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Abstract The components of the nervous system are

assembled in development by the process of cell migration.

Although the principles of cell migration are conserved

throughout the brain, different subsystems may predomi-

nantly utilize specific migratory mechanisms, or may

display unusual features during migration. Examining these

subsystems offers not only the potential for insights into

the development of the system, but may also help in

understanding disorders arising from aberrant cell migra-

tion. The olfactory system is an ancient sensory circuit that

is essential for the survival and reproduction of a species.

The organization of this circuit displays many evolution-

arily conserved features in vertebrates, including molecular

mechanisms and complex migratory pathways. In this

review, we describe the elaborate migrations that populate

each component of the olfactory system in rodents and

compare them with those described in the well-studied

neocortex. Understanding how the components of the

olfactory system are assembled will not only shed light on

the etiology of olfactory and sexual disorders, but will also

offer insights into how conserved migratory mechanisms

may have shaped the evolution of the brain.
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Abbreviations

AEP Anterior entopeduncular area

AH Anterior hypothalamic nucleus

AOB Accessory olfactory bulb

aAOB Anterior division, accessory olfactory bulb

pAOB Posterior division, accessory olfactory bulb

AON Anterior olfactory nucleus

aSVZ Anterior sub-ventricular zone

BAOT Bed nucleus of accessory olfactory tract

BST Bed nucleus of stria terminalis

BSTL Bed nucleus of stria terminalis, lateral

division

BSTM Bed nucleus of stria terminalis, medial

division

BSTMa Bed nucleus of stria terminalis, medial

division, anterior portion

BSTMpl Bed nucleus of stria terminalis, medial

division, posterolateral portion

BSTMpm Bed nucleus of stria terminalis, medial

division, posteromedial portion

CGE Caudal ganglionic eminence

CoA Cortical amygdaloid nucleus

DTB Diencephalic–telencephalic boundary

DP Dorsal pallium

EGF Epidermal growth factor

FGF Fibroblast growth factor

LCS Lateral cortical stream

LGE Lateral ganglionic eminence

dLGE Dorsal lateral ganglionic eminence

vLGE Ventral lateral ganglionic eminence

LOT Lateral olfactory tract

LP Lateral pallium

MCL Mitral cell layer

MeA Medial amygdaloid nucleus
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MeAA Medial amygdaloid nucleus, anterior

division

MeAPD Medial amygdaloid nucleus, posterodorsal

division

MeAPV Medial amygdaloid nucleus, posteroventral

division

MGE Medial ganglionic eminence

MOB Main olfactory bulb

MP Medial pallium

MPN Medial preoptic nucleus

nLOT Nucleus of lateral olfactory tract

OBLS Olfactory bulb-like structure

OC Olfactory cortex

OT Olfactory tubercle

PC Piriform cortex

PMCo Posteromedial cortical nucleus

PM Pre-mammillary nucleus

POA Preoptic area

PSB Pallial–subpallial boundary

PSA-NCAM Polysialic acid–neural cell adhesion molecule

PVH Para-ventricular hypothalamic nucleus

RMS Rostral migratory stream

RMTW Rostromedial telencephalic wall

Shh Sonic hedgehog

TE Thalamic eminence

VMH Ventromedial hypothalamic nucleus

VNO Vomeronasal organ

VNS Vomeronasal system

VP Ventral pallium

VZ Ventricular zone

ZL Zona limitans intrathalamica

Introduction: cell migration in the developing
forebrain

In the developing nervous system, neurons are born at

specialized sites where progenitors reside. The central

nervous system arises from the neural tube, and prolifer-

ating progenitors line the ventricle forming the ventricular

zone (VZ). Neurons and glia, the postmitotic progeny of

these cells, must often migrate to distant destinations to

form mature brain structures. Cell migration is critical for

proper circuit formation and functioning of the brain.

Aberrant neuronal migration has been implicated in dis-

orders such as epilepsy [1, 2], schizophrenia [3, 4], autism

[5, 6] and in severe learning disabilities [7, 8]. Studying

cell migration is therefore imperative for our understanding

of brain development and the etiology of neurodevelop-

mental disorders.

The principles of neuronal migration are largely similar

throughout the brain to the extent that they are currently

understood. That said, neurons of the telencephalon and

diencephalon, which together form the cerebral hemi-

spheres, display extremely complex trajectories and

elaborate migratory movements to reach their final desti-

nations. As a result of these migrations, the telencephalon

produces an array of diverse structures subserving distinct

functions: the olfactory bulbs (OBs), the cerebral cortex,

the basal ganglia, and the amygdaloid complex. The

diencephalon forms the thalamus and the hypothalamus.

Cell migration in the brain may be broadly categorized

based on the orientation of the migration trajectory with

respect to the ventricular surface [9, 10]. Neurons may

migrate either radially outward from this surface, or tan-

gentially, in a direction orthogonal to the radial axis.

Projection neurons, which are typically excitatory, pri-

marily exhibit radial migration (Fig. 1) [10–12].

Interneurons, which are typically inhibitory, undertake

tangential migration for much of their journey (Fig. 1) [9,

13–15].

These two broad categories of migration are regulated

by a spectrum of complex mechanisms that are well worth

understanding, since it is cell migration that literally builds

and shapes brain structures. Here, we review the migrations

that contribute to the different components of the olfactory

system in rodents. We compare and contrast the mecha-

nisms underlying these migrations with those utilized in the

well-studied neocortex and highlight features unique to the

olfactory system. We conclude with developmental, dis-

ease, and evolutionary perspectives on cell migration in

this system.

The main and accessory olfactory systems

The sense of smell is essential for a variety of behaviors

such as mating, feeding, fear, and aggression. In rodents,

the olfactory system has two distinct components: the main

olfactory system, which is responsible for the sense of

smell, and the vomeronasal system (VNS; also called the

accessory olfactory system), which is essential for pher-

omone-based communication [16, 17]. These systems are

tuned to discriminate between a variety of distinct odors

and can do so at very low concentrations [18, 19]. Such

efficient information processing requires the precise

arrangement of a highly ordered circuit. In the sections

below, we will examine the main and the accessory

olfactory systems in terms of the cell migrations that create

the mature circuits.

The olfactory system is unique among the sensory sys-

tems in how information enters the cortex. Whereas visual,

auditory, and somatosensory input reaches the respective

primary cortical areas via the thalamus, the olfactory cortex

(OC) gets inputs directly via the OB. The OB is therefore
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the primary integration center of olfactory input in the

brain.

Domains of origin

Throughout the central nervous system, neuronal cell fate

is specified based on the domain of origin of the postmi-

totic cells in the VZ. In the telencephalon, the dorsal

(pallial) VZ produces excitatory neurons from molecularly

distinct domains called the medial, dorsal, lateral, and

ventral pallia (MP, DP, LP, and VP, respectively) [20]. The

ventral (subpallial) telencephalon is divided into the lateral,

medial, and caudal ganglionic eminences (LGE, MGE,

CGE, respectively) and the VZ of these domains produces

distinct categories of interneurons based on an intricate

transcription factor-based code [21–25]. At the rostral end

of the telencephalon, the VZ of the septum has pallial as

well as subpallial domains [26, 27]. Just dorsal to the

septum is the rostromedial telencephalic wall (RMTW),

which, together with the neuroepithelium of the septum,

constitutes a rostral source of neurons for the forebrain [28,

29].

Broadly, excitatory projection neurons are pallial, and

inhibitory interneurons are subpallial in origin. The DP

produces excitatory neurons of the neocortical sensory

areas (visual, auditory, somatosensory), the motor cortex,

and higher cortical areas. In contrast, the OC, which pro-

cesses the sense of smell, is populated by excitatory

neurons from the LP and VP [26, 30–32]. The boundary

between the pallium and subpallium, called the pallial–

subpallial boundary (PSB), gives rise to the lateral cortical

stream (LCS), which contributes both excitatory and inhi-

bitory neurons to the OC [28, 32–35]. Neurons in the LCS

migrate along a radial glial palisade that extends from the

VZ of the PSB to the pial surface [35, 36]. This migration

has similarities with mechanisms known to operate in

neocortical projection neurons. Migrating LCS cells

require doublecortin (Dcx), Lis1 [37], and filamin A [38] to

maintain a bipolar morphology. Electroporation of shRNA

in rat embryos to knockdown Dcx or Lis1 in the LCS leads

to the aberrant accumulation of cells [37], similar to the

effects of Dcx knockdown in the rat neocortex [39]. The

LCS is not a unitary migration, however. It contains cells

arising from multiple domains that lie on either side of the

PSB, namely the LP, VP, and dorsal lateral ganglionic

eminence (dLGE). A complex molecular code distin-

guishes the contributions of each domain of origin: cells

arising in the LP express Tbr1, Emx1, and Pax6; the VP,

Tbr1 and Pax6; and the dLGE, Pax6 and Dlx2 [26, 33, 34].

The persistent expression of Pax6 is a feature of migrating

LCS cells that is not seen in the neocortex, wherein cells

express Pax6 only when they are proliferating and turn off

expression as they become postmitotic and commence

migration [40–42].

The VZ of the LGE, MGE, and CGE contains discrete

domains that generate inhibitory neurons that populate the

Fig. 1 Neuronal migrations in the embryonic forebrain [13, 22, 23,

25–27, 29, 36, 67, 303–305]. Schematics representing the mouse

brain at embryonic day (E)12.5 sectioned in the coronal plane at the

rostral (a), mid (b), and caudal (c) levels. Domains of origin and

migration routes for projection neurons (green), interneurons (red),

and Cajal–Retzius cells (blue) are illustrated. Colored bands represent

the ventricular zone and progenitors residing therein; arrows

represent the route and direction of migration. 3V third ventricle,

Amy amygdala, CGE caudal ganglionic eminence, CP choroid plexus,

Ctx cortex, H hippocampus, Hyp hypothalamus, LGE lateral gan-

glionic eminence, MGE medial ganglionic eminence, OB olfactory

bulb, OC olfactory cortex, POA pre-optic area, PSB pallial–subpallial

boundary, Se septum, TE thalamic eminence
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entire telencephalon and also some diencephalic structures

[23].

The domains of origin described above reside within the

telencephalon. Other important sources of olfactory system

neurons lie within the diencephalon or at structures located

at the diencephalic–telencephalic boundary (DTB). These

domains typically contribute to amygdaloid and hypotha-

lamic nuclei that process olfactory information and will be

discussed in later sections.

The main olfactory system

The main olfactory bulb (MOB) receives sensory input

from olfactory sensory neurons (OSNs) in the olfactory

epithelium (OE) via the olfactory nerve. Mitral/tufted (M/

T) cells, the projection neurons of the MOB, receive OSN

synapses and in turn project via the lateral olfactory tract

(LOT) to the multiple components of the OC. The OC

comprises five different regions, namely, the anterior

olfactory nucleus (AON), the olfactory tubercle (OT),

olfactory amygdala, piriform cortex (PC), and entorhinal

cortex (Fig. 2) [43–46].

The main olfactory bulb

MOB morphogenesis is carried out in two steps. The pro-

jection neurons are born first, in the VZ at the rostral tip of

the telencephalon, from where they migrate outward to

create a small protrusion, the MOB anlage, by embryonic

day (E)12–13 in the mouse. This is closely followed by the

entry of interneurons (granule cells and periglomerular

cells) which begins from E14 [47–49]. Cells of the MOB

display a laminar arrangement such that the M/T projection

neurons, granule cells and periglomerular cells all occupy

distinct layers. A defect in the development and organi-

zation of any of these populations can lead to a lack of

MOB protrusion [50] and severe functional consequences

that we discuss further in the ‘‘Disease perspectives’’ sec-

tion of this review.

MOB projection neurons

The M/T cells share interesting features with neocortical

projection neurons. They are derived from pallial (dorsal

telencephalic) progenitors at the local MOB VZ [51],

arising from Pax6-positive radial glia [52], and their

Fig. 2 The main and accessory olfactory system [16, 43–46, 151,

189–192, 194, 205]. a Schematic depicting both systems of the mouse

olfactory circuit. OSNs located in the OE (light green) project to the

MOB, whereas VSNs in the VNO project to the AOB. Apical (pink

outline) and basal (blue outline) VNO neurons project to the aAOB

(solid pink) and pAOB (solid blue), respectively. b The main

olfactory system. MOB M/T cells send their axons along the LOT in

the direction of the black arrows to multiple targets (yellow outlined

structures). These include different components of the olfactory

cortex: the AON, OT, PC, EC, and the olfactory amygdaloid nuclei,

CoA and nLOT. c The accessory olfactory system. Both the aAOB

(solid pink) and the pAOB (solid blue) projection neurons send axons

along the LOT (in the direction of the black arrows) to different parts

of the vomeronasal amygdala, including the MeA, PMCo, and

components of the extended amygdala, BST, BAOT (solid orange

structures). AOB accessory olfactory bulb, aAOB anterior AOB,

pAOB posterior AOB, AON anterior olfactory nucleus, BAOT bed

nucleus of accessory olfactory tract, BST bed nucleus of stria

terminalis, CoA cortical amygdaloid nucleus, EC entorhinal cortex,

Hyp hypothalamus, LOT lateral olfactory tract, MeA medial amyg-

daloid nucleus, MOB main olfactory bulb, nLOT nucleus of the lateral

olfactory tract, OE olfactory epithelium, OT olfactory tubercle, PC

piriform cortex, PMCo posteromedial cortical nucleus, VNO vomer-

onasal organ
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migration follows an inside-out pattern. Although distinct

laminae that are characteristic of the neocortex have not

been described within the M/T layer of the MOB, neurons

residing deepest in this layer are born first, and later born

neurons migrate past these and settle at more superficial

locations [48, 50].

Transcription factors important for neocortical devel-

opment, Pax6 and Lhx2, are required to regulate M/T cell

migration in the OB. Loss of either of these results in no

OB, but instead a misplaced, lateral olfactory bulb-like

structure (OBLS) [53–56] that includes MOB and acces-

sory OB (AOB) components. In addition to these shared

genetic mechanisms required for the development of both

the MOB and the neocortex, MOB-specific mechanisms

also exist: transcription factors AP2-epsilon [55], Arx [56],

and FezF1 [57] are necessary for proper orientation of M/T

cells and organization of MCL, but are not known to be

required for the development of neocortical projection

neurons. Finally, there are some intriguing differences in

the cellular and molecular mechanisms that mediate neo-

cortical and M/T cell migration. Unlike in the neocortex,

where radial glia have a uniform parallel arrangement,

MOB radial glia display complex branched and intertwined

morphologies, the function of which is not entirely clear

(Fig. 3) [58]. Furthermore, newborn M/T neurons exhibit

radial as well as tangential migration. In particular, later

born cohorts migrate tangentially using the axons of earlier

born cells to reach their proper location in the MCL

(Fig. 3) [51]. Additionally, postmitotic M/T neurons

express both Tbr2 and Tbr1 [52], unlike neocortical neu-

rons, which switch off Tbr2 upon becoming postmitotic

and express only Tbr1 [42]. Tbr2 expression in postmitotic

neurons in the MOB is necessary for the proper migration

of M/T cells and their organization in the MCL [59].

MOB interneurons

MOB interneurons, like cortical interneurons, are born in

the subpallium and undertake a tangential migration route

to reach their destination [22, 60, 61]. Whereas cortical

interneurons arise from the MGE and CGE [21–25], MOB

interneurons arise from the dorsal segment of the lateral

ganglionic eminence (dLGE), the LGE [62], and the sep-

tum [63]. Interneuron precursors born in these domains

commence a rostral, tangential migration into the MOB.

One portion of this migration, from the dLGE, continues

into adulthood, constituting what is known as the rostral

migratory stream (RMS) [64].

There is a large diversity of MOB interneuron subtypes,

in terms of morphology and neurochemical content [65, 66]

as is the case for cortical interneurons [67, 68]. There is

also a surprising temporal and spatial control of MOB

interneuron diversity, which includes up to seven distinct

subtypes based on neurochemical and neuropeptide mark-

ers [65]. Different interneuron subtypes are generated

depending on the age of the animal, with particular sub-

types being born at specific embryonic or postnatal stages

[65, 69]. Spatially distinct progenitors with unique

molecular signatures produce the diversity of MOB

interneurons. The LGE produces interneurons from Gsh2-

positive progenitors which are also Pax6 positive (from the

dLGE) [32], or Dlx2 positive (from the rest of the LGE)

[70]. Conditional removal of Pax6 alters the postnatal

production of dLGE-derived interneurons [71]. There is

also a locally generated pool of Pax6 expressing progeni-

tors in the OB VZ, which produces both GABAergic

granule cells and dopaminergic periglomerular interneu-

rons [70, 72]. An unusual pool of MOB interneurons arises

from the pallial Emx1 lineage. These progenitors arise from

E15 and integrate with the Dlx2 expressing LGE

Fig. 3 Migration of new neurons within the MOB [51, 52, 58].

a Schematic showing a sagittal section of an embryonic day (E)18.5

MOB. The radial glia (red) are convoluted and intertwined, with their

endfeet merging in the glomeruli or in the EPL. The cell bodies of

M/T cells (blue) are in the MCL, and their axons extend parallel to the

ventricular zone. Newborn neurons (green) migrate radially to their

destined laminar positions using the radial glia, or tangentially using

M/T cells axons as scaffolds. b Confocal image of an E18.5 mouse

MOB sagittal section immunostained for a radial glial marker, RC2

(red), and an OSN marker, the olfactory marker protein (OMP,

green). c Magnified view of boxed area in b showing radial glial

endfeet (arrows) penetrating glomeruli formed by OSN axons. Scale

bar in c is 400 lm. Additional boxes in b are from the original

artwork in [58]. AOB accessory olfactory bulb, EPL external

plexiform layer, GL glomerular layer, MCL mitral cell layer, MOB

main olfactory bulb, ONL olfactory nerve layer, OSN olfactory

sensory neuron, V ventricle, VZ ventricular zone. The images in b,
c are from Fig. 1 of [58], copyright 2001 Wiley-Liss, Inc. Reprinted

with permission
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progenitors within the striatal germinal zone. In this new

subpallial location, these cells begin to express Dlx2 and

then contribute to the MOB interneuron pool through

adulthood [72, 73]. The MOB therefore displays an unex-

pected complexity and temporal dynamics in the molecular

identity of its interneuron population.

Embryonic MOB interneurons utilize similar molecular

mechanisms to those employed by cortical interneurons to

regulate their migration. These include transcription factors

Dlx1, Dlx2, and Mash1 and also the Robo–Slit and

neuregulin signaling systems [74–76].

From postnatal to adult stages, the progenitors of the

RMS migration reside in the anterior subventricular zone

(aSVZ) which is derived from the embryonic dLGE [22].

Despite this developmental continuity of the domain of

origin, distinct mechanisms are utilized by embryonic

versus adult cells for migration. In the postnatal and mature

RMS, interneuron precursors, or neuroblasts, migrate in a

closely associated neurophilic or chain migration pattern,

along blood vessels with the aid of astrocytes which form a

glial tunnel ensheathing the migrating cells [77–82]. These

astrocytes are detected only by early postnatal ages and are

not seen embryonically [83]. The polysialylated form of

neural cell adhesion molecule (PSA-NCAM) is necessary

for chain migration and is therefore expressed robustly by

the neuroblasts from perinatal stages [84–86]. In addition,

adhesion molecules such as integrins are differentially

expressed during the migration of embryonic versus adult

neuroblasts; a1 and b1 subunits are expressed in the

embryo, whereas av, b3 and b6 subunits are expressed in

the adult [87, 88]. An unusual mechanism is employed in

the last phase of migration when the cells reach the MOB

and must migrate radially outward into their destined layers

to differentiate into mature interneurons [89]. For this stage

of migration, adult neuroblasts are guided along blood

vessels, in contrast to embryonic cells which use radial

glial-guided migration [90].

OB projection neurons, interneurons/neuroblasts there-

fore demonstrate the use of cellular substrates other than

radial glia for their migration, i.e., the axons of M/T neu-

rons, other neuroblasts in chain migration, and blood

vessels. This contrasts with the neocortex in which radial

glia are the only reported cellular substrates utilized by

projection neurons and interneurons [9, 91–94]. About

50 % of MGE-derived interneurons can utilize axons for

their migration in vitro [95, 96], but there is no direct

evidence of axon-mediated migration of cortical interneu-

rons in vivo. Another major point of difference with

cortical interneurons is that from perinatal stages, RMS

migration comprises neuroblasts-specified precursors that

will produce interneurons, but which retain proliferative

capability and indeed do proliferate during their chain

migration. This unusual feature is seen in only a few sites

in the entire central nervous system—dentate granule cells,

cells from the olfactory placode (OP), and cells migrating

along the LCS are the only other populations that exhibit

simultaneous proliferation and migration of neuroblasts

[35, 97–100]. The latter two populations are part of the

olfactory migrations described in this review.

Olfactory placode: a cell source for the OB

The OE, a derivative of the OP in the snout, is one of the

few regions outside the neural tube that generates neurons.

The OE produces OSNs which relay sensory information to

the OB throughout the life of an organism [101–105]. The

OP also produces multiple cell types that populate the OB.

These cells, termed the ‘‘migratory mass’’ (MM) [106],

migrate together with the OSN axons as they extend from

the OE toward the OB bundled in the olfactory nerve [106–

109]. The MM is well characterized in rodents and chick,

and known to contain cells with molecularly distinct

identities. Differentiated cells within the mesenchyme of

mouse embryos are observed as early as E10–10.5 [110].

Cells of the MM express different combinations of markers

such as Doublecortin, Notch1 and its effector Hes5, Delta/

Notch-like EGFR receptor (DNER), OMP, Lhx2, and

GnRH [110, 111]. The MM includes putative guidepost

neurons for OSNs; olfactory ensheathing cells (OECs) and

their precursors; neurons expressing the olfactory marker

protein (OMP); and several other distinct cell types

expressing Dlx5, Six1, NCAM, GAP43, or vGlut2 whose

fate and function are not well understood [100, 106, 110,

112–123].

The OECs ensheath the OSN axons throughout their

growth, during their extension through the cribriform plate,

and into the olfactory nerve layer and glomerular layer of

the OB [100, 124–126]. OECs express BLBP and S100b,
and have a range of functions in the development and

immunity of the olfactory system. OECs envelope the OSN

axons along their entire length forming a complex extra-

cellular matrix containing laminin and fibronectin, express

cell adhesion molecules such as PSA-NCAM and N-cad-

herin, produce neurotrophic factors including the p75

neurotrophin receptor and nerve growth factor, and express

guidance cues such as ephrin B2 and semaphorin 3A. All

these molecules promote axon growth and fasciculation

[100, 127–135]. OECs also release soluble factors such as

fibroblast growth factor, FGF2, which are thought to reg-

ulate the proliferation and differentiation of OSN

progenitors [136–138]. They also participate in innate

immunity and thereby protect the peripheral olfactory

system from pathogens. They release neuropeptide Y, show

inflammatory signaling cascades in response to bacterial

trigger, and can lyse bacteria following endocytosis [139–

144]. A subpopulation of OECs are precursors that express

2472 D. Huilgol, S. Tole

123



Sox2 and nestin, and continue to proliferate during

migration.

An intriguing guidance role for OECs is suggested by

reports of OR expression in this population. Each OSN

axon expresses a specific individual odorant receptor

(OR), which serves not only as a receptor for odorant

molecules, but also guides the OSN axon to a specific

glomerulus within the OB where it synapses with an M/T

cell [145–148]. Interestingly, OMP expressing cells among

the OECs contain a subpopulation that also expresses

individual ORs. A curious feature of these cells is that

they associate with OSN fibers that express the same OR.

This suggests the speculative possibility that these cells

may be involved in the regulation of OSN guidance via as

yet unidentified mechanisms that may include a guidepost-

like role [120, 149]. Though OMP expression is not found

in birds, OECs that express individual ORs and associate

with the growing OSN fibers have been reported in chick

[118, 119], suggesting that this population may be con-

served in evolution.

OECs may have additional roles into adulthood. OECs

can attract RMS interneuron progenitors over short length

scales in vitro, comparable to the distance interneurons

travel during their radial migration phase after they enter

the OB. It is possible that OECs may provide such an

activity in vivo as well [100, 150].

A special class of differentiated neurons within the MM

is the gonadotropin-releasing hormone (GnRH) neurons,

which migrate past the OB to the hypothalamus [108, 109].

These GnRH neurons will be discussed further in ‘‘Hy-

pothalamic nuclei’’.

In summary, the MM is an interesting mix of dividing,

postmitotic, and fully differentiated cells. The identities

and functional implications of the diversity within this

population are yet to be completely understood, but it

reveals the broad range of regulatory and functional con-

tributions of placode-derived neurons and non-neuronal

cells to the development of the olfactory system.

Migration of ‘‘lot cells’’

Axons from the MOB and AOB project to their targets via

the LOT [151]. These are restricted to a tight corridor

created by a group of guidepost neurons known as the ‘‘lot

cells’’ (Fig. 4) [152]. The lot cells are an intriguing popu-

lation, sharing molecular features with Cajal–Retzius cells

and posterior AOB (pAOB) M/T cells, yet serving a highly

specialized function in olfactory development. Lot cells are

believed to arise in the dorsal neocortical VZ; from here,

they migrate ventrally and tangentially along the telen-

cephalic surface and finally align themselves at the PSB

along the entire rostrocaudal extent [153]. A recent study

(Ruiz-Reig et al., under revision, cerebral cortex) offers

evidence that lot cells may arise from a different source,

the thalamic eminence (TE). This transient structure loca-

ted at the DTB is the source of several distinct migratory

populations described later in this review. Intriguingly, a

subpopulation of the TE-derived lot cells may later dif-

ferentiate into pAOBM/T cells (Ruiz-Reig et al., under

revision, cerebral cortex), which highlights a new evolu-

tionary interpretation of the pAOB, discussed at the end of

this review. Proneural transcription factors neurogenin 1

and 2, necessary for patterning and cortical neuron speci-

fication [154, 155], are required for the differentiation of

lot cells [156].

The lot cells assemble at the prospective LOT position

prior to the incoming OB M/T cell axons forming the LOT.

Proper alignment of the lot cells is essential for guiding the

LOT. Ablating these cells using 6-hydroxydopamine dis-

rupts the formation of a proper LOT [152].

It is therefore not surprising that complex cell-au-

tonomous and cell non-autonomous mechanisms guide the

positioning of the lot cell array. Netrin1/DCC guidance is

necessary for lot cell alignment at the PSB [157]. Sema-

phorin 3F, which is expressed in the mantle of the lateral

telencephalon, restricts the lot cells to the telencephalic

surface [158]. The lot cell array is profoundly disrupted

when transcription factors Gli3 or Lhx2 are lost [54, 153,

157]. These transcription factors may directly control lot

cell migration via cell-autonomous mechanisms, or indi-

rectly via regulation of signaling at the PSB. Transcription

factor Gli3 is required for dorsoventral patterning, such that

the subpallial component of the PSB expands dorsally in

the Gli3 mutant [159, 160]. Disruption of lot cell array in

this mutant is cell non-autonomous [153, 157] and may be

due to perturbed signaling cues at the PSB. Loss of tran-

scription factor Lhx2 does not affect the position of the

Fig. 4 ‘‘Lot cell’’ array and formation of the LOT [152, 153].

Schematic representing one hemisphere of an embryonic day (E)14.5

mouse brain. The projection neurons of the MOB and the AOB extend

their axons along the LOT and innervate different olfactory cortical

and vomeronasal structures. The ‘‘lot cells’’ (green) form a ‘‘permis-

sive corridor’’ along the lateral face of the telencephalon through

which the LOT axons (pink) grow. AOB accessory olfactory bulb,

LOT lateral olfactory tract, MOB main olfactory bulb
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PSB [161], but causes upregulation of Semaphorin 6A

expression in the lateral telencephalic region where the lot

cells accumulate, which may underlie the profoundly dis-

rupted lot cell array in this mutant [54].

Olfactory cortex: many structures and multiple

migrations

The OC extends along the entire rostrocaudal length of the

ventral telencephalon and consists of five structures—the

AON, OT, PC, entorhinal cortex, and the olfactory amyg-

dala [44]. OB projection neurons make connections with

different rostrocaudal portions of the OC depending on

their location in the OB and birth order. Mitral cells

residing in the ventral OB project to the OT, whereas those

residing in the dorsal OB preferentially project to the PC

[162, 163]. The birth order of these neurons plays a role in

determining the strength of projections to particular OC

areas, such that later born cells project more axons to the

OT than those born earlier [51]. An additional complexity

is that within the class of projection neurons, mitral cells

connect with more posterior and tufted cells with more

anterior OC regions [163, 164].

The components of the OC display either a nuclear or a

trilaminar cortical organization. Of the latter type, the

trilaminar PC is best studied in terms of its cytoarchitec-

tonics and connectivity. Layer 1 is a cell-sparse zone and

contains dendrites from the underlying cellular layer 2,

long distance axons from the OB bundled in the LOT, and

intracortical feedback connections. Layer 2, the principal

cellular layer, is densely packed with pyramidal neurons

and granule cells. Layer 3 has sparse pyramidal and

polymorphic cells with no apical dendrites. It is primarily

involved in intracortical communication rostrocaudally

within the OC [165].

The olfactory amygdala, which receives input from the

MOB comprises two amygdaloid nuclei: the cortical

amygdala (CoA) and nucleus of the lateral olfactory tract

(nLOT) [166]. Both these nuclei are considered to be

‘‘cortical’’ since they appear laminated and have radially

oriented pyramidal neurons [167].

OC receives cells from multiple regions of the forebrain,

some of which originate at E10.5 [28, 29], the same time as

the Cajal–Retzius cells and subplate cells which are the

earliest born cells of the neocortex. OC neurogenesis in the

rodent embryo continues until late gestation [168]. The

deeper neurons of OC (layer 3) are born earlier than the

superficial neurons (layer 2), particularly in the PC [168–

170]. Therefore, the OC displays a rudimentary inside-out

pattern of neurogenesis, similar to the neocortex [171].

Migrations to the components of the OC

Lineage tracing using vital dyes, genetic approaches, or in

utero electroporation in the mouse reveals an array of

distinct VZ domains in the forebrain that contribute to the

OC (Fig. 5; Table 1). These include the LP, VP, and dorsal

and ventral segments of the LGE (dLGE and vLGE,

respectively), which migrate together in the LCS, MGE,

septum, RMTW, dorsal telencephalon, caudal telen-

cephalon, and the diencephalon–telencephalon boundary

(DTB). We will now discuss the different components of

the OC formed as a result of migrations from these

domains of origin.

Fig. 5 Cell migrations to the olfactory cortex [26, 29, 30, 34, 35, 37,

172]. Schematics representing an embryonic day (E)12.5 brain

sectioned at rostral (a) and mid (b) levels in the coronal plane to

reveal neuroepithelial domains and cell migrations (arrows) that

populate different olfactory cortical structures. CoA cortical

amygdaloid nucleus, LP lateral pallium, dLGE dorsal lateral gan-

glionic eminence, vLGE ventral lateral ganglionic eminence, MGE

medial ganglionic eminence, OT olfactory tubercle, PC piriform

cortex, RMTW rostromedial telencephalic wall, VP ventral pallium
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The different pallial and subpallial components of the

LCS contribute excitatory and inhibitory neurons, respec-

tively, to distinct structures of the OC (Table 1). A Tbr1-

positive population arising from the LP contributes exci-

tatory neurons to the OT and PC [37] whereas the VP

produces excitatory projection neurons for the CoA [35,

172]. Pax6-positive interneurons from the dLGE are

suggested to contribute to the AON, OT [26, 173], and the

anterior CoA, which is reduced in the Pax6sey/sey mutant

[34]. Cells migrating from the dLGE [30] and VP [29] also

contribute to the PC, whereas neurons born from the vLGE

contribute only to the OT (Fig. 5) [28]. The interneurons of

the LCS display different modes of migration. A subset of

the Dlx2-expressing population follows chain migration

Table 1 Domains of origin for the components of the OC

Piriform Cortex 
(PC)

Olfactory 
Tubercle (OT)

Cortical 
Amygdala 

(CoA)

Anterior 
Olfactory 

Nucleus (AON)

Nucleus of 
Lateral 

Olfactory Tract 
layer 2/3 

(nLOT2/3)

LP Excitatory
(Tbr1 positive)

[37]

Excitatory
(Tbr1 positive)

[37]

VP

[29]
Excitatory
[35,172]

dLGE

[30]
(Pax6 positive)

[26, 173]
(Pax6 positive)

[34]
(Pax6 positive)

[26, 173]

vLGE

[28]

Subpallium (Dlx2 positive)
Inhibitory

(MGE derived)
[35, 174]

(Dlx2 positive)

[35]

Septum (Excitatory)
[29]

(Excitatory)
[29]

RMTW (Mixed identity)
[28]

(Mixed identity)
[28]

Dorsal pallium (Excitatory)

[180]

Diencephalon (Foxb1 positive)

[176]

(Lhx5 positive)

[177]

(Lhx5 positive)

[177]
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and proliferates en route to the CoA and PC [35], similar to

the cells in the RMS. Interneurons migrating to the PC also

originate from the MGE [174], a well-characterized source

of cortical interneurons [175].

The PC and OT have a contribution from a rostral origin

consisting of excitatory neurons arising from the septum

[29] and neurons of mixed identity from a pallial domain

immediately dorsal to it, called the RMTW (Fig. 5;

Table 1) [28]. The PC also receives cells from the dorsal

telencephalon [169] and a diencephalic population of the

Foxb1-lineage [176]. An unusual population of cells

exhibiting a tangential, surface migration arises caudally,

possibly at the DTB, and migrates along the lateral aspect

of the telencephalon to populate the rostral OC. This

population expresses Lhx5 like the DTB and displays

similarities with Cajal–Retzius cells in its surface migra-

tion and Reelin expression [177].

Cell migrations to the nLOT

The nLOT is a trilaminar component of the olfactory

amygdala and is bidirectionally connected to the OB and

PC. It is implicated in non-pheromonal olfactory behaviors,

especially feeding or ingestive behavior [178, 179]. Layers

2 and 3 of the nLOT (nLOT2/3) are the major output layers

of this excitatory nucleus [179]. Whereas most of the

amygdala develops either from the PSB or the subpallium,

in utero electroporation of the caudal telencephalic neu-

roepithelium showed that the nLOT2/3 develops from the

DP and therefore shares its origin and mechanisms of

development with the neocortex [180]. Consistent with this

interpretation, transcription factors required for proper

development of the neocortex, such as Tbr1, Lhx2, and

Pax6, are also required for the specification of the nLOT2/3

[34, 180, 181]. The neurons of the nLOT2/3 migrate along

the caudal amygdaloid stream (CAS) and follow two

modes of migration sequentially: a radial glia-independent

phase that is parallel to the ventricular surface, followed by

migration along the radial glia to their destination. Inter-

estingly, this second phase requires Reelin and Cdk5 [180]

similar to neurons of the neocortex [182, 183].

During development, the nLOT2 and 3 are indistin-

guishable [181], but on maturity, the nLOT3 appears as an

ovoid structure surrounded by the crescent-like nLOT2

(Fig. 6). It would be useful to elucidate whether the origins

of the nLOT2 and nLOT3 are indeed distinct from each

other, since no fate-mapping study, either using genetic

drivers or electroporation, distinguishes these two sub-nu-

clei. Layer 1 of the nLOT (nLOT1) is born at E10.5, a day

earlier than the nLOT2/3 [180] and its origin and migration

route are not well understood. The nLOT1 and nLOT2/3

express mutually exclusive markers and utilize distinct

Fig. 6 The caudal amygdaloid stream and migration to the nLOT2/3

[180]. a A sagittal section of an E17.5 mouse brain shows the caudal

amygdaloid stream (CAS; yellow arrow) arising in the caudal

telencephalic VZ and terminating in the globular nLOT2/3 (yellow

circle, black arrow). Dashed arrow depicts the migration route from

the VP to other amygdaloid nuclei. b Both the CAS (arrowhead) and

the nLOT2/3 (arrow) are identified by NeuroD expression, c NeuroD
expression in a lateral-to-medial series of sagittal sections at E15.5,

d in utero electroporation of an EGFP-expressing construct in the

caudal telencephalic neuroepithelium at E11.5, and examination of

the brain at E15.5, reveals GFP-positive cells migrating along the

CAS (white arrow). Note the residual GFP-positive neuroepithelium

at the site of electroporation indicating the origin of the nLOT2/3

cells (white arrowheads). Scale bars are 200 lm. nLOT nucleus of

lateral olfactory tract, Hi hippocampus, Ncx neocortex. All images in

this figure are from [180], copyright 2007 Nature Publishing Group.

Reprinted with permission
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developmental mechanisms [33, 34, 179–181]. Therefore,

the nLOT1 and nLOT2/3 may in fact be distinct nuclei that

happen to assemble in close proximity gaining the collec-

tive name ‘‘the nucleus of the LOT.’’

The accessory olfactory system

Though the MOB has been traditionally thought to process

common odors and the AOB to process pheromonal odors,

there is increasing evidence of cross-talk between these

two arms of the olfactory system at multiple stages,

including the OB, amygdala and OC [184–188]. However,

here we will treat the accessory system as a distinct entity,

since this is more appropriate from a developmental per-

spective. Pheromonal odors are detected by vomeronasal

sensory neurons (VSNs) in the vomeronasal organ (VNO).

VSNs project via the olfactory nerve to the M/T cells,

which are the projection neurons of the AOB. The M/T

cells in turn project along the LOT together with the MOB

axons. Targets of the AOB are nuclei of the vomeronasal

amygdala, which in turn project to specific regions of the

hypothalamus (Fig. 2) [189, 190]. We will describe cell

migrations to each structure in the accessory olfactory

circuit in the sections below.

The accessory olfactory bulb

In rodents, the AOB is located on the dorsal aspect of the

MOB and is the first recipient of vomeronasal innervation

in the brain. VSNs project to the AOB in an ordered

fashion such that the apical neurons project to the anterior

AOB (aAOB) and basal neurons to the pAOB [191, 192].

The aAOB and pAOB also express a battery of mutually

exclusive molecular markers and display an apparent

functional segregation, such that the aAOB mediates mat-

ing behavior whereas the pAOB processes defensive/

aggressive cues [16]. A developmental rationale for this

functional dichotomy was provided by the discovery that

the projection neurons of the aAOB and pAOB are pro-

duced in independent and widely separated domains of

origin. Projection neurons of the aAOB originate from the

local OB neuroepithelium, similar to those of the MOB. In

contrast, projection neurons of the pAOB arise in a distant

location at the DTB, migrating the entire rostrocaudal

extent of the telencephalic surface to reach their destination

[193].

The AOB was presumed to share developmental

mechanisms with the MOB, in part due to the close jux-

taposition and similar cellular composition of these two

structures [194, 195]. However, the identification of dis-

parate origins of aAOB and pAOB projection neurons

implies that they may utilize distinct mechanisms for their

development. Indeed, the aAOB requires mechanisms of

specification that are similar to the MOB, whereas the

pAOB depends on a different set of regulatory genes, e.g.,

Tbr1 is required for the specification of the aAOB and

MOB, but not the pAOB. The opposite is true for Lhx5,

which is required for the specification of the pAOB, but not

the aAOB or MOB [47, 193]. One unusual feature of

pAOB neurons is that they perform tangential migration, a

feature characteristic to interneurons that migrate over

large distances [196] and not usually seen in other popu-

lations of projection neurons which migrate radially from

the local VZ. Intriguingly, Cdk5, a molecule required for

cell shape changes and necessary for radial glia-dependent

migration [180, 183, 197] is also necessary for the pAOB

neurons to migrate tangentially along the telencephalic

surface, in the absence of which they remain accumulated

at the caudal telencephalic pial surface [193].

The dichotomy between the domains of origin of the

aAOB and pAOB is seen only for projection neurons.

Interneurons of both the aAOB and pAOB are derived from

the rostral LGE and from the anterior SVZ, similar to those

populating the MOB [198, 199].

The vomeronasal amygdala

Gene expression and fate-mapping studies have identified

an assortment of nuclei of the amygdala and the extended

amygdala [200, 201] to be part of the vomeronasal

amygdala [189, 202–204]. These nuclei are all part of the

vomeronasal circuit. The axons of AOB M/T cells project

along the LOT to distinct nuclei of the vomeronasal

amygdala. The MeA is the primary target of the AOB.

Other targets include the posteromedial cortical nucleus

(PMCo; Fig. 2) and components of the extended amygdala

such as the bed nucleus of stria terminalis (BST) and the

bed nucleus of the accessory olfactory tract (BAOT), all of

which comprise the vomeronasal amygdala [190, 205].

Migrations to the MeA and PMCo

The MeA is anatomically divided into anterior, pos-

terodorsal, and posteroventral divisions (MeAA, MeAPD,

and MeAPV, respectively), which send projections to

functionally distinct hypothalamic nuclei. The MeAPD

projects to the reproductive hypothalamic nuclei and the

MeAA and the MeAPV project mainly to the nuclei pro-

cessing defense and aggression [189, 206, 207].

In utero electroporation, lineage tracing using vital dyes,

and genetic mapping studies show that each of these sub-

nuclei is populated by cells from multiple pallial and

subpallial neuroepithelial domains (Table 2). The Lhx9

expressing VP populates both the MeA and PMCo [33,

202]. The rostral portion of the VP contributes to the
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MeAA and a more caudal portion of the VP contributes to

both the MeAPD and the MeAPV [29, 202, 204]. The

MeAA receives neurons of the Nkx2.1 lineage [211] from

the subpallial anterior entopeduncular area (AEP) and

preoptic area (POA). In contrast, the MeAPD is populated

by cells of the Nkx2.1 lineage from the AEP, and the

MeAPV receives Dbx1-positive neurons of the sonic

hedgehog (Shh) lineage from the POA (Fig. 7) [173, 202,

204, 209]. A population of glutamatergic neurons of MeA

and PMCo is derived from the third ventricle. These cells

express a diencephalic transcription factor, orthopedia

(Otp), which is necessary for their migration across the

DTB [203]. This migration takes place along radial glia

which extend from the neuroepithelium underlying the

paraventricular hypothalamic nucleus (PVH) to the MeA

[36, 202–204].

Migrations to the BST and BAOT

The BST is an important relay structure and a target of the

MeA [187, 189]. It is divided into lateral (BSTL) and

medial components (BSTM) which are involved in

mediating autonomic and vomeronasal responses, respec-

tively. The BST has heterogeneous origins that have been

revealed by lineage tracing using vital dyes, in utero

electroporation, and genetic mapping studies (Table 2) [36,

202–204].

Neurons of the BSTM are derived from the AEP,

commissural POA, CGE and the neuroepithelium of the

third ventricle underlying the PVH (Fig. 7) [36, 203, 204].

The third ventricle-derived population is part of the Otp-

dependent excitatory neuron migration that also populates

the MeA and the PMCo, described earlier [203]. The

BSTM is parcellated functionally into anterior (BSTMa),

posterolateral (BSTMpl), and posteromedial (BSTMpm)

components. Studies based on gene expression patterns

suggest that BSTMa and BSTMpm receive cells in large

part from the AEP. The diencephalic population is thought

to contribute largely to the BSTMpl based on the expres-

sion of Pax6 and Tbr1 in this subregion, and their

coexpression with Sim1 at the hypothalamic neuroepithe-

lium [202].

BAOT, a lesser studied component of the vomeronasal

amygdala, displays a distinct developmental profile from

Table 2 Domains of origin for the components of the vomeronasal amygdala

MeAA MeAPD MeAPV PMCo BSTMa/
BSTMpm

BSTMpl BAOT

VP

(Lhx9 positive)
[29,33, 202,204]

(Lhx9 positive)
[29,33, 202,204]

(Lhx9 positive)
[29,33,202,204]

(Lhx9 positive)
[33, 202] [202]

CGE [36] [36]

AEP (Nkx2.1 lineage)
[208]

(Nkx2.1 lineage)
[209] [204]

POA (Nkx2.1 lineage)

[208]

(Dbx1 positive) 
(Shh lineage)

[172,202,204,209] [204] [204]

Dorsal 
pallium (Emx1 

lineage)
[210]

3rd

Ventricle Excitatory
(Otp positive)

[203]

Excitatory
(Otp positive)

[203]

Excitatory
(Otp positive)

[203]

Excitatory
(Otp positive)

[203]

(Sim1 
positive)

[202]
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the other three components. Based on gene expression

studies, cells for the BAOT appear to be derived from the

VP [202] and the Emx1-lineage [210], indicating a pallial

origin for this nucleus.

Hypothalamic nuclei

The hypothalamus is a rostral diencephalic structure that

receives input from a variety of systems including the

olfactory system. In particular, the MeA projects densely to

the medial preoptic nucleus (MPN), anterior hypothalamic

nucleus (AH), ventromedial hypothalamic nucleus (VMH),

and premammillary nucleus (PM). Of these, the MPN,

ventrolateral VMH, and ventral PM process reproductive

cues, whereas the AH, dorsomedial VMH, and dorsal PM

process defensive/aggressive cues [187, 189, 211]. With

the exception of the MPN, described below, the entire

hypothalamus is largely born from the neuroepithelium of

the third ventricle between E10 and E16 in mice (Fig. 7)

[212, 213]. Newborn neurons migrate along radial glia to

their respective positions in an outside-in pattern, such that

the earliest born neurons migrate the farthest from VZ

[214, 215].

Migrations to the hypothalamic nuclei

The MPN is a sexually dimorphic nucleus located in the

POA and is considered to be more of a boundary structure

at the DTB than a diencephalic region. In contrast to the

migration pattern seen in the rest of the POA or other

hypothalamic nuclei, the MPN develops using an inside-

out pattern of radial migration similar to that seen in the

dorsal telencephalon [214, 216]. The MPN also hosts

neurons arising from an unusual migration from an

Fig. 7 Neuroepithelial domains contributing to components of the

vomeronasal system [36, 193, 203, 204, 212–214, 225, 226]. a–
c Schematics of sections of the forebrain at three rostrocaudal levels

in the coronal plane showing the different neuroepithelial domains

that contribute to the hypothalamic nuclei of the VNS. Newborn

neurons migrate radially from the designated neuroepithelial ventric-

ular zones (vMPN, vAH, vVMH, vPM) to populate the MPN, AH,

VMH, and PM, respectively. a The AEP and POA provide neurons to

the BST, MeA, and PMCo. The interganglionic sulcus, between the

LGE and MGE, generates interneurons destined for the AH/POA.

b The vPVH produces neurons for the vomeronasal amygdala (MeA,

PMCo and BST). c the TE (asterisks, b, c) generates M/T neurons

destined for the pAOB, which migrate to the telencephalic surface at

caudal levels (pink arrows). These neurons undertake a tangential

migration along the telencephalic surface (pink arrows, a, b) to the

rostrally located pAOB which is not seen in the schematic. The

pAOB, MeA, PMCo, BST, and the hypothalamic nuclei are all

generated from the VZ of the third ventricle and are all part of the

VNS. 3V third ventricle, AEP anterior entopeduncular area, BST bed

nucleus of stria terminalis, MeA medial amygdaloid nucleus, pAOB

accessory olfactory bulb, posterior division, PMCo posteromedial

cortical nucleus, POA preoptic area, TE thalamic eminence, vAH

ventricular zone for anterior hypothalamic nucleus, vMPN ventricular

zone for medial preoptic nucleus, vPM ventricular zone for pre-

mammillary nucleus, vPVH ventricular zone for paraventricular

hypothalamic nucleus, vVMH ventricular zone for ventromedial

hypothalamic nucleus
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unexpected source: GnRH neurons that control reproduc-

tive behavior, arising from the OP. These neurons undergo

what may possibly be the longest tangential migration in

the forebrain, arising at E10.5 in the OP. They undertake an

axonophilic migration from E11.5 to E13.5, along a tran-

sient branch of the vomeronasal nerve from the VNO,

penetrating the cribriform plate as part of the ‘‘migratory

mass’’ described in an earlier section. They eventually

settle in the MPN and lamina terminalis of the hypothala-

mus by E16.5 [108]. Not surprisingly, proper migration of

GnRH neurons requires multiple guidance cues en route:

adhesion molecules such as PSA-NCAM [217]; anosmin-1,

an extracellular glycoprotein [218, 219]; semaphorin 4D–

plexin B1 coupling [220]; ephrin receptor EphA5 [221];

and fibroblast growth factor 8 [222, 223]. The mechanisms

of this complex migration have been reviewed elsewhere

[224]. Once they settle in the MPN, they extend their axons

into the median eminence thereby controlling the release of

anterior pituitary hormones responsible for reproductive

behavior.

The AH is located caudal to the POA with which it

shares several developmental characteristics. The embry-

onic AH and the POA display a complementary expression

of Foxd1 and Foxg1, respectively. There are, however,

some Foxd1 expressing cells sprinkled in the AH, sug-

gesting a possible migration of cells from the POA [225].

Though the closest ventricular domain to the AH and POA

is the third ventricle, both structures receive radially

migrating as well as tangentially migrating cells of telen-

cephalic origin. Migrating cells are reported along the

radial glia extending from telencephalic lateral ventricles

adjacent to the septum and terminating at the pial surface

of AH/POA [215]. Interneurons for the AH/POA migrate

tangentially from the telencephalic inter-ganglionic sulcus

between the LGE and the MGE, guided by nuclear

receptors COUP-TF I and II [226]. The POA and the

ventral midline of the AH both express Shh embryonically.

The AH appears to be critically dependent on this factor,

since the entire anterior hypothalamic area is severely

reduced in the hypothalamus-specific knockout of Shh

[227].

The VMH is a midline structure of the tuberal

hypothalamic region and is derived from Nkx2.1 expressing

neuroepithelium [225] from E10 to E15 in mice [212].

Neurons that populate this region are from the Shh-lineage,

arising from the neuroepithelium lining the third ventricle,

and migrating along the radial glia to the mantle [228].

Though the VMH neurons all appear to arise from this

single domain, the mature VMH contains molecularly

distinct populations of cells in its different sub-regions.

Neurons of the ventrolateral VMH express the estrogen

receptor, ERa, and also the GABAA receptor subunits.

Neurons of the central and dorsomedial VMH express

GABAB receptor subunits. Not surprisingly, GABA plays

an important role in regulating migration and positioning of

the neurons, a function that is specific to VMH neurons and

not those of adjacent hypothalamic nuclei [213, 229–231].

Central and dorsomedial VMH neurons also release brain-

derived neurotrophic factor (BDNF) and selectively

express an orphan nuclear receptor, steroidogenic factor

SF-1/Nr5a1 which is required for the positioning and

coalescence of both SF-1 expressing and non-expressing

VMH neurons [230, 232].

The PM is located in the mammillary region and is the

most caudal of all the vomeronasal hypothalamic targets.

Neurons of the PM are produced in the Nkx2.1 positive

neuroepithelium of the third ventricle. Lef1, a mediator and

a target of Wnt signaling, is detected specifically in the PM

neuroepithelium at the time of hypothalamic neurogenesis

as well as in differentiated PM neurons later [225]. Wnt

signaling may therefore play an important role in the for-

mation of the PM. Shh is necessary for the differentiation

of the PM, though its role for the AH and VMH develop-

ment may be more prominent, since these latter nuclei are

more severely affected in the absence of Shh [225, 227,

233, 234].

Insights from olfactory system migrations:
a developmental perspective

Creative use of boundaries

A common developmental feature across all systems in

which developmental patterning is examined is that cell

lineage restriction boundaries or ‘‘compartment’’ bound-

aries play critical roles in defining the identities of adjacent

regions. Boundaries prevent the intermixing of cells with

other compartments, thereby spatially restricting cells

destined to form particular structures and providing sig-

naling cues to surrounding cell populations. When certain

cell populations cross such boundaries, they add a layer of

complexity to the system and deserve special attention. The

olfactory system is rich in intriguing examples of this.

Three boundaries in the forebrain have been well studied:

the PSB in the telencephalon; the DTB at the telen-

cephalic–diencephalic boundary; and the zona limitans

intrathalamica (ZLI) in the diencephalon that demarcates

the thalamus from the prethalamus. Each of these are

known or proposed to be signaling centers that emanate

cues to adjacent domains [26, 235–240].

The DTB has recently been proposed to be part of a

‘‘forebrain hem system’’ [27] and is witness to many

migrations in each direction. Cells from the TE that cross

the DTB and enter the telencephalon include cells destined

for the pAOB, MeA, and OC. Lot cells that form a corridor
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in the lateral telencephalon to guide the axons of the LOT

may also arise from the TE. Migrations in the opposite

direction include cells arising from telencephalic domains

that migrate across the DTB to the diencephalic AH and

POA. The role of the boundary itself in these migrations is

worth close examination in future studies.

The PSB is suggested to be a telencephalic signaling

center [241, 242]. The domain abutting the PSB on the

pallial side, the VP, expresses a number of morphogens and

guidance cues such as the secreted form of Wnt antagonist,

soluble Frizzled-related protein, sfrp2 [236], chemokine

SDF1 [243], and members of epidermal growth factor

(EGF) family [241, 244]. Multiple migrations to compo-

nents of olfactory system, the pAOB projection neurons

[193], lot cells [153] (Ruiz-Reig et al., under revision,

cerebral cortex), Lhx5-positive cells migrating to the rostral

OC [177], and the axons of the LOT themselves follow a

trajectory that traces the PSB on the lateral aspect of the

telencephalon and may utilize cues secreted from this

structure for their migration.

The olfactory system therefore illustrates that ‘‘bound-

aries’’ can play a wide range of roles in the development

not necessarily limited to the canonical definition of seg-

regating compartments.

A hypothesis for programming connectivity

at the domain of origin

Is connectivity between the individual components of a

circuit encoded in their progenitors? Sokolowski and Cor-

bin [195] proposed an elegant mechanism for the formation

of complex circuits. They propose that if progenitors from a

single domain expressing a specific set of transcription

factors give rise to multiple structures of a circuit, the

shared molecular code of the neurons may provide a

mechanism to mediate the establishment of connectivity

between those structures. There are some circuits in which

such a mechanism could be examined. One example is the

reproductive arm of the accessory olfactory system, in

which several nuclei express Lhx6 [189]. These include the

MeAPD division of the MeA as well as its target, the

BSTMpm division of the BST [187, 189], both of which

arise from a common domain of origin, the AEP [202, 204],

and connect to each other as part of a functional circuit.

Another example is the AOB–MeA circuit. In mouse

and Xenopus, cells originating in the TE encounter the

MeA in their migration route that ends in the AOB [193]

and may contribute to it. The TE, migrating neurons, MeA,

and AOB all express Lhx5. It may not be mere coincidence

that the MeA is a major target of the AOB. Rather, their

connectivity may be linked to a common domain of origin,

the TE, which itself is known to control olfactory pro-

cessing in amphibians [245].

Similarly, cell migrations from closely juxtaposed

domains at the DTB populate many interconnected com-

ponents of the VNS. The TE, MPN and POA are all located

at the DTB in rodents (Fig. 7), in close proximity with the

hypothalamic ventricle from which all of the hypothalamic

targets of the VNS arise, indicating that much of the

vomeronasal circuit originates from the diencephalic ven-

tricle/DTB.

The olfactory system therefore offers an appropriately

complex set of circuits to examine the hypothesis that the

connectivity of a circuit may be linked to the domain of

origin of its components. An exciting parallel has been

demonstrated at a clonal level in the neocortex, wherein

neurons born from the same progenitor preferentially

connect to each other [246]. This process can have impli-

cations on function, e.g., sibling neurons in the primary

visual cortex respond to similar visual stimuli for both

orientation and direction [247]. Future studies could aim at

finding downstream targets which direct connectivity

between individual structures in the olfactory system.

Insights from olfactory system migrations:
a disease perspective

Understanding the nature and the mechanisms of cell

migration in the olfactory system is critical for an insight

into the etiology of disorders such as Kallmann syndrome,

which is characterized by hypogonadotropic hypogonadism

and anosmia. This disorder is caused by a failure of

olfactory nerve formation, which results in a migration

defect in GnRH neurons. There is concomitant aplasia of

the OB itself, since pioneer axons from the olfactory nerve

are known to stimulate OB evagination [30, 248, 249],

causing defects in olfaction [218, 219, 250]. Mutations in

KAL1, which encodes an NCAM anosmin-1, result in the

X-linked form of the disease. Mutations in KAL2, which

encodes the fibroblast growth factor receptor FGFR1, leads

to the autosomal dominant form of Kallmann syndrome

[219, 250–252].

Other developmental pleiotropic diseases such as the

CHARGE syndrome, trisomy 13 or Patau syndrome, and

trisomy 18 or Edward syndrome in which the OB is

hypoplasic or aplasic also show migration defects in GnRH

neurons [253], which leads to a decrease in the levels of

circulating sex hormones causing hypogonadism in these

patients. In contrast, when there is hyperplasia of the OB, it

results in a different set of disorders such as fetal immo-

bility/Pena–Shokeir syndrome. The enlarged OBs display

lamination defects and the absence of glomeruli [254, 255].

In addition to developmental disorders, a number of neu-

rodegenerative disorders are accompanied by deficits in

proliferation or migration of neuroblasts from the SVZ to
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the OB. These deficits may be used for predicting the onset

of disorders such as Alzheimer’s disease [256]. The

hypothalamus is the seat of neuroendocrine control for the

body and, therefore, disruptions of migration to the

hypothalamic components of the circuit may underlie eat-

ing disorders such as anorexia nervosa, bulimia nervosa,

neurohypophyseal diabetes insipidus, disorders of sexual

behavior, and mood disorders [257, 258]. Some patients

with eating disorders show inability to detect and/or iden-

tify odors [259], which may be due to abnormal

proliferation or migration of the olfactory components of

the system, underscoring the olfactory–hypothalamic rela-

tionship in development. Understanding cell migrations in

the olfactory system can therefore provide insights into

disease etiology and treatment.

OECs, which envelop the OSN axons, are being evalu-

ated as potential donor cells for transplantation therapy in

peripheral nerve and spinal cord injuries [260–262]. OECs

derived from the adult rodent OB express myelin-associ-

ated proteins and have been shown to myelinate axons of

co-cultured dorsal root ganglion cells in vitro [263, 264].

Furthermore, in vivo OEC transplants in rodents appear to

promote spinal cord regeneration and recovery of behav-

iors affected due to spinal cord injuries [265–267]. One

study in humans performed intraspinal grafting of autolo-

gous OECs and fibroblasts isolated from the olfactory

mucosa in paralyzed patients with complete spinal cord

injury. Both control and transplant recipients received

intense neurorehabilitation, but only the latter displayed

some recovery of neurological function [262]. Therefore,

migratory cells of the olfactory system may have properties

that are not utilized in normal life, but may be harnessed in

translational paradigms for therapeutic applications.

Insights from olfactory system migrations:
an evolutionary perspective

The olfactory system is the most ancient sensory system

and is evolutionarily conserved in terms of function, con-

nectivity, and development across vertebrates [268, 269].

The conservation of origins for different structures within

the olfactory system across disparate vertebrate classes is

remarkable. This is particularly evident in OB develop-

ment. OB M/T cells are pallial, and OB interneurons are

subpallial in origin in rodents, chicks, Xenopus, and fish

[26, 270–276]. Several vertebrate species including fish

[277–279], reptiles [280, 281], rodents [77, 78], and non-

human primates [282, 283] demonstrate postnatal and adult

olfactory neurogenesis and migration of neuroblasts along

the RMS. Adult humans also have a proliferative SVZ

[284, 285] and there is evidence of migrating olfactory

neuroblasts along the RMS to the OB [286].

Some differences in the nature of RMS migration are

intriguing and may hint at how this phenomenon evolved:

neuronal precursors migrate along the RMS from the

telencephalic VZ to the OB in the adult zebrafish brain

[279, 287], but this migration is along radial glia and not

surrounded by glial tubes [279, 288, 289], in contrast to the

rodent RMS [78].

In rodents, the AOB is a distinct substructure from the

MOB. This distinction is not observed in fish except

lungfish [290, 291], nor is it seen in some reptiles such as

crocodiles and turtles, and birds [292]. While amphibians

do have an AOB, it does not appear to be divided into the

aAOB and pAOB [273, 276] except in the common

Japanese toad, Bufo japonicus [293]. However, projection

neurons of Xenopus AOB originate in the TE and migrate

from the caudal end of the telencephalon rostrally to the

AOB, similar to the migration of mouse pAOB projection

neurons [193]. This leads to the tantalizing speculation

that the amphibian AOB may correspond to the pAOB in

rodents, and that the rodent aAOB may be an added-on

specialization derived from the MOB, with which it

shares its domain of origin and migratory mechanisms

[193].

Multiple amygdaloid nuclei are implicated in olfactory

and vomeronasal behaviors in rodents [16, 167]. The MeA

in particular has been studied across several species of

tetrapods and anurans. In anurans, the MeA is the only

nucleus that receives input from the olfactory system [294–

296]. Consistent with its subpallial identity, the developing

MeA expresses Nkx2.1 in Xenopus and rodents [208, 209,

268, 274, 276]. However, the MeA also receives migratory

cells from disparate sources, making it a highly mixed

structure. In rodents and Xenopus, pallial origin cells from

the VP marked by Lhx9 expression populate the MeA [268,

274, 297]. In addition, cells from the diencephalic VZ also

migrate to the MeA in rodents [36], and this migration

requires Otp [203]. A similar migration is suggested by Otp

expression in Rana perezi and axolotl [298].

The apparent diencephalic-origin, Otp expression, sub-

pallium-derived Nkx2.1/Lhx6 expression, and the VP-

derived Lhx9 expression are also seen in the MeA of rep-

tiles [298–300] and chicks [26, 298, 301, 302], suggesting

that multiple origins for the MeA are conserved in different

vertebrate species. These observations bring the MeA to

the center stage for studies of behavior arising from cir-

cuitry that may also be similarly conserved.

Concluding remarks

The olfactory system mediates a variety of social, moti-

vational, and emotional behaviors including innate

behaviors that are important for the survival of an organism
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and for the propagation of its species. This fundamental

purpose may explain why the organization of the olfactory

circuit is similar across most vertebrates. This is also

consistent with the considerable degree of conservation of

developmental origins and cell migrations to diverse

structures within the system [193, 298, 299]. The olfactory

system is composed of both nuclear and laminated struc-

tures. The mechanisms that shape the assembly of this

ancient sensory system may have laid the foundation of

developmental mechanisms for evolutionarily more recent

structures such as the neocortex.

The olfactory system presents a combination of ancient

origins, complex migrations leading to intricate circuitry,

evolutionarily conserved circuit components and regulatory

mechanisms, and fundamental behaviors critical for the

maintenance of a species. These features make the olfac-

tory system an attractive model for understanding both, the

developmental mechanisms of circuit assembly in the

forebrain and the possible evolution of these strategies in

more recent structures such as the neocortex. Insight into

the mechanisms underlying disorders arising from aberrant

olfactory system development may also inform our

understanding of disorders arising from defective neocor-

tical development.
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