [26]—Integration of 
contact predictions from PSICOV, 
plmDCA, and deep learning 
techniques with other features

http://c2.pcons.net/ and downloadable at http://c.pcons.net 2014

DNcon [21]—Uses deep networks 
and boosting techniques making 
use of GPUs and CUDA parallel 
computing technology

http://iris.rnet.missouri.edu/dncon/ 2012

CMAPpro [24]— Progressive 
refinement of contacts using 2D 
recursive neural networks, 
secondary structure alignment, 
and deep neural network 
architecture

http://scratch.proteomics.ics.uci.edu/ 2012

ICOS [53]—Applies predicted 
structural aspects of proteins to a 
genetic algorithms-based rule 
learning system (BioHEL)

http://cruncher.ncl.ac.uk/psp/prediction/action/home 2012

Proc_s3 [35]—Uses a set of 
Random Forest algorithm-based 
models

http://www.abl.ku.edu/proc/proc_s3.html (under maintenance) 2011

NNcon [28]—Uses 2D-Recursive 
Neural Network (2D-RNN) 
models to predict general residue–
residue contacts and specific beta 
contacts, and combines them

http://sysbio.rnet.missouri.edu/multicom_toolbox/tools.html (downloadable) 2009

FragHMMent [25]—A hidden 
Markov model (HMM)-based 
method

http://fraghmment.limbo.ifm.liu.se/ 2009

SVMSEQ [38]—A support vector 
machine-based contact prediction 
server

http://zhanglab.ccmb.med.umich.edu/SVMSEQ/ 2008

SVMcon [37]—Uses support 
vector machines to predict 
medium- and long-range contacts 
with profiles, secondary structure, 
relative solvent accessibility, 
contact potentials, etc., as features

http://sysbio.rnet.missouri.edu/multicom_toolbox/tools.html (downloadable) 2007

SAM-T06 [30]—Neural network 
is applied to calculate the 
probability of contact between 
residue positions along with a 
novel statistic for correlated 
mutation

http://www.soe.ucsc.edu/research/compbio/SAM_T06/T06-query.html (under maintenance) 2007

DISTILL [54]—The prediction of 
a contact map’s principal 
eigenvector (PE) from the primary 
sequence, followed by the 
reconstruction of the contact map 
from the PE and primary 
sequence

http://distillf.ucd.ie/distill/ 2006

CORNET [32]—Based on neural 
networks with evolutionary 
information included in the form 
of sequence profile, sequence 

http://gpcr.biocomp.unibo.it/cgi/predictors/cornet/pred_cmapcgi.cgi 1999
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Method summary Availability Published

conservation, correlated 
mutations, and predicted 
secondary structures
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Table 2

Coevolution-derived contact prediction methods

Method summary Availability Published

EPC-map [23]—Evolutionary and physicochemical sources of 
information are combined to make predictions and, hence, 
work well even when only a few sequence homologs are 
present

http://compbio.robotics.tu-berlin.de/epc-map/ 2014

MetaPSICOV [27]—Combines three approaches: PSICOV, 
FreeContact, and CCMpred

http://bioinf.cs.ucl.ac.uk/MetaPSICOV/ 2014

CCMpred [55]—Performance optimized implementation of 
the pseudolikelihood maximization (PLM) algorithm using C 
and CUDA

https://bitbucket.org/soedinglab/ccmpred (downloadable) 2014

FreeContact [56]—Open source implementation of mfDCA 
and PSICOV

https://rostlab.org/owiki/index.php/FreeContact (downloadable) 2014

GREMLIN [49]—DCA with pseudolikelihood optimization 
but performs better even with fewer sequences

http://gremlin.bakerlab.org/submit.php 2013

plmDCA [46]—Pseudolikelihood optimization-based method 
using statistical properties of families of evolutionarily related 
proteins

http://plmdca.csc.kth.se/ (downloadable) 2013

CMAT [57]—Fully automated web server for correlated 
mutation analysis; performs homology search, multiple 
sequence alignment construction, sequence redundancy 
treatment, and calculates various correlated mutation score 
measures

http://binfolab12.kaist.ac.kr/cmat/analyze/ 2012

mfDCA [45]—Computationally efficient implementation of 
direct coupling analysis

http://dca.rice.edu/portal/dca/ 2011

EVCouplings [4]—Direct coupling analysis using maximum 
entropy model

http://evfold.org/ 2011

MISTIC [58]—Mutual information (MI) theory with 
sequence-weighting techniques to improve predictability

http://mistic.leloir.org.ar/index.php 2009
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