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Abstract 

Background:  Tropical forests provide a crucial carbon sink for a sizable portion of annual global CO2 emissions. Poli-
cies that incentivize tropical forest conservation by monetizing forest carbon ultimately depend on accurate estimates 
of national carbon stocks, which are often based on field inventory sampling. As an exercise to understand the limita-
tions of field inventory sampling, we tested whether two common field-plot sampling approaches could accurately 
estimate carbon stocks across approximately 76 million ha of Perúvian forests. A 1-ha resolution LiDAR-based map of 
carbon stocks was used as a model of the country’s carbon geography.

Results:  Both field inventory sampling approaches worked well in estimating total national carbon stocks, almost 
always falling within 10 % of the model national total. However, the sampling approaches were unable to produce 
accurate spatially-explicit estimates of the carbon geography of Perú, with estimates falling within 10 % of the model 
carbon geography across no more than 44 % of the country. We did not find any associations between carbon stock 
errors from the field plot estimates and six different environmental variables.

Conclusions:  Field inventory plot sampling does not provide accurate carbon geography for a tropical country with 
wide ranging environmental gradients such as Perú. The lack of association between estimated carbon errors and 
environmental variables suggests field inventory sampling results from other nations would not differ from those 
reported here. Tropical forest nations should understand the risks associated with primarily field-based sampling 
approaches, and consider alternatives leading to more effective forest conservation and climate change mitigation.
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Background
More atmospheric carbon is absorbed and stored by trop-
ical forests than any other terrestrial ecosystem on Earth 
[1]. This crucial ecosystem service provides a carbon 
sink larger than what is emitted by fossil fuel combustion 
across the entire European Union each year [2, 3]. Poli-
cies that monetize the amount of carbon stored annually 
by a hectare of tropical forest seek to incentivize forest 
conservation by making it more economical to leave the 
forest intact than to degrade or deforest the land. The 
resulting economic boon for landowners and countries 
that reduce deforestation and degradation also results 

in increased carbon sequestration in the form of woody 
biomass, reducing global net carbon emissions. For such 
policies to be successful, the uncertainty in standing car-
bon stocks and change (flux) must be reduced.

Accurate carbon flux calculations necessitate accurate 
estimates of standing carbon stocks at one or more time 
periods, unless carbon fluxes are measured using more 
direct methods (e.g., eddy covariance, atmospheric inver-
sion). Both the price of carbon and the efficacy of climate 
change mitigation can be negatively affected by uncer-
tainty in our understanding of carbon stocks, requiring the 
deployment of methods to make highly accurate spatial 
and temporal estimates of forest carbon. As forest carbon 
stock uncertainties increase, the monetary value of that 
carbon is decreased through a sliding scale discount [4, 
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5], reducing investment opportunities and the economic 
benefits accrued by countries and landowners. Depending 
on the baseline levels of deforestation and carbon storage 
rates, Kohl et al. [4] found in a simulation study that many 
countries would generate no economic benefit with total 
errors in carbon estimates exceeding 5  % unless baseline 
deforestation rates are very high. Ultimately the power of 
these policies to increase forest conservation and mitigate 
climate change may rely on our ability to accurately quan-
tify forest carbon in a spatially explicit manner, as opposed 
to generalized estimates for total carbon stocks of a land-
scape, habitat type, or eco-region.

Spatially explicit maps of forest carbon, or carbon 
geographies, allow for multi-stakeholder engagement at 
subnational levels [6]. Landholders and agencies within 
tropical countries control forest assets across a variety of 
spatial extents. Accordingly, knowledge of carbon stocks 
is needed at scales commensurate with the activities of 
these subnational stakeholders. Providing generalized 
carbon stock estimates for a given area, rather than a car-
bon geography, removes important spatial heterogeneity 
in forest carbon that could lead to over- or underesti-
mates of carbon stocks, and consequently, the potential 
for poor land-use decisions. Both field inventories [7] 
and forest fragmentation [8] may introduce bias into for-
est carbon stock estimates; a bias that arises when local 
landscape heterogeneity is disregarded.

Forest carbon inventories typically rely (or are encour-
aged to rely) on a network of field plots installed either on 
a regular systematic grid or a random stratified grid [9–
11]. Importantly, the IPCC guidelines for estimating and 
measuring carbon direct countries to use these sampling 
approaches [12, 13]. Although these guidelines are primar-
ily designed for total national or average carbon density 
estimates, they are sometimes used for carbon geogra-
phies as well [14, 15]. Field plots are usually 1-ha in size 
(the generally accepted standard for a forest plot inventory 
[16]) but forest inventories that use smaller plot designs 
run the risk of the plots being even less representative of 
the surrounding forest [17]. The data collected in the field 
can then be combined with remote sensing data in two 
general ways: stratify-and-multiply, and model-linked. 
The stratify-and-multiply approach [18] uses remote sens-
ing data to partition a country by land cover, climate, or 
other environmental (or biogeochemical) strata, or uses a 
regular (systematic) grid in place of partitioning by strata. 
Each unique stratum (or grid cell for systematic sampling) 
is assigned the field plot-estimated carbon stock and mul-
tiplied by the total area within the stratum. Alternatively in 
a model-linked approach, a model is calibrated to link field 
plot-estimated carbon stocks with multiple environmental 
variables at the location of the plots (or an intermediate 
remote sensing product such as LiDAR tree height), and 

the model applied to the entirety of the dataset for which 
there is no field data (or intermediate data product). The 
integration of remote sensing data with field data is pref-
erable, but countries may not have the capacity to work 
with remote sensing data, due to a lack of either in-country 
expertise, funding to outsource the work, access to tech-
nology, or sufficient remotely sensed data [e.g., [19], [20]. 
In cases where field plot sampling cannot be supplemented 
by sufficient remote sensing data and/or modeling, spatial 
heterogeneity in forest carbon is necessarily disregarded 
because of the time and expense required for the massive 
field sampling needed to sufficiently capture such hetero-
geneity [7].

While field plot sampling alone is commonly used to 
scale ecosystem properties and processes from local-to-
regional scales, the efficacy of this approach has never 
been assessed at the appropriate scale. As a result, we do 
not know whether field carbon inventories can be used to 
create accurate spatially-explicit maps of national carbon 
geography at one-ha resolution. Here, using Perú as an 
example country, we examine both systematic and strati-
fied random field-based sampling designs with a LiDAR-
estimated national carbon map spanning all 76 million ha 
of intact and recovering forest land (Fig.  1a) as a model 
of the country’s true carbon stocks (see ‘‘Methods’’ sec-
tion for more detail). Hereafter, we refer to this LiDAR-
estimated carbon map as “the model carbon stock” or 
“the model aboveground carbon density (ACD).” For both 
sampling designs we examine the stratify-and-multiply 
approach (i.e., applying each sampled value to its corre-
sponding unsampled population at the original spatial 
resolution of the map) and a model-linked approach using 
the random forest machine learning algorithm to cre-
ate spatially explicit carbon geographies of the country. 
We assume perfect a priori knowledge of the country’s 
stratification, and assume that each forest plot location 
is accessible. This is a theoretical exercise using no field 
inventory data; rather all values are extracted from the 
carbon map as if it reflected reality. We chose a 10 % inter-
val (i.e., ±5 %) around the true carbon stock value as our 
threshold for an estimate to be considered accurate. We 
asked the following questions. (i) What sampling inten-
sity is needed to accurately estimate the total national 
carbon stock? (ii) Can either sampling method accurately 
estimate the national carbon geography at 1-ha resolu-
tion? (iii) What topographic and climatic variables cause 
increased error in carbon stock estimates?

Results and discussion
Total national carbon stocks
Systematic grid
A systematic sampling grid with dimensions of ≤56 km 
(requiring a minimum of 236 field plots) resulted in 
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<2.5  % difference between the total field plot-estimated 
and the total model national forest carbon stock (Fig. 2). 
Even for systematic grids of larger spatial grains, esti-
mates tended to stay within the 10 % threshold, with just 
a few of the large grid sizes falling outside that range. This 
demonstrates that it is possible to estimate national total 
forest carbon stock quite accurately with minimal sam-
pling effort using a systematic grid.

Stratified random
Using a stratified random sampling approach, we find 
that only a single plot per substratum is needed to esti-
mate the total carbon stock of Perú to within 10  % of 
the total model national carbon stock. A maximum of 
5398 plots nationwide are needed to sample all com-
binations of strata representing more than 1000  ha. 
In fact, only the largest 15 % of the substrata (by area) 

need to be sampled with a single field plot to yield an 
accurate estimate of the total national carbon stock, 
requiring a minimum of 810 plots (Additional file  1: 
Fig. S1).

Both sampling methods result in accurate estimates 
of Perú’s total carbon stock, usually falling within a few 
percent of the model total. However, the systematic grid 
approach requires less sampling intensity compared to 
the stratified random, needing only single plots spaced 
as far apart as 56  km over the entire country. System-
atic grid sampling is the cheapest and most efficient 
way to accurately sample total national carbon stocks of 
even a country with highly heterogeneous forest carbon 
distributions.

While accurate estimates of total carbon at the national 
and regional scale are important for understanding broad 
geographic patterns of carbon distributions, they are very 
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Fig. 1  Maps used for the analyses. a The model aboveground carbon density (ACD) map of Perú at 1-ha resolution with all non-forested areas 
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difficult to use in applications of carbon conservation and 
monetization, activities that are highly spatially depend-
ent and vary at local, landscape, and sub-regional scales. 
Improved knowledge of spatial variation in carbon stocks, 
ideally at the hectare resolution, will enhance policies that 
seek to incentivize conservation and climate change miti-
gation through carbon valuation. Maps of national local 
carbon geographies must be developed with particular 
attention to accuracy, repeatability, and cost.

Carbon geography
Systematic grid
Using a systematic sampling grid to estimate ACD and 
then upscaling the result at 1-ha resolution using the 
stratify-and-multiply approach leads to a large per-
centage of inaccurate estimates across the country (i.e., 
field plot-estimated ACD failed to be within 10 % of the 
model ACD) (Fig. 3a, c). Regardless of the sampling grid 
size, this approach produces inaccurate estimates across 
approximately 78 % of the country (Fig. 4a, c). The inac-
curate estimates are quite consistent, 82 % using a 100 km 
grid (requiring just 74 1-ha plots) vs. 71 % using a 5 km 
grid (requiring >30,000 1-ha plots), suggesting that this 
method performs poorly in creating an accurate map of 
Perú’s carbon geography. Using a model-linked random 
forest approach, rather than stratify-and-multiply upscal-
ing, improves the carbon map of Perú but still results in 
inaccurate estimates across more than half of the country 
(Fig. 5a, c). Using a systematic grid of 15 km (requiring 
approximately 3400 1-ha plots) as the training dataset for 
a random forest model, 63 % of the country is still inac-
curately estimated. Even using the 5  km grid results in 
56 % of the country inaccurately estimated using random 
forest upscaling, but still requires a field plot sampling 
intensity of 30,459 1-ha plots to produce the training 
dataset (Figs. 3e, f, 5a).

Stratified random
The stratified random sampling stratify-and-multiply 
approach did not perform much better than the sys-
tematic grid stratify-and-multiply approach in estimat-
ing the carbon geography of Perú. The distribution of 
inaccurate estimates was similar to the systematic grid 
approach (Fig.  3b, d), and resulted in nearly the same 
amount of total inaccurate estimates across the country 
(Fig. 4b, d). Using only a single randomly placed plot per 
substrata (requiring around 5400 plots) leads to 79 % of 
the country inaccurately estimated. There is barely any 
improvement—with 76  % of the country inaccurately 
estimated—when the number of plots randomly placed 
inside a substrata is increased to 100 (requiring around 
540,000 plots). Again the model-linked random for-
est upscaling approach did not substantially increase 
the area accurately mapped (Fig. 5b, c), with 63 % of the 
country inaccurately estimated regardless of the number 
of plots used per substratum (1, 5 or 100 plots).

Neither field plot sampling approach assessed here 
was able to accurately estimate the carbon geography 
at the 1-ha scale across more than 25–44  % of Perú. 
While field plot systematic sampling tended to equally 
under- and overestimate the model ACD across the 
country, the field plot stratified sampling consistently 
underestimated model ACD at the 1-ha scale (Fig.  4b, 
d). Chronically underestimating local carbon stocks will 
artificially deflate the per-hectare value of carbon, leading 
to reduced conservation incentives by landholders. Even 
when the total sampling is increased to an impractical 
number of plots (i.e., tens- to hundreds-of-thousands), 
the accuracy does not improve substantially. This dem-
onstrates that neither sampling approach would be an 
appropriate choice for developing national maps of car-
bon geography, or changes in carbon geography via emis-
sions or sequestration.
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Underlying drivers of uncertainty
To understand whether there are particular strata or car-
bon values that lead to higher field plot estimated ACD 
errors, we used simulations to examine the number of 
field plots needed to reliably estimate (probability ≥ 0.9) 
the mean ACD of all substrata (unique combinations of 
the 6 quintile-binned strata) (Fig. 1b–g) to within 10 % of 
the model ACD (Fig. 6a, b). While most substrata (81 %) 
can be accurately estimated at a certain sampling den-
sity, some never reach the 0.9 probability threshold at 
any sampling density, meaning they are so heterogene-
ous that field plot sampling is not feasible. The median 
number of field plots needed to reliably sample the mean 
model ACD of any substratum is 43 (mean = 61; Fig. 6b).

Further examination of the simulation outcomes by 
strata or carbon value shows a few strong patterns. Sub-
strata that had higher mean model ACD values require 
fewer randomly placed plots to accurately sample the 

mean model ACD (Fig.  6c). This implies that the het-
eroskedasticity in the relationship used to develop the 
model ACD map (see ‘‘Methods’’ section) is not a major 
factor in the inability of the field plot sampling strategies 
to reproduce the model ACD. The strata with lower ele-
vation and slope values require fewer plots to accurately 
sample the mean ACD (Fig. 6d, e), indicating that these 
areas are more likely to have lower heterogeneity in their 
carbon stocks. The other strata showed weaker or no pat-
terns (Additional file  1: Fig. S2). Similar patterns were 
found when the same simulations were conducted with 
strata that were binned by equal range (Additional file 1: 
Figs. S3–S5).

We also extracted the relative percent error between 
the field plot sampling estimated ACD and the model 
ACD, and graphed this against each stratum on a hectare-
by-hectare basis (Fig.  7). Both field-plot sampling meth-
ods produced similar patterns in their estimation errors 
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Fig. 3  Results of the sampling and upscaling. a Estimated ACD using a 15 km systematic grid sampling approach, b percent relative difference 
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with each stratum. None of the strata show a particu-
larly clear overall association with their ACD estimation 
error. Instead, generally the spread in error densities seem 
either restricted to low strata values in the case of eleva-
tion, slope, and relative elevation, or are more widespread 
across the strata values in the case of cloudiness, mean 
annual precipitation, and dry season length. This is prob-
ably more a reflection of the underlying data distributions 
than patterns in the relationship between estimation error 
and environmental variables (i.e., where there are more 
data you would expect a larger spread in the errors).

The lack of strong and clear trends between the per-
cent relative error and the strata used in this analysis 
further reduces the utility of plot sampling for creat-
ing accurate, spatially explicit national carbon maps. If 
there were particular strata or subsets of strata that were 
underlying the resulting errors, then these could be iso-
lated and sampled differently from the remaining areas 
of the country. The large errors within and between the 
strata indicate that widespread ACD estimation errors 
will be unavoidable when using a field-plot sampling 
strategy.
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Conclusion
Creating a national carbon geography using field inven-
tory plot sampling is unlikely to produce accurate results 
that can be deployed for use in spatially explicit actions 
to reduce carbon emissions. In this exercise we find that 
two common methods for large-scale field sampling fail 
to produce accurate (within a 10  % interval around the 
model ACD) carbon estimates for any more than 44 % of 
the total forested areas of Perú (approximately 76 million 
ha), based on a model of carbon geography. This holds 
true even when 12 layers of remote sensing imagery were 
used to upscale 30,459 field plot samples using a machine 
learning algorithm. While both sampling strategies can 
produce accurate estimates of the total carbon content 
of Perú using relatively few plots, the local carbon geog-
raphies of countries are far more important in a carbon 
valuation and carbon sequestration context. Without 
accurate, one-hectare resolution carbon geographies, 
land use decisions by subnational stakeholders (individ-
ual landowners and agencies) may be based on insuffi-
cient or biased information.

Perú is an ideal tropical country for this type of exer-
cise because it hosts a wide range of topographic, biotic, 
geologic, and climatic variation resulting in highly het-
erogeneous landscape carbon distributions. While some 
countries may have very low carbon heterogeneity, most 
efforts to map national carbon stocks will face the issue 
of high sampling errors resulting from non-homogenous 
carbon distributions. This means our results are likely 
applicable to most tropical countries, or at least to sub-
stantial portions of any particular country.

Field inventories could be targeted toward more inten-
sive sampling of areas likely to have higher carbon hetero-
geneity, potentially reducing the estimation uncertainties 
of any local carbon geography. This is the basic premise 
underlying any stratification approach [11], whether the 
basic stratification used here or those that incorporate 
remote sensing data. However, we did not find any vari-
ables driving the errors in local carbon estimates among 
the six topographic and climatic strata tested. These six 
strata are the environmental variables that best explain 
total variation in carbon across Perú [6]. Therefore, coun-
tries using field-based carbon mapping will find it diffi-
cult a priori to target sampling toward areas of potential 
high carbon estimation uncertainty. Moreover, even if a 
country were to have perfect knowledge of its strata, as 
in the stratification exercise presented here, field plot 
sampling still cannot reproduce the model ACD without 
incurring substantial errors across much of the country.

Countries seeking to value their forest carbon reserves 
for conservation and climate change mitigation must 
look beyond the sole use of field plot sampling. Of 
course, field inventory plots are critical for understand-
ing local-scale ecological processes and for calibration/
validation of remote sensing data. (We emphasize here 
the important distinction between the use of field plots as 
calibration/validation for remote sensing products, and 
using remote sensing products to scale field plot results 
to larger areas). While field plots are integral to remote 
sensing campaigns, they are not designed for, and do not 
perform well at, producing spatially explicit estimates 
of forest carbon stocks [21]—even when using satellite 
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based sensors for upscaling. Field inventories are hard 
pressed to adequately capture the link between remotely 
sensed environmental variables and estimated carbon 
stocks. For example, 30,000 field plots spread across 
Perú—an extremely ambitious sampling effort for most 
countries—is still only 0.5 % of the total area (6.76 mil-
lion ha) sampled by airborne LiDAR and used to create 
the model ACD map [6].

Instead tropical countries should look toward airborne 
and spaceborne sensors to fulfill the need for improved 
wall-to-wall aboveground carbon maps at hectare scales. 

The LiDAR sensor on the future ICESat-2 satellite is 
unlikely to accurately measure tropical forest carbon [22] 
and the GEDI sensor will be a short-term (1–2 year) mis-
sion on the International Space Station [23]. The lack of 
a long-term spaceborne sensor to measure global for-
est carbon suggests that we must rely on airborne plat-
forms to carry out the bulk of national carbon sampling 
for at least the next decade. Airborne LiDAR can now 
successfully map forest carbon stocks at high-resolution 
at subnational to national scales at high accuracy and 
extremely low cost on a per-hectare basis  if operated 
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non-commercially; hundreds of thousands of hectares 
can be mapped per day at accuracies that approach or 
match field plot based sampling [24, 25]. The economies 
of scale achieved by a single airborne LiDAR sensor leads 
to far more cost-effective and accurate carbon mapping 
that is easily repeatable—yielding estimates of carbon net 
changes over time—gives this method of mapping a dras-
tic advantage over field plot sampling.

No doubt tropical forests and their substantial carbon 
sink capacities will play a major role during the imple-
mentation of agreements forged during the December 
2015 UNFCCC climate conference in Paris. Tropical for-
est nations must be ready to respond with accurate assess-
ments of their carbon stocks and reliably monitor their 
changes over time. While field inventory plots have long 
been the standard for meeting these challenges, with tens 
of millions of dollars spent on plot implementation and 
infrastructure, this should not preclude a move toward 
more accurate and cost-effective forest carbon mapping.

Methods
Study area
Perú is an ideal test case for investigating whether field 
plot sampling can accurately map carbon because its for-
ests span a wide range of topographic, climatic, floristic, 
and geologic variables. Heterogeneity in aboveground 
carbon density (ACD) is driven by combinations of these 
variables, and higher ACD heterogeneity leads to less 
accurate field plot estimates of ACD [7]. Results from 
within the diverse environmental gradients of Perú can 
then be applied to other countries of similar conditions.

We used the 1-ha resolution aboveground carbon den-
sity map of Perú created by Asner et  al. [6] as a model 
of the “true” carbon stocks of the country. We refer to 
this LiDAR-estimated carbon map throughout the paper 
as “the model carbon stock” or “the model aboveground 
carbon density (ACD).” The model ACD map was pro-
duced from a countrywide airborne LiDAR campaign 
with the Carnegie Airborne Observatory (CAO; cao.car-
negiescience.edu). The LiDAR data were integrated with 
high-resolution satellite imaging, a large field plot sam-
pling network (to calibrate/validate the LiDAR carbon 
mapping), and an advanced geospatial scaling algorithm 
[for more details see 6]. Please refer to Fig. S5 of [6] for 
model validation results, which compared 536,874 ha of 
LiDAR-measured forest TCH that were not used to train 
the model-estimated TCH of those same locations. The 
R2 is 0.78 and the RMSE is 3.50 m. While the underlying 
relationship between LiDAR measured-TCH and esti-
mated ACD may be heteroskedastic, with a higher ACD 
errors found at taller TCH, the relative ACD uncertainty 
that results is low (i.e., <20 % for high ACD (>120 MgC 
ha−1) lowland forests).

We masked this map to exclude areas that are not for-
ested, using a mean per hectare threshold of >70 % pho-
tosynthetic vegetation and >2  m top-of-canopy height 
(TCH). The photosynthetic vegetation map was created 
from a national-scale mapping of Perú using the CLA-
Slite algorithm with mosaicked Landsat satellite imagery 
[26]. The TCH map is the underlying dataset used to pro-
duce the ACD map of Perú [6]. This left a forested area 
of 76,457,286 ha for the analysis. While this is 59.5 % of 
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Perú by land area, it contains 98.5 % of the total carbon 
of the entire country (6.798  Pg). All analyses were per-
formed using R statistical software [27] with geospatial 
manipulations and analyses performed using the ‘raster’ 
package [28].

Environmental stratification layers
We compiled a set of six co-aligned, 1-ha resolution envi-
ronmental stratification layers (hereafter ‘strata’) com-
prised of topographic and climatic variables covering 
all of Perú. Cloudiness (%) was created from long-term 
(2000–2010) NASA moderate resolution imaging spec-
troradiometer (MODIS) data and described in further 
detail by [6]. Mean annual precipitation (MAP) was cal-
culated from NASA Tropical Rainfall Measuring Mission 
(TRMM) 2b31 monthly data (1998–2011), and dry sea-
son length (DSL) was calculated using the same TRMM 
data for all months with less than 100 mm of precipita-
tion. Elevation, slope, and a relative elevation model 
(REM) were created from NASA Shuttle Radar Topog-
raphy Mission (SRTM) at 90  m resolution. Relative ele-
vation is a proxy for vegetation related water resources, 
and is developed by calculating the height of the ground 
above nearest water body [29]. Each stratum was masked 
by the same forest mask described above.

Field plot sampling designs
We tested two commonly used field plot sampling strat-
egies: systematic sampling and stratified random sam-
pling. This study is not meant to be an exhaustive review 
of spatial sampling techniques, rather to evaluate two 
methods that are commonly employed or recommended 
to map forest carbon over large geographic areas [9, 10, 
12, 13]. Therefore, we did not consider other possible 
spatial sampling designs (e.g., simple random sampling, 
cluster sampling).

Systematic sampling uses sampling units (i.e., field 
inventory plots) placed at regular intervals according to 
an ordering scheme. For the country of Perú, we chose 
regularly spaced square grids with dimensions ranging 
from 5–100 km, increasing at 1-km intervals. Only those 
sampling units on the grid that fall within the bounds of 
the forest mask were retained (hereafter referred to as 
systematic grid sampling).

Stratified sampling places sampling units across a 
region according to pre-defined subregions that are 
more homogenous than the region as a whole, thereby 
reducing inherent sampling errors. The degree to which 
a stratified sampling technique accurately estimates the 
true population depends largely upon choosing homog-
enous subregions from which to conduct the subsam-
pling [30]. We used unique combinations of the six strata 
described above to create these subregions (hereafter 

referred to as ‘substrata’). First each stratum was binned 
by quintile, creating 5 categorical classes for each stra-
tum (Fig. 1b–g). Then a map of all unique combinations 
of the six quintile-binned strata was produced, and any 
resulting substrata less than 1000 ha in area was excluded 
(hereafter referred to as ‘quintile-binned substrata’). This 
resulted in 5398 unique substrata totaling 98.2 % of the 
forested area used for the analyses. We repeated the 
above steps, instead binning each stratum by 5 equal sub-
sets of the total range of values of each stratum (hereafter 
referred to as ‘range-binned substrata’) (Additional file 1: 
Fig. S3). Again removing any substrata with less than 
1000  ha, resulting in 447 substrata representing 99.9  % 
of the forested area used for the analyses. Sampling units 
were then randomly selected from within each substra-
tum according to the simulations described below (here-
after referred to as ‘stratified random sampling’).

Estimating total national carbon stocks
Systematic grid
For each systematic sampling grid, the ACD value 
extracted from the centroid of each sampling grid cell 
was used as the ACD value for all of the 1-ha values in 
that sampling grid cell. The total number of grid cells in 
a systematic grid represents the number of field plots 
needed to create the estimated ACD map. We produced 
96 different estimated ACD maps, each with a spatial res-
olution corresponding to the sampling grid dimensions 
used to create the map (5–100 km in 1 km increments). 
The ACD was summed across the entire country for each 
of the different estimated ACD maps, and compared to 
the total of the model ACD map.

Stratified random
We used Monte Carlo simulations to determine the prob-
ability of a randomly placed set of field inventory plots 
within each quintile-binned substratum to accurately 
estimate the total carbon stocks of Perú. For all of the 
5398 substrata, a random sample of ACD values drawn 
from all ACD values of the substratum was selected and 
used to estimate the mean ACD of the substratum. The 
mean ACD of each substratum was multiplied by the 
total number of hectares in the substratum to get the 
estimated total ACD of that substratum. All estimates of 
total ACD from the substrata were then summed to get 
an estimated total ACD of the country, and compared 
to the total of the model ACD map. This was repeated 
5000 times and the probability of correctly estimating the 
total ACD of Perú to within 10 % was determined. This 
simulation was run for sample sizes of 1 through 100 
field plots in each substratum. We repeated this same 
simulation, but at each iteration progressively removing 
the smallest substrata (by area) in increments of 5 %. We 
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used the mean ACD of the sampled substrata to estimate 
the total ACD of the substrata that were removed from 
the simulation. We did not test the range-binned sub-
strata because of its poor performance in estimating the 
mean ACD of a substratum (see ‘‘Uncertainty simulations 
and extraction’’ section below).

Estimating national carbon geographies
Systematic grid
Each 1-ha resolution systematic grid estimated ACD map 
(see above) represents a stratify-and-multiply upscaling 
approach whereby the sampled value from the systematic 
grid (which can be thought of as stratification in this con-
text) is applied to the corresponding unsampled popula-
tion (the rest of the 1-ha values in the systematic grid cell). 
Each estimated ACD map was co-aligned with the model 
ACD map of Perú, subtracted from the model ACD map, 
and the difference divided by the model ACD map to get 
the relative percent difference on a per hectare basis. We 
also performed a model-linked upscaling approach using 
random forest machine learning in addition to the strat-
ify-and-multiply upscaling approach. We used the system-
atic sampling grid values as the training dataset for each 
random forest model. For the predictors of the model, 
we used the same 12 contiguous remote sensing layers 
that were used to create the model ACD map [see 6]. For 
each systematic grid, a random forest model was fit with 
the sampled values and their co-aligned values from the 
remote sensing layers. Each fitted model was then applied 
to the entire country using the 12 remote sensing layers to 
create a wall-to-wall random forest estimated ACD map 
[for more details on the random forest approach see [31]. 
This map was then compared to the model ACD map in 
the same manner as above.

Stratified random
We chose a subset {1, 5, 10, 50, 100} of field plot sets used 
to randomly sample each substratum to create a strati-
fied random estimated ACD map using a stratify-and-
multiply approach. For each substratum, a field plot set 
was randomly drawn from all ACD values of the sub-
stratum, and the mean of the set was mapped back onto 
all hectares of that substratum. This produced a set of 
maps of estimated ACD for the entire country of Perú at 
1-ha resolution based on the stratified random sampling 
approach. For each map created from one of the five field 
plot sets, the stratified random estimated ACD map was 
subtracted from the model ACD map, and the difference 
divided by the model ACD map to get the relative per-
cent difference. Again, we did not test the range-binned 
strata for the reason described in the preceding section. 
We also applied a model-linked upscaling approach using 
the random forest machine learning algorithm. Here the 

training datasets were composed of the stratified ran-
dom sample values and their co-aligned values from the 
12 remote sensing layers. Random forest models were fit 
and applied in the same way as described above.

Uncertainty simulations and extractions
We ran Monte Carlo simulations to find the number of 
field plots it would take to accurately estimate the mean 
ACD of a substratum for the stratified random sampling 
approach. For each substratum, a random sample of ACD 
values (representing field plots) was selected from all pos-
sible ACD values of the substratum and the mean of the 
sample was compared to the mean of all ACD values of 
the substratum. This was repeated 5000 times to find the 
probability that the selected number of field plots would 
produce an estimate accurate to within 10 % of the mean 
of the substratum as estimated by the model ACD map. 
This simulation was run for sample sizes of 1 through 
100 field plots. We then mapped the carbon value (either 
mean or total) and the environmental strata value of each 
substratum onto the results of these simulations to exam-
ine potential patterns.

We co-aligned the spatially explicit maps of estimated 
ACD created from both sampling approaches with the 
original (non-binned) strata. For each sampling approach, 
we created a median estimated ACD map across all of 
the sampling grids (systematic sampling, 5–100 km) and 
plot sets (stratified random, {1, 5, 10, 50, 100} plots). We 
then extracted the percent relative difference between the 
median estimated ACD map and the model ACD map. 
We also extracted the six climatic and topographic values 
associated with each mapped hectare.
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